跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/10/01 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊文福
論文名稱:飼料中不同油脂含量與來源對海鱺成長與體組成的影響
論文名稱(外文):The effects of dietary lipid levels and sources on the growth and body composition of cobia, rachycentron canadum
指導教授:沈士新沈士新引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:110
中文關鍵詞:海鱺飼料油脂飼料油脂脂肪酸
外文關鍵詞:cobialipiddietlipid levels of dietRachycentron canadum
相關次數:
  • 被引用被引用:13
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘 要
本研究分成四組實驗:(一)以脫脂酪蛋白為蛋白源,不同的油脂含量(二)以脫脂魚粉為蛋白源,不同的油脂含量(三)以脫脂魚粉為蛋白源,不同的油脂來源(四)以魚粉為蛋白源,不同的油脂來源,探討飼料中添加不同油脂含量與不同油脂來源對海鱺的成長、體成分以及肌肉與肝臟脂肪酸組成的影響。實驗一以脫脂酪蛋白為蛋白源,鱈魚肝油/玉米油(2/1)為油脂來源,配製成6種不同油脂含量(0、3、6、9、12與15%),等蛋白質(35%)與等能量的飼料﹔以餵食含15%油脂的飼料成長最好,餵食不含油脂的飼料成長最差,6、9、12與15%處理組比0與3%處理組的成長明顯高,以broken-line求出最適油脂在9.63%;水分、灰分、粗蛋白與粗纖維各組並無差異,粗脂質則隨著飼料油脂增加而有增高的趨勢,各組存活率皆為100%。
實驗二以脫脂魚粉為蛋白源,鱈魚肝油/玉米油(2/1)為油脂來源,配製成6種不同油脂含量(0、3、6、9、12與15%),等蛋白質(33%)與等能量的飼料﹔餵食含6、9、12與15%油脂的飼料的海鱺成長明顯較0與3%高﹔以broken-line分析法求出最適油脂為7.96%﹔水分、灰分、粗蛋白與粗纖維各組並無差異,粗脂質則隨著飼料油脂增加而有增高的趨勢,各組存活率在80∼100%﹔海鱺肌肉的中性油脂脂肪酸主要以16:0、16:1與18:1為主,而20:5n-3在實驗一的含量為6.7∼7.0%,實驗二的含量為7.0∼9.7%;實驗一22:6n-3的含量為2.4∼6.3%,實驗二的含量為4.3∼7.6%;海鱺的肌肉極性油脂脂肪酸主要以16:0、18:0、18:1n-9與22:6n-3為主,實驗一的20:5n-3量為3.0∼6.7%,實驗二為5.8∼9.5%;肝臟的中性油脂脂肪酸主要也是16:0、16:1與18:1為主,而20:5n-3與22:6n-3的含量比肌肉低,肝臟的極性油脂脂肪酸主要以16:0、18:0、18:1n-9與22:6n-3為主,而20:5n-3在兩組實驗的含量分別為2.4∼5.1%及7.4∼8.6%;20:4n-6在兩個實驗中的肌肉與肝臟之中、極性油脂的含量相當的低。
實驗三使用脫脂魚粉為蛋白源,以不同的油脂,鱈魚肝油、牛油、玉米油、大豆油、橄欖油、胡麻油與亞麻油,配製成7種等蛋白(43%),等油脂含量(6%)的飼料;以餵食含鱈魚肝油飼料的海鱺增重明顯高於其他處理組,玉米油及亞麻油處理組的增重與胡麻油處理組無差異,但明顯低於其他處理組,各組存活率為87∼100%;實驗四飼料配方與實驗三相同,以未脫脂魚粉為蛋白源;餵食含橄欖油飼料的海鱺之增重率與鱈魚肝油的飼料無顯著差異,但明顯高於其他處理組,大豆油、玉米油、胡麻油與亞麻油處理組的增重率無顯著差異,但明顯低於其他處理組,各組存活率87∼100%;實驗三與實驗四的魚體組織脂肪酸隨著飼料油脂不同而有不同的組成比例,餵食含鱈魚肝油的海鱺,組織含較高量的20:4n-6、20:5n-3與22:6n-3;牛油處理組含高量的16:0與18:0,餵食含玉米油、大豆油與胡麻油飼料的海鱺含較高量的18:2n-6,橄欖油則含高量的18:1n-9,而亞麻油則含高量的18:3n-3。
Abstract
Four experiments were conducted to investigate the effects of lipid levels and sources on the weight gain and the chemical compositions and fatty acid compositions of muscle and liver of cobia, Rachycentron canadum. Six isonitrogenous purified diets(35%C.P.)including defatted casein for protein source contained graded lipid levels, 0、3、6、9、12 and 15%, in the form of mixture of 2:1 cod liver oil/corn oil in experiment 1. Cobia fed diets containing 6、9、12 and 15% lipid had significantly higher weight gain than those fed the other diets. Survival of all treatments were 100%. Based on percentage weight gain data using broken-line analysis, the optimal dietary lipid for cobia was found to be approximately 9.63%. Using defatted fish meal as protein source, six isonitrogenous purified diets (33%C.P.)with graded lipid levels, 