跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾淑敏
論文名稱:牡蠣血球細胞型態與功能之相關研究
論文名稱(外文):Morphological and functional characterization of hemocytes in the oyster (crassostrea gigas)
指導教授:周信佑周信佑引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:真牡蠣血球細胞型態
相關次數:
  • 被引用被引用:5
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
真牡蠣 (Crassostrea gigas)為本省重要的養殖貝類,本論文為了瞭解真牡蠣血球細胞種類與其在防禦機制中所扮演的角色,首先利用光學與電子顯微鏡術觀察真牡蠣的血球型態與細微構造。在倒立位相差顯微鏡下進行未染色之牡蠣血球細胞的活體觀察,依據細胞質中顆粒的有無將真牡蠣的血球細胞區分為顆粒球(granulocyte)和非顆粒球(agranulocyte)兩大類,另有一種數量極少的細胞,暫時將之歸為無法分類之囊泡血球(vesicular hemocytes)。在光學顯微鏡下以100%甲醇和 1%戊二醛溶液兩種固定液,配合Quick-Differ、May-Grünwald及Giemsa三種染色法,除了確認牡蠣血球細胞可分為顆粒球、非顆粒球以及囊泡血球外,更可依顆粒的染色性,再將顆粒球再分為嗜伊紅球、大顆粒嗜鹼球、小顆粒嗜鹼球及兼俱嗜伊紅與嗜鹼性等四種。在穿透式電子顯微鏡的觀察下,顆粒球有少數細長偽足的伸出;粒線體、粗面內質網、還有一些疑似平滑內質網的管狀或圓狀構造散佈細胞質中;最明顯的是胞質內有兩種呈圓形或橢圓狀的顆粒,一種是電子致密,另一種則是電子澄清顆粒。非顆粒球有較多管狀偽足伸出的情形,胞器大多位於核的周邊,而胞質外圍呈現均勻電子緻密的情形;有些非顆粒球中,可發現有殘存小體 (residual body) 的電子緻密顆粒存在。
以流式細胞儀 (flow cytometry) 配合percoll的機度離心分析血球細胞之族群分布,發現牡蠣血球有A、B和C三個族群,各占62.8% 、20.6 %、3.9%,其中A群細胞應為非顆粒球部份,而20.6 %的B群細胞應為顆粒球部份,這和之前在光學顯微鏡下觀察到血球非顆粒與顆粒球的比例相符合(64%:36%);而數量最少且細胞最大的C群細胞(3.9%)可能是無法分類的囊泡血球。
最後部分進行牡蠣血球的脂質、多醣類以及b-Glucuronidase、a-Naphthyl acteate esterase、Naphthol AS-D chloroacetate esterase、Acid phosphatase、Alkaline phosphate、Peroxidase六種酵素的染色觀察。結果發現脂質染色中,呈陽性反應的皆是顆粒球;而真牡蠣顆粒球與非顆粒球都是PAS陽性反應。而以上六種酵素反應均存在於牡蠣的顆粒球內。利用超氧根氧離子的測定(NBT)和螢光乳珠的吞噬作用,發現非顆粒球與顆粒球皆有吞噬能力,因為吞噬作用後可能會在細胞質中留下肝糖,和以上牡蠣血球皆呈PAS陽性的結果相結合,證實真牡蠣的非顆粒球與顆粒球皆有吞噬能力。
In order to understand the cellular defense system in the oyster, Crassostrea gigas, hemocytes of the Crassostrea gigas were characterized using phase contrast, light and electron microscopy. Three types of hemocytes, which we named granulocyte, agranocyte and vecicular hemocyte, were recognized. Three types of granulocyte were identified by light microscopy, in accordance with the presence of basophilic or eosinophilic granules or a mixture of both in the cytoplasm.
Electron microscopic observations showed that the granulocyte population consisted of two types of cells with ultrastructural similarities but with distinctive granules. One of the two types of granulocytes was characterized by the presence of membrane-bound electron-lucid granules, the second type contained membrane-bound electron-dense granules. The cytoplasm of the granulocyte contained some mitrochondria and endoplasmic reticulum and numerous small membrane bound vesicles. Agranulocyte presented rough endoplasmic reticulum and mitrochondria was often located near the nucleus and some of them contained residual bodies.
With flow cytometry and the discontinuous percoll density gradient centrifugation analyzing, the hemocyte population contains three subpopulations A (62.8%), B (20.6%) and C (3.9%) in oyster. According to the results of these analysis, supposing that subpopulation A is agranulocyte, subpopulation of B is garnulocyte and maybe subpopulation C is vesicular hemocytes.
Results of the histochemistry staining showed that granulocyte was lipid postive and the haemocyte were b-glucuronidase, a-naphthyl acteate esterase, naphthol AS-D chloroacetate esterase, acid phosphatase, alkaline phosphate and peroxidase positive. Moreover, the granulocyte and agranulocyte were PAS postive and showed phagocyte ability against latex and zymosan particles.
