跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪懷遠
論文名稱:內分泌對黑鯛滲透壓之調控作用
論文名稱(外文):Endocrine Effect on The Osmoregulation in The Protandrous Black Porgy, Acanthopagrus schlegeli
指導教授:張清風張清風引用關係
指導教授(外文):Chang Ching-Fong
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:黑鯛鈉鉀幫浦
外文關鍵詞:black porgygillintestinekidneyNa+/K+-Atpase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究之目的在探討不同鹽度環境下,以及注射皮質醇(cortisol)
、甲狀腺素(Thyronine,T3)及醛固酮(aldosterone)對一年齡黑鯛(Acanthopagrus schlegeli)滲透壓及鰓、腸及腎臟Na+/K+-ATPase活性調節作用及體內激素之影響。
經較長時間不同鹽度刺激後發現血漿滲透壓會隨著鹽度上升而有上升的趨勢,鰓及腎的Na+/K+-ATPase活性卻會隨著鹽度上升而有下降的趨勢,腸的Na+/K+-ATPase活性則是相反,血漿中Insulin-like growth hormone factor-I(IGF-I)及growth hormone(GH)都沒有一致的趨勢,但是cortisol有隨著鹽度上升而下降的趨勢。在短時間急速由淡水適應海水實驗中,血漿滲透壓會在第8小時達到最高,24小時後趨於平緩,鰓及腎的Na+/K+-ATPase之活性,會在4小時內快速上升,腸前段組織則是正好相反,血漿中IGF-I有隨時間而降低的趨勢,血漿中GH及cortisol統計上並沒有差異。在淡水激素注射組中,注射cortisol及aldosterone血漿滲透壓有統計上的差異,注射T3則沒有,注射T3、cortisol及aldosterone對鰓及前腸組織Na+/K+-ATPase之活性有抑制性作用,對腎臟組織,則統計上沒差異,注射T3後血漿IGF-I之濃度,有增加之趨勢,注射cortiso僅高劑量cortisol有促進有血漿IGF-I,注射aldosterone,統計沒有差異,血漿GH在注射高低劑量T3、cortisol與aldosterone都有明顯抑制作用。在海水激素注射組中,注射T3、cortisol與aldosterone滲透壓都無顯著之差異,注射T3、cortisol與aldosterone對鰓、腸及腎Na+/K+-ATPase之活性都有顯著之影響,注射高劑量T3及cortisol與注射低劑量aldosterone,血漿IGF-I之都有被抑制,注射T3及cortisol組不管高低劑量,統計上都沒有顯著之差異,注射aldosterone低劑量血漿GH有明顯抑制的作用。

Abstract
The objectives of the study were to investigate the effects of salinity and hormones in osmolality, Na+/K+-ATPase activity in gill, intestine and kidney in black porgy.
Serum osmolality was increased in black porgy adapted from freshwater to seawater environment. Na+/K+-ATPase activity in gill and kidney decreased with the increase of salinity. Na+/K+-ATPase activity in intestine increased in fish adapted to seawater. Serum cortisol levels were higher in freshwater than those in seawater fish. Serum osmolality reached to the highest value after 8-h acute exposure from freshwater to seawater. Na+/K+-ATPase activity in gill and kidney was increased but Na+/K+-ATPase activity was decreased in the period of the first 4-h exposure from freshwater to seawater. Cortisol and aldosterone but not thyronine(T3)stimulated serum osmolality in freshwater fish. Cortisol, T3 and aldorsterone decreased Na+/K+-ATPase activity in gill and intestine of freshwater black porgy. Cortisol, T3 and aldorsterone decreased serum growth hormone(GH)reach but not Insulin-like growth factor(IGF-I) in freshwater fish. Cortisol, T3 and aldosterone did not had significant and consistent effects in the serum osmolality, Na+/K+-ATPase activity in gill and kidney, Serum GH level and IGF-I levels in seawater fish.
Serum IGF-I and GH levels were decreased in black porgy adapted from seawater to freshwater . Higher cortisol and lower gonadotropin II levels in serum were found in the freshwater fish than those in seawater fish. The data indicated that cortisol , aldosterone, GH and IGF-I were closely associated with the changes of the osmoregulation in euryhaline black porgy.