0、3、6、9、12 and 15% were conducted in experiment 2. Cobia fed diets containing 6、9、12 and 15% lipid had significantly higher weight gain than those fed the other diets. Survival of cobia fed treatment diets were 80~100%. Based on percentage weight gain data using broken-line analysis, the optimal dietary lipid for cobia was found to be approximately 7.96%. The lipid content of muscle and liver of cobia increase with increasing dietary lipid in experiment 1 and 2. The neutral lipid of muscle and liver of cobia contained high levels of 16:0、16:1 and 18:1n-9 in experiment 1 and 2. The neutral lipid of muscle of experiment 1 and 2 were 6.7∼7.0% and 7.0∼9.7% 20:5n-3, respectively. The major fatty acids of polar lipid muscle and liver of cobia were main 16:0、18:0、18:1n-9 and 22:6n-3. The 20:5n-3 level of muscle in experiment 1 and 2 were 3.0∼6.7% and 5.8∼9.5%, respectively. The level of 20:4n-6 of neutral and polar lipid of muscle and liver were low in experiment 1and 2.
Seven isonitrogenous purified diets(43% C.P.)using defatted fish meal as protein source supplemented with 6%, cod liver oil, beef tallow, corn oil, soybean oil, olive oil, sesame oil and linseed oil were conducted in experiment 3. The cobia fed diet containing cod liver oil had significantly higher weight gain than other the treatments. The cobia fed diet containing corn oil and sesame oil had significantly the lowest weight gain. Survival of all treatments were 87~100%.
The dietary formula of experiment 4 was the same with that of the experiment 3 except for the defatted fish meal. In this experiment, the cobia fed diet containing olive oil or cod liver oil had no significant in weight gain but had significantly higher than others. The cobia fed diet containing soybean oil, corm oil, sesame oil and linseed oil had the significantly the lowest weight gain. Survival of cobia fed treatment diets were 93~100%. The fatty acid compositions of muscle of cobia fed treatment diets were changed with the fatty acid profile of the lipid sources in experiment 3 and 4. The cobia fed diet containing cod liver oil contained high levels of 20:4n-6、20:5n-3 and 22:6n-3. The cobia fed diet containing beef tallow contained high levels of 16:0 and 18:0. The cobia fed diet containing corn oil、soybean oil and sesame oil contained high levels of 18:2n-6. The cobia fed diet containing olive oil contained high levels of 18:1n-9. The cobia fed diet containing linseed oil contained high levels of 18:3n-3.
List of tables
Table 1. Ingredient composition % diets of for experiment 1.
Table 2. Ingredient composition % diets of for experiment 2.
Table 3. Basal ingredient of diets for experiment 3.