目 錄
摘要 ........................................................I
前言 ........................................................1
文獻回顧 ....................................................3
一、二枚貝血球細胞之分類.....................................3
二、二枚貝的血球生成 ........................................4
三、二枚貝血球細胞種類和型態特徵 ............................5
四、二枚貝血球的功能 ........................................8
五、二枚貝血球在防禦機制中扮演的角色 ........................8
一、真牡蠣血球細胞之形態觀察................................ 18
(一) 實驗材料 ...............................................18
(二) 研究方法 ...............................................18
1、血淋巴之抽取以及牡蠣血球玻片之製作....................... 18
2、倒立顯微鏡觀察 ...........................................18
3、光學顯微鏡觀察 ...........................................18
4、牡蠣血球細胞之穿透式電子顯微鏡 (TEM) 觀察 ...............19
二、真牡蠣血球之族群分佈與分離 ..............................20
(一) 實驗材料 ...............................................20
(二) 研究方法 ...............................................20
1、Percoll分離...............................................21
2、以流式細胞儀 (flow cytometry) 分析血球細胞之族群分布......21
三、真牡蠣血球細胞之組織化學染色觀察.........................21
(一) 實驗材料-各種酵素染色試劑的配製........................22
(二) 研究方法................................................23
1、脂質染色..................................................23
2、多醣類染色 (Periodic acid-schiff, PAS)....................24
3、Lysosome 染色.............................................24
4、鹼性磷酸酶 (Alkaline phosphatase) 染色....................24
5、酸性磷酸酶 (Acid phosphatase) 染色解脂酶..................24
6、b-Glucuronidase 染色......................................25
7、解脂酶 (a-Naphthyl acetate esterase) 染色.................25
8、解脂酶 (Naphthol AS-D chloroacetate esterase) 染色........25
9、過氧化酶 (Peroxidase) 染色................................26
10、吞噬作用.................................................26
結果.........................................................27
一、真牡蠣血球細胞之形態觀察.................................27
1、倒立顯微鏡觀察 ...........................................27
2、光學顯微鏡觀察 ...........................................28
3、牡蠣血球細胞之穿透式電子顯微鏡 (TEM) 觀察.................29
二、真牡蠣血球之族群分佈與分離...............................30
1、Percoll分離...............................................30
2、以流式細胞儀 (flow cytometry) 分析血球細胞之族群分布......30
三、真牡蠣血球細胞之組織化學染色觀察.........................31
1、脂質染色..................................................31
2、多醣類染色 (Periodic acid-schiff, PAS)....................31
3、Lysosome 染色............................................ 31
4、鹼性磷酸酶 (Alkaline phosphatase) 染色....................31
5、酸性磷酸酶 (Acid phosphatase)染色 ........................32
6、b-Glucuronidase 染色......................................32
7、解脂酶 (a-Naphthyl acetate esterase) 染色.................32
8、解脂酶 (Naphthol AS-D chloroacetate esterase) 染色........33
9、過氧化酶 (Peroxidase) 染色................................33
10、吞噬作用.................................................33
討論.........................................................34
參考文獻.....................................................43
圖表.........................................................57
參 考 文 獻
中華民國臺灣地區漁業年報 (1993-1999) 台灣省農林廳漁業局。
竹內卓三、竹本義照、松原孝之、荒木文雄 (1960)。斃死カキ研究の回顧と血液學的研究。廣島水試報告,22(1): 1-7。
渡邊陽之助 (1978)。血球と造血細胞 動物細胞學Ⅱ (小川和朗、黑住一昌、小池聖淳、佐正一編)。朝倉書店,東京,p119-164。
漁業署(1979) 1978年中華民國台灣地區漁業年報。行政院農業委員會漁業署,台灣,台北。
漁業署(1998) 1997年中華民國台灣地區漁業年報。行政院農業委員會漁業署,台灣,台北。
Adema, C. M., A. Mohandas, W. P. W. van der Knaap and T. Sminia (1994). Separation of Lymnaea stagnalis hemocytes by density gradient centrifugation. Dev. comp. immunol., 18: 15-31.
Adema, C. M., W. P. W. van der Knaap and T. Sminia (1991a). Molluscan hemocytemediated cytotoxicity: the role of reactive oxygen intermediates. Rev. Aquat. Sci., 4: 201-223.
Adema, C. M., E. C. Van Deutekom-Mulder, W. P. W. van der Knapp, E. A. Meuleman and T. Sminia (1991b). Generation of oxygen radicals in hemocytes of the snail Lymnaea stagnalis in relation to the rate of phagocytosis. Dev. Comp. Immunobiol., 15: 17-26.
Anderson, R .S. (1981). Inducible hemolytic activity in Mercenaria mercenaria hemolymph. Dev. Comp. Immunol., 5: 575-585.
Anderson, R. S. (1994). Hemocyte-derived reactive oxygen intermediate production in four bivalve mollusks. Dev. Comp. Immunol., 18: 89-96.
Anderson, R. S. and R. A. Good (1976). Opsonic involvement in phagocytosis by molluscan hemocytes. J. Invertebr. Pathol., 27: 57-64.
Anderson, R. S., L. M. Oliver and L. L. Brubacher (1992). Superoxide anion generation by Crassostrea virginica hemocytes as measured by nitroblue tetrazolium reduction. J. Invertebr. Pathol., 59: 303-307.
Auffret, M. (1986). Internal defence in bivalve molluscs: ultrastructural observations on the fate of experimentally injected bacteria in Ostrea edulis granular hemocytes. In: Vivares, C. P., J-R. Bonami, E. and Jaspers, E., (eds.) Pathology in Marine Aquaculture. European Aquaculture Society Special Publication 9, Bredene, Belgium, pp. 351-356.
Auffret, M. (1988). Bivalve hemocytes morphology. Special publication (American Fisheries Society), 18: 169-177.
Auffret, M. (1989). Comparative study of the hemocytes of two oyster species: the European flat oyster, Ostrea edulis, Linnaeus, 1750 and the Pacific oyster, Crassostrea gigas (Thunberg, 1793). J. Shellfish Res., 8: 367-373.