目 錄
中文摘要………………………………………………………………...I
英文摘要………………………………………………………………III
圖表目錄……………………………………………………………....IV
壹、 前言
一、硬骨魚類對環境滲透壓之調節……………………………………1
二、廣鹽性魚類…………………………………………………………2
三、激素對硬骨魚類滲透壓之調節………………………………........3
四、鈉鉀幫浦(Na+/K+ATPase)………………………………….............4
五、生長激素(Growth Hormone,GH)…………………………………5
六、類胰島素生長因子(Insulin-like growth factor,IGF)……………7
七、促性腺激素(Gonadotropin,GTH)…………………………………8
八、皮質醇(Cortisol)…………………………………………………...9
九、泌乳激素(Prolactin,PRL)………………………………………...10
十、實驗動物…………………………………………………………..11
十一、研究之目的……………………………………………………..12
貳、 材料與方法
一、實驗用魚…………………………………………………………..13
二、實驗設計…………………………………………………………..13
(一) 實驗一:探討不同鹽度環境中對黑鯛生理之影響……..13
(二) 實驗二:探討淡水馴養之黑鯛急速轉換為海水環境時生
理之影響……………………………………...13
(三) 實驗三:探討注射不同劑量之激素(3,3`,5-Triiodo-L-
Thyronine、aldosterone、cortisol對淡水馴養黑鯛生理之影響…………………...…………….14
(1) 3,3`,5`-Triiodo-L-Thyronine組(T3)………..……14
(2) Cortisol組………….………………………………..14
(3) Aldosterone組………….……………………………15
(4) 對照組……………………………………………….15
(四) 實驗四:探討注射不同劑量之激素T3、cortisol及
aldosterone對海水馴養黑鯛生理之影響…...15
(1) T3組……….…………………………………………15
(2) Cortisol組………….………………………………..15
(3) Aldosterone組………….……………………………15
(4) 對照組……………………………………………….16
(五) 探討鹽度轉換對黑鯛生理之影響………………………16
(1) 鹽度調升組………………………………………….16
(2) 鹽度調降組………………………………………….16
(3) 對照組……………………………………………….17
三、麻醉即採樣……………………………………………………….17
(一)、血液…………………………………………….…………17
(二)、組織的摘取……………………………………….………17
四、注射黑鯛所用之激素配製……………………………………….17
五、分析方法………………………………………………………….18
(一) 生長激素(GH)之碘化步驟…………………………….18
(二) 促性腺激素(GTH II)之碘化步驟………………………18
(三) 類胰島素生長因子(IGF-I)之碘化步驟………………..19
(四) 生長激素(GH)之濃度分析……………………………..19
(五) 促性腺激素(GTH II)之濃度分析………………………20
(六) 類胰島素生長因子(IGF-I)之濃度分析……………….20
(1) 樣品前處理…………………………………………...20
(2) 以放射性免疫分析法來分析血漿之類胰島素生長因子之濃度…………………………………………...…20
(七)血漿中cortisol之濃度分析……………..………….……21
(八)血漿滲透壓之測定方法………………………………….22
(九)Na+/K+-ATPase 活性分析………………………………..22
(1)組織處理………………………………………………22
(2)NA+/K+-ATPase 活性測定分析………………………22
(3)測定無機磷釋出量……………………………………23
(4)蛋白質之分析…………………………………………23
(十)統計分析………..……………………………………….23
參、 實驗結果
一、不同鹽度環境對黑鯛生理之影響………………………………..24
(一)血漿滲透壓變化……………………………………….….24
(二)Na+/K+-ATPase之活性變化………………………………24
(三)血漿類胰島素生長因子(IGF-I)之濃度變化…………..24
(四)血漿中生長激素(GH)之濃度變化………………………24
(五)血漿中皮質醇(cortisol)之濃度變化……………………..25
二、淡水馴養之黑鯛急速轉換海水環境之生理影響………………25
(一) 血漿滲透壓變化………………………………………….25
(二) Na+/K+-ATPase之活性變化………………………………25
(三)血漿IGF-I之濃度變化…………………………………..26
(四)血漿中生長激素(GH)之濃度變化……………………..26
(五)血漿中cortisol之濃度變化…………………………….26
三、注射不同計量之激素(T3、cortisol與aldosterone)對淡水馴養黑鯛生理之影響………………………………………………....26
(一)血漿中滲透壓變化………………………………………….26
(二)Na+/K+-ATPase之活性變化………………………………….27
(三)血漿IGF-I之濃度變化…………………………………….27
(四)血漿GH之濃度變化………………………………………27
四、注射不同計量之激素(T3、cortisol、aldosterone)對海水馴養黑鯛生理之影響…………………………………………………....28
(一)血漿中滲透壓變化………………………………………….28
(二)Na+/K+-ATPase之活性變化…………………………………28
(三)血漿IGF-I之濃度變化……………………………………..28
(四)血漿GH之濃度變化…………………………………………29
五、探討鹽度轉換對黑鯛生理之影響……………………………….29
(一)血漿滲透壓變化…………………………………………….29
(二)血漿IGF-I之濃度變化………………………………………29
(三)血漿GH之濃度變化………………………………………..30
(四)血漿中促性腺激素(GTH II)之濃度變化………………..30
(五)血漿cortisol之濃度變化……………………………………30