Table 4. Basal ingredient of diets for experiment 4.
Table 5. Proximate analysis, gross energy and P/E ration of experiment 1 diet.
Table 6. Fatty acid composition (% of total of fatty acid) of the experiment 1 diets.
Table 7. Initial weight, final weight, weight gain, FCR, PER and survival of cobia, rachecentron canadum, for experiment 1.
Table 8. Proximate analysis of muscle and liver of cobia, Rachycentron canadum, for experiment 1.
Table 9. Polar and neutral lipid of muscle and liver of cobia, Rachycentron canadum, fed experimental diets of experiment 1.
Table 10. Fatty acid composition (% of total of fatty acid) of the neutral lipid from muscle tissue of Rachycentron canadum for experiment 1.
Table 11. Fatty acid composition (% of total of fatty acid) of the polar lipid from muscle tissue of Rachycentron canadum for experiment 1.
Table 12. Fatty acid composition (% of total of fatty acid) of the neutral lipid from liver tissue of Rachycentron canadum for experiment 1.
Table 13. Fatty acid composition (% of total of fatty acid) of the polar lipid from liver tissue of Rachycentron canadum for experiment 1.
Table 14. Proximate analysis, gross energy and P/E ration of experiment 2 diet.
Table 15. Fatty acid composition (% of total of fatty acid) of the experiment 2 diets.
Table 16. Initial weight, final weight, weight gain, FCR, PER and survival of cobia, Rachecentron canadum, for experiment 2.
Table 17. Proximate analysis of muscle and liver of cobia, Rachycentron canadum, for experiment 2.
Table 18. Polar and neutral lipid of muscle and liver of cobia, Rachycentron canadum, fed experimental diets of experiment 2.
Table 19. Fatty acid composition (% of total of fatty acid) of the neutral lipid from muscle tissue of Rachycentron canadum for experiment 2.
Table 20. Fatty acid composition (% of total of fatty acid) of the polar lipid from muscle tissue of Rachycentron canadum for experiment 2.
Table 21. Fatty acid composition (% of total of fatty acid) of the neutral lipid from liver tissue of Rachycentron canadum for experiment 2.
Table 22. Fatty acid composition (% of total of fatty acid) of the polar lipid from liver tissue of Rachycentron canadum for experiment 2.
Table 23. Proximate analysis, gross energy and P/E ration of experiment 3 diet.
Table 24. Fatty acid composition (% of total of fatty acid) of the experiment 3 diets.
Table 25. Initial weight, final weight, weight gain, FCR, PER and survival of cobia, Rachyecentron canadum, for experiment 3.
Table 26. Proximate analysis of muscle and liver of cobia, Rachycentron canadum, for experiment 3.
Table 27. Polar lipid and neutral of muscle and liver of cobia, Rachycentron canadum, fed experimental diets of experiment 3.
Table 28. Fatty acid composition (% of total of fatty acid) of the neutral lipid from muscle tissue of Rachycentron canadum for experiment 3.
Table 29. Fatty acid composition (% of total of fatty acid) of the polar lipid from muscle tissue of Rachycentron canadum for experiment 3.
Table 30. Fatty acid composition (% of total of fatty acid) of the neutral lipid from liver tissue of Rachycentron canadum for experiment 3.
Table 31. Fatty acid composition (% of total of fatty acid) of the polar lipid from liver tissue of Rachycentron canadum for experiment 3.
Table 32 Proximate analysis(% dry weight),gross energy and P/E ration of experiment 4 diet.
Table 33. Fatty acid composition (% of total of fatty acid) of the experiment 4 diets.
Table 34. Initial weight, final weight, weight gain, FCR, PER and survival of cobia, Rachycentron canadum, for experiment 4.
Table 35 Proximate analysis of muscle and liver of cobia, Rachycentron canadum, for experiment 4.
Table 36 Polar lipid and neutral of muscle and liver of cobia, Rachycentron canadum, fed experimental diets of experiment 4.