Babior, B. M. (1980). The role of oxygen radicals in microbial killing by phagocytes. In: Sbarra, A. J. and R. S. Strauss (eds.) The Reticuloendothelial System. Plenum, New York, pp. 339-354.
Bachère, E., D. Chagot, and H. Grizel (1988). Separation of Crassostrea gigas hemocytes by density gradient centrifugation and counterflow centrifugal elutriation. Dev. Comp. Immunol., 12: 549-559.
Bachère, E., D. Hervio and E. Mialhe (1991). Luminol dependent chemiluminescence by hemocytes of two marine bivalves, Ostrea edulis and Crassostrea gigas. Dis. Aquat. Org., 11: 173-180.
Bang, F. B. (1961). Reaction to the injury in the oyster (Crassostrea virginica). Biol. Bull., 121: 57-68.
Barracco, M. A., I. D. Medeiros and F. M. Moreira (1999). Some haemato-immunological parameters in the mussel Perna perna. Fish and Shellfish Immunology, 9: 387-404.
Bayne, C. J., M. N. Moore, T. H. Carefoot and R. J. Thompson (1979). Hemolymph functions in Mytilus californianus: the cytochemistry of hemocytes and their responses to foreign implants and hemolymph factors in phagocytosis. J. Invertebr. Pathol., 34: 1-20.
Bubel, A., M. N. Moore and D. Lowe (1977). Cellular responses to shell damage in Mytilus edulis. J. Exp. Mar. Biol. Ecol, 30: 1-27.
Cajaraville, M. P. and Pal, S. G. (1995). Morphofunctional study of the haemocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell Struct. Funct, 20: 355-367.
Carballal, M. J., A. Villalba and C. López (1998). Seasonal variation and effects of age, food availability, size, gonadal development, and parasitism on the hemogram of Mytilus galloprovincialis. J. Invertebr. Pathol., 72: 304—312.
Carballal, M. J., M. C. López, C. Azevedo and A. Villalba (1997a). Hemolymph cell types of the mussel Mytilus galloprovincialis. Dis. Aquat. Org., 29: 127-135.
Carballal, M. J., M. C. López, C. Azevedo and A. Villalba (1997b). In vitro study of phagocytic ability of Mytilus galloprovincialis Lmk haemocytes. Fish and Shellfish Immunology, 7: 403-416.
Carballal, M. J., M. C. López, C. Azevedo and A. Villalba (1997c). Enzymes involved in defense functions of hemocytes of mussel Mytilus galloprovincialis. J. Invertebr. Pathol., 70: 96-105.
Chao, N. H., J. H. Cheng, C. I. Liang, H. P. Tsai, H.Y. Chen and Y. D. Ho ( 2001). Determination of triploidy induction in the Pacific Oyster, Crassostrea gigas, and its preliminary extension in Taiwan. Taiwan Fish. Res. Inst., 4: 37-44.
Chagot, D. J. (1989). Characterisation morphologique et fonctionelle des hemocytes d’ Ostrea edulis et de Crassostrea gigas, mollusques Bivalves. Etude In vitro de leurs interactions avec le protozoaire Bonamia ostrea (Ascetospora), Ph. D. thesis, Ministère de 1’Education Natonale, Ecole Pratique des Hautes Etudes, Paris.
Chagot, D., V. Boulo, D. Hervio, E. Mialhe, E. Bachère, C. Mourton and H. Grizel (1992). Interactions between Bonamia ostreae (Protozoa: Ascetospora) and hemocytes of Ostrea edulis and Crassostrea gigas (Mollusca: Bivalvia): Entry mechanisms. J. Invertebr. Pathol., 59: 241-249.
Cheng, T. C. (1975). Functional morphology and biochemistry of molluscan phagocytes. Ann. N.Y. Acad. Sci, 266: 343-379.
Cheng, T. C. (1981). Bivalves. In: Ratcliffe, N. A. and A. F. Rowley (eds.) Invertebrate Blood Cells. New York: Academic Press, pp. 233-300.
Cheng, T.C. (1983a). Internal defenes mechanisms of molluscs against invading microorganisms. Trans. Am. Microscop. Soc., 102: 185-193.
Cheng, T.C. (1983b). The role of lysosomes in molluscan inflammation. Am. Zool., 23: 129-144.
Cheng, T.C. (1983c). Triggering of immunologic defense mechanisms of molluscan shellfish by biotic and abiotic challenge and its applications. Marine Technology Society Journal, 17: 18-25.
Cheng, T. C. (1984). A classification of molluscan hemocytes based on functional evidences. In: Bulla, L. A. and T. C. Cheng (eds.) Comparative Pathobiology. Vol 6. New York: Plenum Press, pp. 111-146.
Cheng, T. C. (1992a). Selective induction of release of hydrolases from Crassostrea virginica hemocytes by certain bacteria. J. Invertebr. Pathol., 59: 197-200.
Cheng, T. C. (1992b). Requirement of a chelator during ionophore-stimulated release of acid phosphatase from Crassostrea virginica hemocytes. J. Invertebr. Pathol., 59: 308-314.
Cheng, T. C. (1996). Hemocytes: forms and functions. In: Newel, R.I.E., V. S. Kennedy and A. F. Eble (eds.) The Eastern Oyster Crassostrea virginica. Maryland Sea Grand College, College Park, MaryLand, pp. 299-334.
Cheng, T. C. and A. Cali (1974). An electron microscope study of the fate of bacteria phagocytized by granulocytes of Crassostrea virginica. Contemp. Top. Immunobio., 4: 25-35.
Cheng, T. C. and D. A. Foley (1975). Hemolymph cells of the bivalve mollusc Mercenaria mercenaria: an electron microscopical study. J. Invertebr. Pathol., 26: 341-351.