肆、討論
一、長時間不同鹽度與急速轉換海水環境的滲透壓比較…………..31
二、長時間不同鹽度與急速轉換海水環境的Na+/K+-ATPase活性變化特性……………………………………………………………31
三、荷爾蒙注射對淡水環境及海水環境滲透壓的變化…………….32
四、注射T3對淡水環境及海水環境Na+/K+-ATPase活性變化之影響.34
五、注射cortisol對淡水環境及海水環境Na+/K+-ATPase活性變化之影響………………………………………………….……………..34
六、注射aldosterone對淡水環境及海水環境Na+/K+-ATPase活性之影響…………………………………………………………………35
七、長時間不同鹽度對血漿IGF-I、GH及cortisol之影響………..35
八、短時間急速轉換海水對血漿IGF-I、GH及cortisol之影響……36
九、荷爾蒙注射對淡水環境及海水環境血漿IGF-I、GH之影響…..36
十、鹽度轉換對二年齡黑鯛血漿IGF-I、GH、GTH II及cortisol之影響……………………………………………………………...….37
伍、結論………………………………………………………………..39
陸、參考文獻………………………………………………………….41

陸、參考文獻
Arguello, J. M., Jeffrey, W., Cheung M. C., and Lingrel, J. B. (1999). Functional role of oxygen-containing residues in the fifth transmembrane segment of the Na+, K+-ATPase a subunit. Archives Biochem. Biophysics. 364, 254-263.
Auperin B., Baroiller , J. F., Ricordel, M. J., Fostier A., and Prunet, P., (1997). Effect of confinement stress on circulating levels of growth hormone and two prolactins in freshwater-adapted Tilapia (Oreochromis niloticus). Gen. Comp. Endocrinol. 108, 35—44.
Awais, D., Shao, Y., and Ismail-Beigi, F.(2000). Thyroid hormone regulation of myocardial Na+/K+-ATPase gene expression. J. Mol. Cell. Cardiol. 32, 1969—1980.
Avella, M., Berhaut, J., and Bornancin, M. (1993). Salinity tolerance of two tropical fishes, Oreochromis aureus and O.niloticus. I. Biochemical and morphological changes in the gill epithelium. J. Fish Biol. 42, 243-254.
Barradas, C., Wilson J.M., and Duenl-Erb, S. (1999). Na+/ K+-ATPase activity and immunocytochemical labeling in podobranchial filament and lamina of the freshwater crayfish Astacus leptodactylus. Eschscholtz: evidence for the existence of sodium transport in the filaments. Tissue & cell 31 (5), 523-528.
Beckman, B. R., and Dickhoff, W. W. (1998). Plasticity of smolting in spring chinook salmon: relation to growth and insulin-like growth factor-I. J. Fish. Biol. 53, 808-826.
Beckman, B. R., Larsen, D, A., Moriyama, S., Lee-Pawlak, B., and Dickhoff, W. W. (1998). Insulin-like growth factor-I and environmental modulation of growth during smoltification of spring chinook salmon (Oncorhynchus tshawytscha). Gen. Comp. Endorcrinol. 109, 325-335.
Bjornsson, B. T., Hemre, G. I., Bjornevik, M., and Hansen T. (2000). Photoperiod regulation of plasma growth hormone levels during induced smoltification of underyearling atlantic Salmon. Gen. Comp. Endocrinol. 119, 17-25.
Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., and Kelly, P. A. (1998). Prolactin (PRL) and its receptor: Actions, signal transduction pathway and phenotypes observed in PRL repector knockout mice. Endocr. Rev. 19, 225-268.
Brown J. A., Moore, W. M., Quabius, E. S. (2001). Physiological effects of saline waters on zander. J. Fish Biol. 59, 1544-1555.
Chen, W. H., Sun, L.T., Tsai, C. L., Song, Y. L., and Chang, C. F. cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in Tilapia. Gen. Comp. Endorcrinol. 126, 90-100.