Table 37. Fatty acid composition (% of total of fatty acid) of the neutral lipid from muscle tissue of Rachycentron canadum for experiment 4.
Table 38. Fatty acid composition (% of total of fatty acid) of the polar lipid from muscle tissue of Rachycentron canadum for experiment 4.
Table 39. Fatty acid composition (% of total of fatty acid) of the neutral lipid from liver tissue of Rachycentron canadum for experiment 4.
Table 40. Fatty acid composition (% of total of fatty acid) of the polar lipid from liver tissue of Rachycentron canadum for experiment 4.
List of Figure
Fig. 1. Schematic representation of the experimental water reuse system.
Fig. 2. The dietary lipid requirment for cobia occurs at 9.63% when analyzed by broken-line model.
Fig. 3 The dietary lipid requirement for cobia occurs at 7.96% when analyzed by a broken-line model.
參 考 文 獻
林志訓,1998。飼料中油脂之質與量對黃鱲鰺成長與體組織之影響。國立台灣海洋大學水產養殖研究所碩士論文。
周本善,1997。 吳郭魚稚魚脂質需求之探討。國立台灣海洋大學水產食品科學研究所博士學位論文。
邵廣昭,陳正平,沈世傑,1992。墾丁國家公園海域魚類圖鍵。內政部營建屬墾丁國家公園管理處出版,427頁。
徐文治,1995。 飼料中蛋白質來源與蛋白質/能量比及碳水化合物/脂質化對日本鰻(Anguilla japonica)成長的影響。國立台灣海洋大學水產養殖研究所碩士論文。
翁平勝,曾建璋,于錫亮,2000。 台灣海鱺箱網養殖問題之探討。 海鱺箱網養殖發展研討會,pp. 1-38。
黃何興,2000,飼料油脂對海鱺幼魚成長與體組成的影響。國立中山大學海洋生物研究所,碩士班學位論文。
張賜玲、謝介士、周瑞良及蘇茂森., 1999. 海鱺養殖技術簡介. 養魚世界、台北. No. 270. 14-26。
Ackman, R. G., Eaton, C. A., 1966. Some commercial Atlantic herring oils; fatty acid composition. J. Fish. Res. Bd. Can. 23, 991-1006.
AOAC(Association of Official Analytical Chemists), 1984.Official Methods of Analysis, 14th edition, AOAC, Arlington, V.A. 1141pp.
Arnesen, P., Krogdahl, A., Kristiansen, I. O., 1993. Lipogemic enzyme activitiesin the liver of Atlantic salmon(Salmo salar). Comp. Biochem. Physiol. 105B, 541-546.
Arai, S., Nose, T., Hashimoto, Y., 1972. Preventive effects tocopherol on muscular dystrophy of young carp. Bull. Jpn. soc.Sci.Fish. 38, 845-851.
Bautista, J. M., Garrido-Pertierra, A., Soler. G., 1988. Glucose-6-phosphate dehydrogenase from Dicentrarchus labrax liver: Kinetic mechanism and kinetic of NADPH inhibition. Biochim. Biophys. Acta. 967, 354-363.
Brenner, R. R., Vazza, D. V., Petomas, M. E., 1963. Effect of a fat-free diet and of different dietary fatty acid (palmitate, oleate and linoleate)on the fatty acid composition of freshwater fish lipid. J. lipid Res. 3, 341-345.
Brinkmeyer, R. L., Holt, G. J., 1998. Highly unsaturated fatty acids in diets for red drum(Sciaenops ocellatus)larvae. Aquaculture 161, 253-268.
Bromley, P. J., 1980. Effect of dietary protein, lipid and energy content on the growth of trout(Scophthalmus maximus L.). Aquaculture 19, 359-369.
Castledine, A. J., Buckley, J. T., 1980. Distribution and mobility of ω3 fatty acids in rainbow trout fed varying levels and types of dietary lipid. J. Nutr. 110, 675-685.