Cheng, T. C. and J. C. U. Downs (1988). Intracellular acid phosphatase and lysozyme levels in subpopulations of oyster, Crassostrea virginica, hemocytes. J. Invertebr. Pathol., 52: 163-167.
Cheng, T. C. and K. H. Howland (1978). Chemotactic attraction between hemocytes of the oyster, Crassostrea virginica, and bacteria. J. Invertebr. Pathol., 33: 204-210.
Cheng, T. C. and M. S. Butler (1979). Experimentally induced elevations of acid phosphatase activity in hemolymph of Biomphalaria glabrata (Mollusca). J. Invertebr. Pathol., 34: 119-124.
Cheng, T. C. and G. E. Rodrick (1975). Lysosomal and other enzymes in the hemolymph of Crassostrea virginica and Mercenaria mercenaria. Comp. Biochem. Physiol., 52B: 443-447.
Chu, Fu-Lin E. (1988). Humoral defense factors. In: W. Fisher (ed.) Disease Processes in Marine Molluscs. Special publication (American Fisheries Society) 18: Washington, pp. 178-188.
Chu, Fu-Lin E., A. K. Volety and G. Constantion (1996a). Intracellular and extracellular lysosomal enzyme activities in eastern oysters (Crassostrea virginica). In: Abstracts. Annual Meeting, April 14-18, National Shellfisheries Associatin, Baltimore, Maryland. J. Shellfsih Res., 15: 514.
Chu, Fu-Lin E., A. K. Volety, J. T. Ligenfelser and R. C. Hale (1996b). Modulation of hemocyte activities in oysters (Crassostrea virginica) upon exposure to PAHs. In: Abstracts, P.150. Society of Environmental Toxicology and Chemistry-17th Annual Meeting, November 17-21., Washington, DC.
Chung, S. and C. J. Secombes (1988). Analysis of events occurring within teleost macrophages during the respiratory burst. Com. Biochem. Physiol., 89B: 534-544.
Coles, J. A. and R. K. Pipe (1994). Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis. Fish and Shellfish Immunology, 4: 337-352.
Coles, J. A., S. R. Farley and R. K. Pipe (1995). Alteration of the immune response of the common marine mussel Mytilus edulis resulting from exposure to cadmium Dis. Aquat. Org., 22: 59-65.
Coombe, D.R., P.L. Ey and C.R. Jenkin (1984). Self/nonself recognition in invertebrates. Quart. Rev. Biol., 59: 231-254.
DeBruyne, C. (1895). Recherche au sujet de 1’intervention de al phagocytose dans le développement des invertebrates. Arch. Biol. 14: 161-182.
DeChatelet, L. and P. S. Shirley (1982). Chemiluminescence of human neutrophils induced by soluble stimuli: Effect of divalent cations. Infect. Immun., 35: 206-212.
Diamond. R. D., R. A. Clark and C. C. Haudenschild (1980). Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase and oxidative products of neutrophil metabolism in-vitro. J. Clin. Invest., 66: 908-917.
Diamond, R. D. and R. Kresicki (1978). Mechanisms of attachment of neutrophils to Canadida albicans pseudohyphae in the absence of serum, and of subsequent damage to pseudohyphae by microbicidal processes of neutrophils in vitro. J. Clin. Invest., 61: 360-369.
Feng, S. Y. (1965). Pinocytosis of proteins by oyster leucocytes. Biol. Bull., 129: 95-105.
Feng, S. Y. (1988). Cellular defense mechanisms of oysters and mussels. Special publication (American Fisheries Society), 18: 153-168.
Feng, S. Y., J. S. Feng, C. N. Burke and L. H. Khairallah (1971). Light and electron microscopy of the hemocytes of Crassostrea virginica (Mollusca-Pelecypoda). Zeitschrift für Zellforschung und Mikroskopische Anatomie, 120: 225-243.
Feng, S.Y., J.S. Feng and T. Jamasu (1977). Role of Mytilus coruscus and Crassostrea gigas blood cells in defense and nutrition. Comp. Pathobiol., 3: 31.
Fisher, W. S. (1986). Structure and functions of oyster hemocytes. In Brehélin, M. (ed.) Immunity in Invertebrates. Berlin: Springer-Verlag, pp. 25-35.
Fisher, W. S. (1988). Environmental influence on bivalve hemocyte function. Special publication (American Fisheries Society), 18: 225-237.
Fisher, W. S. (1992). Occurrence of agglutinins in the pallial cavity mucus of oysters. J. Exp. Mar. Biol. Ecol., 162: 1-13.
Fisher, W. S., M. Auffret and G. Balouet (1987). Response of European flat oyster (Ostrea edulis) hemocytes to acute salinity and temperature changes. Aquaculture, 67: 179-190.
Fisher, W. S., A. Wishkovsky and Fu-Lin E. Chu (1990). Effects of tributyltin on defense-related activities of oyster hemocytes. Arch. Environ. Contam. Toxicol., 19: 354-360.
Fisher, W. S. and A. R. DiNuzzo (1991). Agglutination of bacteria and erythrocytes by serum from six species of marine mollusks. J. Invertebr. Pathol., 57: 380-394.
Fisher, W. S., J. T. Winstead, L. M. Oliver, H. L. Edmiston and G. O. Bailey (1996). Physiological variability of eastern oysters from Apalachicola Bay, Florida. J. Shellfish Res., 15: 543-553.
Fisher, W. S., L. M. Oliver and P. Edwards (1996). Hematologic and serologic variability of eastern oysters from Apalachicola Bay, Florida. J. Shellfish Res., 15: 555-564.