Chuliang, Y., Xie Z., Amir, A., and Modyanov, N. (1997). Enzymatic properties of human Na+, K+ -ATPase α1 β3 lsozyme. Arch. Biochem. Biophs. 345, 143-149.
Crombie, H. J., Michael,V. B., and Tytler, P. (1996). Inhibition of sodium-plus-patassium-stimulated adenosine trophosphates (Na+,K+-ATP ase) by protein kinase c activators in the gills of Atlantic cod (Gadus morhua). Comp. Biochem. physiol. 113B. 765-772.
Cutler, C. P., Sanders, I. L., Hazon, N., and Cramb, G. (1995). Primary sequence, tissue specificity and expression of the Na+ ,K+-ATPase α1 subunit in the European eel, Anguilla anguilla. Comp. Biochem. Physiol. Vol. 111B. No. 4, 567-573.
Eckert S. M., Yada, T., Shepherd, B. S., Stetson, M. H., Hirano, T., and Grau, E. G. Hormonal control of osmoregulation in the channelcatfish Ictalurus punctatus. Gen. Comp. Endorcrinol. 122, 270-286.
Fernandes, M. N., Eddy, F. B., and Penrice, W. S. (1995). Primary cell culture from gill explants of rainbow trout. J. Fish. Biol. 47, 641-651.
Fernand, M.N., Petna, S.A., and Moron, S. E. (1998). Chloride cell apical surface changes in gill epithelia of the armoured catfish Hypostomus plecostomus during exposure to distilled water. J. Fish. Biol. 52, 844-849.
Fraser, S. F., and McKenna, M. J. (1998). Measurement of Na+/K+ -ATPase activity in human skeletal muscle. Anal. Biochem. 258, 63-67.
Habiba, A., and Robert, W. M. (2002). Embryonic stem cells: a model to study Na+,K+-ATPase isoform expression during development. Mole. Gene. Metabol. 71, 387-390.
Jammes, H., Disenhaus, C., Ouriet, V., Kayser, C., Postel-Vinay, M.C., and Djiane, J. (1996). Growth hormone-bonding protein in the goat: characterization , evolution under exogenous growth hormone treatment, and correlation with liver growth hormone receptor livers. Dome. anim. endocrin. 13, 477-489.
Kelly, S. P., Chow, I. N. K., and Woo, N. Y. S. (1999). Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost, Sparus sarba. Gen. Comp. Endocrinol. 113, 9-22.
Kelly S. P., and Woo, N. Y. S. (1999). The response of sea bream following abrupt hyposmotic exposure. J. Fish. Biol. 55, 732-750.
Kelly, S. P., and Wood, C. M. (2001). The Physiological Effects of 3,5’,3’-Triiodo-L-thyronine alone or combined with cortisol on cultured pavement cell epithelia from freshwater rainbow trout gills. Gen. Comp. Endocrinol. 121, 280-294.
Law, W. Y., Chen, W. H., Song, Y. L., Dufour S., and Chang, C. F. (2001). Differential in vitro suppressive effects of steroidson leukocyte phagocytosis in two teleosts tilapia and common carp. Gen. Comp. Endocrinol. 121, 163-172.
Lappivaara1, J., Mikkonen. J., and Soimasuo, M. (2002). Attenuated carbohydrate and gill Na+, K+-ATP ase stress responses in whitefish caged near bleached kraft mill discharges. Ecotox. Environ. safet. 51, 5-11.
Makerevich, A.V., and Sirotkin, A. V. (1997). The involvement of the GH/IGF-Ι axis in the regulation of secretory activity by bovine oviduct epithelial cells. Anim.. Reproduc. scie. 48,197-207.
Mancera, J. M., and McCormick S. D. (1998). Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen. Comp. Endocrinol. 123, 280-294.
Manzon, L. A. (2002). Review the role of prolactin fish osmoregulation: areview. Gen. Comp. Endocrinol. 125, 291-310
Marasall, W. S., Bryson, S. E. (1998). Transport mechanism of seawater teleost chloride cell: an inclusive model of a multifunctional cell. Comp. Biochem. Physiol.119A, 97-106.
McCormick, S. D.(1998). Effects of growth hormone and insulin-like growth factor I onsalinity tolerance and gill Na + ,K + -ATPase in Atlantic salmon (Salmo salar): interaction with cortisol. Gen. Comp. Endocrinol. 111, 103-112.