Castell, J.D., Lee, D.J., Sinnhuber, R.O., 1972. Essential fatty acid in the diet of rainbow trout(Salmo gairdneri):growth, feed conversion and some gross deficiency symptoms. J. Nutr. 102, 77-86.
Catacutan, M. R., Coloso, R. M., 1997. Growth of juvenile asian seabass, Lates calcarifer, fed carbohydrate and lipid levels. Aquaculture 149, 137-144.
Chong, K-C., 1993. Economics of on-farm aquafeed pre paration and use. In: Farm-Made Aquafeeds(ed. M.B. New, A. G. Tacon & I. Csavas), pp. 24-60. FAO-RAPA/ AADCP, Bangkok, Thailand.
Chou, B.S., Shiau, S.Y., 1996. Optimal dietary lipid level for growth of juvenile hybride tilapia, Oreachromis niloticus × Oreachromis aureus. Aquaculture 143, 185-195.
Chou, R. L., Su, M. S., Chen, H. Y., 2001. Optimal dietary protein and lipid levels for juvenile cobia(Rachycentron canadum). Aquaculture 193, 81-89.
Cowey, C. B. Adron, J. E., Owen, J. M., Roberts, R. J., 1976. The effect of different dietary oils in tissue pathology in turbot Scophthalmus maximus. Comp. Biochem. Physiol. 53B, 399-403.
Cowey, C. B., Walton, M. J., 1989. Intermedietary metabolism. In: Halver, J. E.(Ed.). Fish nutrition, 2nd edn. Academic Press, New York pp. 259-329.
De Silva, S. S., Gunasekera, R.M., Gooley, G., Ingram, B. A., 2001. Growth of Australian shortfin ell(Anguilla australis) elvers given different dietary protein and lipid levels. Aquaculture nutrition 7, 53-57.
Dias, J., Alvarez, M. J., Diez, A., Arzel, J., Corraze, G., Bautista, J. M., Kaushik, S. J., 1998. Regulation of hepatic lipogenesis by dietary protein/energy in Juvenile European seabass(Dicentrarchus labrax). Aquaculture 161, 169-186.
Ellis, S.C., Reigh, R.C., 1991. Effect of dietary lipid and carbohydrate levels on growth and body composition of juvenile red drum, sciaenops ocellatus. Aquaculture 97, 383-394.
Fair, P., Williams, W. P., Smith, T. I. Jr., 1993. Effect of dietary menhaden oil on growth and muscle fatty acid composition of hybrid striped bass, Morone chysops × M. saxatilis. Aquaculture 116, 171-189.
Fracalossi, D. M., Lovell, R. T., 1994. Dietary lipid sources influence response of channel catfish(Ictalurus punctatus)to challenge with pathogen Edwardsiella ictaluri. Aquaculture 119, 287-298.
Franks, J. S., Warren, J. R., Buchanan, M. V., 1999. Age and growth of cobia, Rachycentron canadum, from the northeastern Gulf of Mexico. Fishery Bulletin 97, 459-471.
Furukawa, A., Tsukahara, H., Funae, K., 1966. Studies on feed for fish. V. Result of the small Floating net culture test to establish the artificial diet as complete yellowtail foods. Bull. Naikaireg. Fish. Res. Lab. 23, 45-56.
Furuita, H., Takeuchi, T., Uematsu K., 1998. Effects of eicosapentaenoic and docohexaenoic acids on growth, survival and brain development of larval Japanese flounder(Paralichthys olivaceus). Aquaculture 161, 69-279.
Garling, D.L.Jr., Wilson, R.P., 1977. Effects of dietary carbohydrate-to-energy ratio on growth and body composition of fingerlings channel catfish. Prog. Fish-cult. 39, 43-47.
Gatesoupe, F. J., Leger, C., Metailler, R., Luquet, P., 1977. Alimentation lipidique du turbot(Scophthalmus maximus L.). Ⅱ Influence de la supplementation en methyliques de laads linolennue et de la competementation en acids gras de la serie ω-9 sur la croissance. Ann. Hydrobio. 8, 247-254.