Foley, D. A. and T. C. Cheng (1972). Interaction of molluscs and foreign substances: the morphology and behavior of hemolymph cells in the American oyster, Crassostrea virginica, in vitro. J. Invertebr. Pathol., 19: 383-394.
Foley, D. A. and T. S. Cheng (1975). A quantitative study of phagocytosis by hemolymph cells of the pelecypods Crassostrea virginica and Mercenaria mercenaria. J. Invertebr. Pathol., 25: 189.
Ford, S. E. and K. A. Alcox (1993). A comparison of methods for identifying molluscan hemocytes. J. Shellfish Res., 12: 360-361.
Ford, S. E., S. A. Kanaley and D. T. J. Littlewood (1993). Cellular responses of oysters infected with Haplosporidium nelsoni: changes in circulating and tissueinfiltrating hemocytes. J. Invertebr. Pathol., 61: 49-57.
Ford, S. E., K. A. Ashton-Alcox and S. A. Kanaley (1994). Comparative cytometric and microscopic analyses of oyster hemocytes. J. Invertebr. Pathol., 64: 114-122.
Ford, S. E. and M. R. Tripp (1996). Disease and defense mechanisms. In: Kennedy, V. S., R. I. E. Newell and A. F. Eble (eds.) The Eastem Oyster Crassostrea virginica. Maryland Sea Grant, pp. 581-660.
Friebel, B. and L. Renwrantz (1995). Application of density gradient centrifugation for separation of eosinophilic and basophilic hemocytes from Mytilus edulis and characterization of both cell groups. Comparative Biochemistry and Physiology, 112A: 81-90.
Fridl, F. E. and M. R. Alvarez (1992). Oxidant production by hemocytes of the eastern oyster, Crassostrea virginica (Gmelin). Aquaculture, 107:125-129.
Galtsoff, P. S. (1964). ⅩⅣ Organs of reproduction. The American oyster Crassostrea virginica Gmelin (by P. S. Galtsoff), Fishery Bulletin Fish Wildlife Service, 64, pp.1-480.
Gelder, S. R. and C. A. Moore (1986). Cytochemical demonstration of several enzymes associated with phagosomal processing of foreign material within hemocytes of Mercenaria mercenaria. Trans. Am. Microsc. Soc., 105: 51-58.
Giamberini, L., M. Auffret and J. C. Pihan (1996). Haemocytes of the freshwater mussel, Dreissena polymorpha pallas: Cytology, cytochemistry and X-ray microanalysis. J. Molluscan Stud., 62: 367-379.
Graham, M. A. (1968). A hemolytic enzyme in hemolymph of clam Mercenaria mercenaria. Master’s thesis. University of Delaware, Newark.
Greger, E. A., A. S. Drum and R. A. Elston (1995). Measurement of oxidative activity in hemocytes of the Pacific razor clam, Siliqua patula, and the oyster, Crassostrea gigas, using lucigenin-and luminol-dependent chemiluminescence. J. Invertebr. Pathol., 65: 48-60.
Haeckel, E. (1862). Die Radiolarien. George Reiner, Berlin, p.462.
Hardy, S. W., T. C. Fletcher and J. A. Olafsen (1977a). Aspects of cellular and humoral defence mechanisms in the Pacific oyster, Crassostrea gigas. In: Solomon, J. B. and J. D. Horton (eds.) Developmental Immunobiology. Amsterdam: Elsevier/North Holland, pp. 59-66.
Hardy, S. W., T. C. Grant and P. T. Fletcher (1977b). A haemagglutinin in the tissue fluid of the Pacific oyster, Crassostrea gigas, with specificity for sialic acid residues in glycoproteins. Experientia, 33: 767-768.
Hardy, S. W., T.C . Fletcher and L.M. Gerrie (1976). Factors in hemolymph of the mussel, Mytilus edulis L., of possible significance as defense mechanisns. Biochem. Soci. Trans., 4: 473-475.
Hartland, B. and J. F. Timoney (1979). In vivo clearance of enteric bacteria from hemolymph of the hard clam and American oyster. Appl. Environ. Microbiol., 37: 517-520.
Hawkins, W. E. and H. D. Howse (1982). Ultrastructure of cardiac hemocytes and related cells in oyster Crassostrea virginica. Trans. Am. Microsc. Soc., 101: 241-252.
Henry, M., M. Auffret and E. Boucaud-Camou (1990). Aspects ultrastructuraux et fonctionnels des hemocytes de quatre familles de Bivalves (Ostreidae, Veneridae, Mytilidae, Pectinidae). Haliotis, 10: 195-196.
Henry, M., N. Vicente and N. Houache (1991). Hemocyte characterization of the marine bivalve mollusc Pinna nobilis L. 1758. 8th National Congress of the French Malacological Society: Recent Aspects in Molluscan Biology, Brest, 7-8 Nov. 1990. (M. Le Pennec ed.) 13: 97-106.
Hervio, D., E. Bachère, E. Mialhe and H. Grizel (1989). Chemiluminescent responses of Ostrea edulis and Crassostrea gigas to Bonamia ostrea (Ascetospora). (Abstract). Dev. Comp. Immunol., 13: 449.
Hine, P. M. and B. Wesney (1994). Interaction of phagocytosed Bonamia sp. (Haplosporidia) with haemocytes of oysters (Tiostrea chilensis). Dis. Aquat. Org., 20: 219-229.
Hinsch, G. W. and M. Hunte (1990). Ultrastructure of phagocytosis by hemocytes of the American oyster. In: Perkins, F. O. and T. C. Cheng (eds.) Pathology in Marine Science. Academic Press, San Diego, pp. 479-488.
Holden, J.A., R.K. Pipe, A. Quagliua and G. Ciani (1994). Blood cells of the arcid clam, Scapharca inaequivalvis. J. Mar. Biol. Assoc. U. K., 14: 287-299.
Huffman, J. E. and M. R. Tripp (1982). Cell types and hydrolytic enzymes of soft shell clams (Mya arenaria) hemocytes. J. Invertebr. Pathol., 40: 68-74.
Hughes, H. P. A. (1988). Oxidative killing of intracellular parasites mediated by macrophages. Parasitol. Today, 4: 12.
Jong, E. C., A. A. F. Mahmou and S. J. Klebanoff (1981). Peroxidase mediated toxicity to schistosomula of Shistosoma mansoni. J. Immunol., 126: 468-471.
Klebanoff, S. J. and R. A. Clark (1978). The neutrophil: function and disorders. Elsevier, North-Holland, Amsterdam, pp. 810.
Klebanoff, S. J., W. R. Henderson, E. C. Jong, A. Jong, R. M. Locksley and P. G. Ramsey (1982). Cidal mechanims and their dependence on hydrogen peroxide. In: Karnovsky, M. L. and L. Bolis (eds.) Phagocytosis-Past and Present. Academic Press, New York, pp. 449-461.
La Peyre, J. F., Fu-Lin E. Chu and J. M. Meyers (1995). Haemocytic and humoral activities of eastern oyster and Pacific oyster folloeing challenge by the protozoan Perkinsus imarinus. Fish Shellfish Immunol., 5: 179-190.
Lambert, C. and J. L. Nicolas (1998). Specific inhibition of chemiluminescent activity by pathogenic vibrios in hemocytes of two marine bivalves: Pecten maximus and Crassostrea gigas. J. Invertebr. Pathol., 71: 53-63.
Larson, K. G., B. S. Roberson and F. M. Hetrick (1989). Effect of environmental pollutants on the chemiluminescence of hemocytes from the American oyster Crassostrea virginica. Dis. Aquat. Org., 6: 131-136.
Le Gall, G., E. Bachère and E. Mialhe (1991). Chemiluminescence analysis of the activity of Pecten maximus hemocytes stimulated with zymosan and host-secific Rickettsialeslike organisms. Dis. Aquat. Org., 11: 181-186.
Liu, Y.C., , L.L. Liu (2001) The impacts of drills on oyster culture. 6th Asian Fisheries Forum Book of Abstracts, Asian Fisheries Society, Unit A, Mayaman Townhomes 25 Mayaman Streeet UP Village, Quezon City Philippines. 353
López, C., M. J. Carballal, C. Azevedo and A. Villalba (1997a). Differential phagocytic ability of the circulating haemocyte types of the carpet shell clam Ruditapes decussatus (Mollusca: Bivalvia). Dis. Aquat. Org., 30: 209-215.
López, C., M. J. Carballal, C. Azevedo and A. Villalba (1997b). Enzyme characterization of the circulating haemocytes of Ruditapes decussatus (Mollusca: Bivalvia). Fish and Shellfish Immunology, 7: 595-608.
López, C., M. J. Caballal, C. Azevedo and A. Villalba (1997c). Morphological characterization of the hemocytes of the clam, Ruditapes decussatus (Mollusca: Blivalvia). J. Invertebr. Pathol., 6: 51-57.
López, C., A. Villalba and E. Bachère (1994). Absence of generation of active oxygen radicals coupled with phagocytosis by the hemocytes of the clam, Ruditapes decussatus (Mollusca: Bivalvia). J. Invertebr. Pathol., 64: 188-192.
McCormick-Ray, M. G. and T. Howard (1991). Morphology and mobility of oyster hemocytes: evidence for seasonal variations. J. Invertebr. Pathol., 58: 219-230.
McDade, J. E. and M.R. Tripp (1967a). Lysozyme in oyster mantle mucus. J. Invertebr. Pathol., 9: 581-582.
McDade, J. E. and M.R. Tripp (1967b). Lysozyme in the hemolymph of oyster, Crassostrea virginica. J. Invertebr. Pathol., 9: 531-535.
Mix, M. C. (1976). A general model for leucocyte cell renewal in bivalve molluscs. Marine Fish Rev., 38: 37-41.
Mohandas, A. and T. C. Cheng (1985). An electron microscope study of the structure of lysosomes released from Mercenaria mercenaria granulocytes. J. Invertebr. Pathol., 46: 332-334.
Mohandas, A., T. C. Cheng and J. B. Cheng (1985). Mechanism of lysosomal enzyme release from Mercenaria mercenaria granulocytes: a scanning electron microscope study. J. Invertebr. Pathol., 46: 189-197.
Moore, M. N and D. M. Lowe (1977). The cytology and cytochemistry of the hemocytes of Mytilus edulis and their responses to experimentally injected carbon particles. J. Invertebr. Pathol., 29: 18-30.
Moore, C. A. and S. R. Gelder (1983). The role of the ‘‘blunt’’ granules in hemocytes of Mercenaria mercenaria following phagocytosis. J. Invertebr. Pathol., 41: 369-377.
Moore, C. A. and S. R. Gelder. (1985). Demonstration of lysosomal enzymes in hemocytes. Trans. Am. Microsc. Soc., 104: 242-249.
Mortensen, S. H. and J. Glette (1996). Phagocytic activity of scallop (Pecten maximus) haemocytes maintained in vitro. Fish and Shellfish Immunology, 6: 111-121.