Hemre, G. I., Sandnes, K., 1999. Effect of dietary lipid level on muscle composition in Atlantic salmon(Salmo solar). Aquaculture Nutrition 5, 9-16.
Higashi, H., Kaneko, T., Ushiyama, M., Sugihashi, T., 1964. Effect of dietary lipid on fish under cultivation, Ⅱ. Effect of ethyl linoleate, linolenate and ethyl estera of polyunsaturated fatty acid on deficiency of essential fatty acid in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 30, 778-783.
Ibeas, C., Izqierdo, M. S., Lorenzo, A., 1996. Effect of different levels of n-3 highly unsaturation fatty acids levels on juvenile gilhead seabream(Sparus aurata)growth and tissue fatty acid composition. Aquaculture 127, 177-188.
Izquierdo, M. S., Arawana, T., Takechi, T.,Haroun, R., Watanale, T., 1992. Effect of n-3 HUFA levels in Artemia on growth of larval Japanese flounder(paralichtys olivaceus). Aquaculture 105, 73-82.
Izquierdo, M. S., Watanabe, T., Takeuchi, T., Arawana, T., Kitajima, C., 1989. Requirements of larval red sea bream(Pagrus major)for eaaential fatty acids. Nippon Suisan Gakkishi 55, 859-867.
Jantrarotai, W., Sitasit, P., Rajchapakdee, S., 1994. The optimum carbohydrate to lipid ratio in hybrid Clarias catfish(Clarias macrocephalus × C. gariepinus)diets containing raw broken rice. Aquaculture 127, 61-68.
Kanazawa, A., Teshima, S., Imai, K., 1980a. Biosynthesis of fatty acids in Tilapia zillii and the puffer fish. Mem. Fac. Fish. Kagoshima Univ. 29, 313-318.
Kanazawa, A., Teshima, S., Sakamoto, M., 1980b. Requeriment of Tilipia zillii for essential fatty acid. Bull. Jpn. Soc. Sci. Fish. 46, 1353-1356.
Kayama, M., Tsuchiya, Y., Nevenzel, J. C., Fulso, A., Mead, J. F., 1963. Incorportation of linolenic-[1-14C] acid into eicosapentaenoic and docosahexaenoic acids in fish. J. Am. Oil Chem. Soc. 40, 499-502.
Koven, W. M., Kissl, G. W., Tandler, A., 1989. Lipid and n-3 requirement of Sparus aurata larval during starvation and fatty acid feeding. Aquaculture 79, 185-191.
Le Milinaire, C., Gatesoupe, F. J., Stephan, G., 1983. Approche du besion quantiatif en gras longs ployunsatures de la resie n-3 chez la larve de turbot(Scophthalmus maximus). C. R. Acad. Sci. Paris. 296, 917-920.
Lee, D. J., Roem, J. N., Yu, T. C., Sinnhuber, R. O., 1967. Effect of ω3 fatty acid on the growth of rainbow trout, Salmo gairdneri. J. Nutr. 92, 93-98.
Lin, H., Romsos, D. R., Tack, P. I., Leveille, G. A., 1977. Influence of dietary lipid on lipogenic enzyme activities in coho salmon(Oncorhynchus kisutch). J. Nutr. 107, 846-854.
Meyer, G. H., Franks, J. S., 1996. Food of cobia, Rachycentron canadum, from the north central Gulf of Mexico Gulf Research Report. 9(3), 161-167.
Mgurditchian, D. S., Hardy, R. W., Iwaoka, W. T., 1981. Linseed oil and animal fat as alternative lipid sources in dry diets for Chinook salmon(Oncorhynchus tshawytscha). Aquaculture 112, 161-172.
Murai, T., Akiyama, t., Takeuchi, T., Watanabe, T., Nose, T., 1985. Effects of dietary protein and lipid levels on performance and carcass composition of fingerling carp. Bull. Jpn. Soc. Sci. Fish. 51, 605-608.
Oku, H., Ogata, H. Y., 2000. Body lipid deposition in juveniles of red sea bream Pagrus major, yellowtail Seriola Quinqueradiata, and Japanese flounder Paralichthys olivaceus. Fish. Sci. 66, 25-31.
Owen, J. M., Adron, J. W., Middleton, C., Cowey, C. B., 1975.Elongation and desaturation of dietary fatty acids in turbot, Scophthalmus maximus, and rainbow trout, Salmo gairdneri. Lipids 10, 528-531.
Sargent, J., Bell, G., McEvoy, L., Tocher, D., Estevez, A., 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199.
Satoh, S., Poe, E. E., Wilson, R. P., 1989. Effect of dietary n-3 fatty acids on weight gain and liver polar lipid fatty acid composition of fingerling channel catfish. J. Nutr. 119, 23-28.
Satoh, S., Takeuchi, T., Watanabe, T., 1984. Effect of starvation and environmental temperature on proximate and fatty acid composition of Tilapia nilotica. Bull. Jpn. Soc. Sci. Fish. 50, 79-84.
Smith, J.W., 1995. Life history of cobia, Rachycentron canadum(Osteichthyes:Rachycentridae), in North Carolina waters. Brimleyana. 23, 1-23.
Stickney, R. R., Mcgeachin, R. B., 1983. Effects of dietary lipid quality on growth and food conversion of tilapia. Proc. Annu. Conf. Southeast. Assoc. Fish Wildl. Agencies. 37, 352-357.
Stickney, R. R., Wurts, W. A., 1986. Growth response of blue tilapias to selected levels of dietary menhaden and catfish oil. Prog. Fish-Cult. 48, 107-109.
Takeuchi, T., Arai, S., Watanabe, T., Shima, Y., 1980. Requirement of ell Anguilla japomica for essential fatty acid. Bull. Jpn. Soc. Sci. Fish. 46, 345-353.
Takeuchi, T., Kang, S. J., Watanabe, T., 1989. Effectsof environmental salinity on lipid classes and fatty acid composition in gills of Atlantic salmon. Bull. Jpn. Soc. Sci. Fish. 55, 1395-1405.
Takeuchi, T., Satoh, S., Watanabe, T., 1983. Requirement of Tilapia nilotica for essential fatty acid. Bull. Jpn. Soc. Sci. Fish. 49, 1127-1134.
Takeuchi, T., Toyota, M., Satoh, S., 1990. Requirement of juvenile red seabream Pagrus major for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 56, 1263-1269.
Takeuchi, T., Watanabe, T., 1977a. Dietary levels of methyl laurate and essential fatty acid requirement of rainbow trout. Bull. Jpn. Soc. Sci. Fish. 43, 893-898.
Takeuchi, T., Watanabe T., 1977b. Requirement of carp for essential fatty acids. Bull. Jpn. Soc. Sci. Fish. 43, 541-551.
Takeuchi, T., Watanabe, T., 1979. Effect of excess amounts of essential fatty acids on growth of rainbow trout. Bull. Jpn. Soc. Sci. Fish. 45, 1517-1519.
Takeuchi, T., Watanabe, T., 1980. Effect of essential fatty acids in the growth of rainbow trout, chum salmon and chum salmon. Oral presentation at the annual meeting of Japan. Soc. Sci. Fish.
Thongrod, S., Takeuchi, T., Satoch, S., Watanabe, T., 1989. Requirement of fingerling white fish, Coregonus Lavarenus maraena for dietary n-3 fatty acids. Nippon Suisan Gakkaishi 55, 1983-1987.
Tucker, J.W.Jr., Lellis, W.A., Vermeer, G.K., Robert, D.E.Jr., Woodward, P.N.,1997. The effects of experimental starter diets with different levels of soybean or menhaden oil on red drum(sciaenops ocellatus) Aquaculture 149, 323-339.