Mourton, C., V. Boulo, D. Chagot, D. Hervio, E. Bachère, E. Mialhe and H. Grizel (1992). Interactions between Bonamia ostreae (Protozoa: Ascetospora) and hemocytes of Ostrea edulis and Crassostrea gigas (Mollusca: Bivalvia): In vitro system establishment. J. Invertebr. Pathol., 59: 235-240.
Nakayama, K., A. M. Nomoto, M. Nishijima and T. Maruyama (1997). Morphological and functional characterization of hemocytes in the giant clam Tridacna crocea. J. Invertebr. Pathol., 69: 105-111.
Nakayama, K. and T. Maruyama (1998). Differential production of active oxygen species in photo-symbiotic and non-symbiotic bivalves. Dev. Comp. Immunol., 22: 151-159.
Nakamura, M., K. Mori, S. Inkooka and T. Nomura (1985). In vitro production of hydrogen peroxide by the amoebocytes of the scallop, Patinopecten yessoensis (Jay) Dev. Comp. Immunol., 9: 407-417.
Nathan, C., N. Nogueria, C. Juangbhanich, J. Ellis and Z. Cohn (1979). Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J. Exp. Med., 149: 1056.
Noël, D., E. Bachère and E. Mialhe (1991). Phagocytosis associated chemiluminescence of hemocytes in Mytilus edulis (Bivalvia). Dev. comp. immunol., 17: 483-493.
Noël, D., R. Pipe, R. Elston, E. Bachère and E. Mialhe (1994). Antigenic characterization of hemocyte subpopulations in the mussel Mytilus edulis by means of monoclonal antibodies. Marine Biology, 119: 549-556.
Ohuye, T. (1937). On the coelomic corpuscles in the body fluid of some invertebrates. Ⅶ. On the formed elements in the body fluid of some marine invertebrates which possess the red blood corpuscles. Sci. Rep. Tohoku Imp. Univ., Ser. 4, 12: 203-239.
Ohuye, T. (1938). On corpuscles in the body fluids of some invertebrates. General considerations on the results obtained by the preceding investigation. Sci. Rep. Tohoku Imp. Univ., Ser. 4, 13: 359-380.
Olafsen, J. A. (1986). Invertebrate lectins: Biochemical heterogeneity as a possible key to their biological function. In: Brehelin, M. (ed.) Immunity in Invertebrates. Spinger-Verlag, Berlin, pp. 94-111.
Olafsen, J. A. (1988). Role of lections in invertebrate humoral defense. In: Fisher, W. (ed.) Disease Processes in Marine Molluscs. American Fisheries Society Publication 18, pp. 189-205.
Oliver, L. M. and W. S. Fisher (1995). Comparative form and function of oyster Crassostrea virginica hemocytes from Chesapeake Bay (Virginia) and Apalachicola Bay (Florida). Dis. Aquat. Org., 22: 217-225.
Oliver, L. M. and W. S. Fisher (1995). Comparative form and function of oyster Crassostrea virginica hemocytes from Chesapeake Bay (Virginia) and Apalachicola Bay (Florida). Dis. Aquat. Org., 22: 217-225.
Paul, B. and A. S. Sbarra (1986). The role of phagocyte in host-parasite interaction. XIII. The direct quantitative measurement of H2O2 in phagocytizing cells. Biochem. Biophys. Perspect. Mar. Biol., 156: 168-178.
Pipe, R. K. (1990). Differential binding of lectins to haemocytes of the mussel Mytilus edulis. Cell Tissue Res., 261: 261-268.
Pipe, R. K. (1992). Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Dev. comp. immunol., 16: 111-122.
Pipe, R. K., C. Porte and D. R. Livingstone (1993). Antioxidant enzymes associated with the blood cells and haemolymph of the mussel Mytilus edulis. Fish and Shellfish Immunology, 3: 221-233.
Pipe, R. K. and J. A. Coles (1995). Environmental contaminants influencing immune function in marine bivalve mollusks. Fish Shellfish Immunology, 5: 581-595.
Pipe, R. K., S. R. Farley and J. A. Coles (1997). The separation and characterisation of haemocytes from the mussel Mytilus edulis. Cell Tissue Res., 289: 537-545.
Rasmussen, L. P., D. E. Hage and O. Karlog (1985). An electron microscope study of the circulating leucocytes of the marine mussel, Mytilus edulis. J. Invertbr. Pathol., 45: 158-167.
Renwrantz, L. (1983). Involvement of agglutinins (lectins) in invertsbrate defense reactions: the immunlogical importance of carbohydrate-specific binding molecules. Dev. Comp. Immunol., 7: 603-608.
Renwrantz, L., T. P. Yoshino, T. C. Cheng and K. R. Auld (1979). Size determination of hemocytes from the American oyster, Crassostrea virgnica, and the description of the phagocytosis mechanism. Zool. Jahrb. Physiol., 83: 1-12.
Renwrantz, L., W. Schmalmack, R. Redel, B. Friebel and H. Schneeweiß (1996). Conversion of phenoloxidase and peroxidase indicators in individual haemocytes of Mytilus edulis specimens and isolation of phenoloxidase from haemocyte extract. Journal of Comparative Physiology, 165B: 647-658.
Rodrick, G. E. and S. A. Ulrich (1984). Microscopical studies on the hemocytes of bivalves and their phagocytic interaction with selected bacteria. Helgoländer Meeresuntersuchungen, 37: 167-176.
Rodrick, G. E. and T. C. Cheng (1974). Kinetic properties of lysozyme from haemolymph of Crassostrea virgnica. J. Invertebr. Pathol., 24: 41-48.