Vergara, J. M., Lopez-Calero, G., Robaina, L., Caballero, M. J., Monter, D., Izquierdo, M. S., Aksnes, A., 1999. Growth, feed utilization and body lipid content of gilthead seabream(Sparus aurata)fed increasing lipid levels and fish meals of different quality. Aquaculture 179, 35-34.
Watanabe, T., 1989. Nutritive value of animal and plant lipid sources for fish. In “Proceedings of Aquaculture International”, pp. 437-442. Vancouver, Canada.
Watanabe, T., Kobayshi, I., Utsie, O., Ogino, C., 1974a. Effect of dietary linolenate on fatty acid composition of lipids in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 40, 387-392.
Watanabe, T., Ogino, C., Kobayashi, Y., Matsunaga, T., 1974b. Requirement of rainbow trout for essential fatty acids. Bull. Jpn. Soc. Sci. Fish. 40, 493-499.
Webster, C. D., Tua, L. G., Tidwell, J. H., Wyk, P. V., Howerton, R. D., 1995. Effect of dietary protein and lipid levels on growth and body composition of sunshine bass(Morone chysops ×M. saxatilis)reared in cages. Aquaculture 131, 291-301
Willams, C. D., Robinson, E. H., 1988. Response of red drum to various dietary levels of menhaden oil. Aquaculture 70, 107-120.
Yone, T., Sakamoto, S., Furuichi, M., 1974. Studies on red sea bream. Ⅸ. The basial diet for nutrition studies. Rep. Fish. Res. Lab. Kyushu. Univ. 2, 13-24.
Yu, T. C., Sinnhuber, R. O., 1976. Growth response of rainbow trout(Salmo gairdneri) to dietary ω3 and ω6 fatty acids. Aquaculture 8, 309-317.
Yu, T. C., Sinnhuber, R. O., Putnam, G. B., 1977. Use of swine fat as an energy source in trout rations. Prog. Fish-Cult. 39, 95-97.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林郁方。「中共擴軍與軍售對美國中共關係之影響」。美國月刊,第八卷第一期(1991年1月),頁42。
2. 林孟德。「二000年的中共軍事」。中共研究,第35卷第2期,(2001年2月),頁94。
3. 林孟德。「二000年的中共軍事」。中共研究,第35卷2期(2001年2月),頁84-85。
4. 吳建德、沈明室。「中共軍事戰略思想之演變」。空軍學術月刊,第541期(2002年),頁15-18
5. 以理。「新世紀中共大幅提升國防費」。中共研究,第35卷第5期(2001年5月),頁63-64。
6. 王承宗。「俄羅斯國家觀念與本質探討」。問題與研究,第36卷,第7期(1997年7月),頁2。
7. 丁樹範。「論四十餘年來共軍的發展」。中國大陸研究,第35卷第12期(1992年12月),頁25-33。
8. 丁樹範。「兩岸關係中的軍事因素」。國防政策評論,第一期(2000年10月),頁120。
9. 丁樹範。「中共未來的軍備政策」。遠景季刊,第2卷第2期(2001年4月),頁2,7。
10. 唐威遐。「中共海軍潛艦戰力發展概況」。中共研究,第32卷第5期(1998年5月),頁69。
11. 張旭成。「中國擴張海權對中國的威脅」。中國事務,第五期(2001年7月),頁97-98。
12. 張錫模。「俄中關係:管理俄羅斯的霸權衰退」。中國事務,第七期(2002年1月),頁34。
13. 曾復生。「臺灣海峽潛在軍事危機的根源」。國防政策評論,第一期(2000年1月),頁92。
14. 黃芝溪。「論中共不承諾放棄武力犯台之研析」。共黨問題研究,第25卷,第9期(1999年9月),頁71。
15. 楊永明。「亞太安全環境對台灣安全的衝擊」。遠景季刊,第一卷第二期(2000年4月),頁18-19。