Root, R. K. and J. A. Metcalf (1977). Relationship to superoxide anion formation and cellular catabolism H2O2: studies with normal and cytochalasin b-treated cells. J. Clin. Invest., 60: 1266-1279.
Root, R. K., J. A. Metcalf, N. Oshino and B. Chance (1975). H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J. Clin. Invest., 55: 945-955.
Ruddell, C. L. (1959). A cytological and histochemical study of wound repair in the Pacific oyster, Crassostrea gigas. Ph.D. Thesis, University of Washington, Seattle.
Ruddell, C. L. (1971a). Elucidation of eh nature and function of the granular oyster amebocytes through Histochemical studies of normal and traumatized oyster tissues. Histochemie, 26: 98-112.
Ruddell, C. L. (1971b). The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the Pacific oyster, Crassostrea gigas. J. Invertebr. Pathol., 18: 260-268.
Ruddell, C. L. (1971c). The fine structure of granular amebocytes of the Pacific oyster, Crassostrea gigas. J. Invertebr. Pathol., 18: 269-275.
Russell-Pinto, F., R. Reimao and M. de Sousa (1994). Haemocytes in Cerastoderma edule (Mollusca, Bivalvia): distinct cell types engage in different responses to sheep erythrocytes. Fish and Shellfish Immunology, 4: 383-397.
Schlenk, D., P. Garcia Martinez and D. R. Livingstone (1991). Studies on myelopeptidase activity in the common mussel, Mytilus edulis. L. Comp. Biochem. Physiol., 99c: 63-68.
Sparks, A. K. (1972). Invertebrate Pathology. Noncommunicable Diseases. Academic Press, New York.
Sparks, A. K. and J. F. Morado (1988). Inflammation and wound repair in bivalve molluscs. Special publication (American Fisheries Society), 18: 139-152.
Stave, J. W., B. S. Roberson and F. M. Hetrick (1983). Chemiluminescence of phagocytic cells isolated from the pronephros of striped bass. Dev. Comp. Immunol., 7: 269-276.
Stauber, L. A. (1950). The fate of India ink injected intracardially into the oyster, Ostrea virginica (Gmelin). Biol. Bull., 98: 227-241.
Takatsuki, S. (1934). On the nature and functions of the amoebocytes of Ostrea edulis. Quart. J. Microsc. Sci., 76: 379-428.
Tamplin, M. L. and W. S. Fisher (1989). Occurrence and characteristics of agglutination of Vibrio cholerae by serum from the eastern oyster, Crassostrea virginica. Appl. Environ. Microbial., 55: 2882-2887.
Thorne, K. J. I., R. J. Svvennsen and D. Franks (1978). Role of hydrogen peroxide and peroxidase in the cytotoxicity of Trypanosma dionisii by human granulocytes. Infect. Immun., 21: 798-805.
Torreilles, J., M-C. Guerin and P. Roch (1996). Reactive oxygen species and defense mechanisms in marine bivalves. Comptes Rendus de 1’Academia des Sciences, Series 3, Sciences de la Vie, Proceedings of the Academy of Sciences, 319: 209-218.
Tripp, M. R. (1958). Disposal by the oyster of intracadially injected red blood cells of verts- brates. Proc. Natl. Shellfish Assoc., 48: 143-147.
Tripp, M. R. (1960). Mechanisms of removal of injected microorganisms from the American oyster, Crassostrea virginica (Gmelin). Biol. Bull., 119: 223.
Tripp, M. R. (1992). Phagocytosis by hemocytes of the hard clam, Mercenaria mercenaria. J. Invertebr. Pathol., 59: 222-227.
Tripp, M. R. and R. M. Turner (1978). Effects of trematode Protoeces maculates on the mussel Mytilus edulis. In: Bulla, L. A. and T. C. Cheng (eds.) Comparative Immunobiology: Invertebrate Models for Biomedical Research, Vol. 4. Plenum, New York, pp. 73-84.
Van Epps, E. D., J. S. Goodwin and S. Murphy (1978). Age-dependent variations in the polymorphonuclear leukocyte chemiluminescence. Infect. Immun., 22:57-61.
Vasta, G. R. and J. J. Marchalonis (1984). Summation: immunobiological significance of invertebrate lectins. In: Vasta, G. R. and J. J. Marchalonis (eds.) Recognition Proteins, Receptors, and Probes: Invertebrates. A. R. Liss, New York, pp. 177-199.
Volety, A. K. and Fu-Lin E. Chu (1995). Suppression of chemiluminescence of eastern oyster (Crassostrea virginica) hemocytes by the protozoan parasite Perkinsus marinus. Dev. Comp. Immunol., 19: 135-142.
Wen, C. M., G. H. Kou and S. N. Chen (1994). Light and electron microscopy of hemocyte of the hard clam, Meretrix lusoria (Röding). Comp. Biochem. Physio., 108A: 279-286.
Winston, G. W., M. N. Moore, M. A. Kirchin and C. Soverchia (1996). Production of reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: Lysosomal localization and effect of xenobiotics. Comp. Bioche. Physio., 113C: 221-229.
Wojcik, J. and K. T. Paynter (1996). Meloperoxidase activity from blood cells of the eastern oyster Crassostrea virginica. J. Shellfish Res., 15:532.
Xue, Q., T. Reneult, N. Cochennec and A. Gerard (2000). Separation of European flat oyster, Ostrea edulis, haemocytes by density gradient centrifugation and SDS-PAGE characterisation of separated haemocyte sub-populations. Fish and Shellfish Immunology, 10: 155-165.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top