Morgan, J. D., and Iwama G. K. (1998). Salinity effects on oxygen consumption, gill Na+, K+-ATP ase and ion regulation in juvenile coho salmon. J. Fish Biol. 53, 1110—1119.
Nielsen,C., Holdensgaard, G., Petersen, H. C., Bjornsson, B. TH., and Madsen, S. S. (2001). Genetic difference in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. J. Fish Biol. 59, 28-44.
Nielsen, C., Madsen, S. S., and Bjornsson, B. Th. (1999). Changes in branchial and intestinal osmoregulatory mechanisms and growth hormone levels during smolting in hatchery-reared and wild brown trout. J. Fish Biol. 54. 799-818.
Nolan, D.T., Veld, R. L. J. M. Op’t., Balm, P. H. M., and Bonga, S. E. W. (1999). Ambient salinity modulates the response of the tilapia, Oreochromis mossambicus. Aquaculture 177, 297-309.
Nonnotte, G., and Boeuf, G. (1995). Extracellular ionic and acid-base adjustments of Atlantic salmon presmolts and smolts in fresh water and after transfer to sea water: the effects of ovine growth hormone on the acquisition of euryhalinity. J. Fish Biol. 46, 563-577.
Olsen, Y. A., Reitan, L. J., and Roed, H. K. (1993). Gill Na+ ,K+-ATPase activity, plasma cortisol level, and non-specific immune response in Atlantic salmon, Salmo salar, during parr-smolt transformation. J. Fish Biol. 43, 559-573.
Ortiz, R. M., Wade, C. E. and Ortiz, C. L. (2000). Prolonged fasting increases the response of the renin—angiotensin—aldosterone system, but not vasopressin levels, inpostweaned northern elephant seal pups. Gen. Comp. Endocrinol. 119, 217-223.
Pelis, R. M. and McCormick , S. D. (2001). Effects of growth hormone and cortisol on Na+—K+—2Cl- cotransporter localization and abundance in the gills of Atlantic salmon. Gen. Comp. Endocrinol. 124, 134-143.
Peter, M. C. S., Lock, R. A. C., and Bonga, S. E. W. (2002). Evidence for an osmoregulatory role of thyroid hormones in the freshwater mozambique tilapia Oreochromis mossambicus. Gen.Comp. Endorcrinol.120, 157-167.
Pete, R. E ., and Marchant, T. A. (1995). The endocrinology of growth in carp and related species. Aqaculture 129, 291-321.
Pottinger, T. G., Carrick, T. R., Appleby, A., and Yeomans, W. E. (2000). High blood cortisol levels and low cortisol receptor affinity: is the chub, Leuciscus cephalus, a cortisol-resistant teleost? Gen. Comp. Endocrinol. 120, 108-117.
Quabius, J. Li, E. S., Bonga, S. E. W., Flik, G., Lock, R. A. C.(1998) Effects of water-borne copper on branchial chloride cells and Na+K+-ATPase activities in Mozambique tilapia (Oreochromis mossambicus). Aquat. Toxicol. 43, 1-11.
Romao, S., Freire, C. A., and Fanta, E. (2001). Ionic regulation and Na+, K+-ATPase activity in gills and kidney of the Antarctic aglomerular cod icefish exposed to dilute sea water. J .Fish. Biol. 59, 463-468.
Sancho, E., Ferrando, M. D., and Andreu, E. (1997). Inhibition of gill Na+/ K+-ATPase activity in the eel, Anguilla anguilla, by fenitrothion. Ecotox. Environ. safet.38, 32-136.
Schmidek, A., Hare, T., Milakofsky L., and Epple, A. (2001). Insulin-like growth factor-I affects amino compounds in the fluids of the chicken embryo Gen. Comp . Endorcrinol. 123, 235-243.
Schreibe, A. M., and Specke, J. L. (2000). Metamorphosis in the summer flounder, Paralichthys dentatus : thyroidal status influences gill mitochondria-rich cells. Gen.Comp.Endorcrinol. 117, 238-250.
Seidelin, M., Madsen, S. S., Byrialsen A., and Kristiansen, K. (1999). Effects of insulin-like growth factor-I and cortisol on Na+/K+ -ATPase expression in osmoregulatory tissues of brown trout (Salmo trutta). Gen. Comp. Endorcrinol. 113, 331-342.
Shrimpton, J. M., Devlin, R. H., McLean, E., Btatt, J. C., Donaldson, E. M., and Randall, D. J. (1995). Increases in gill cytosolic corticosteroid receptor abundance and saltwater tolerance in juvenile coho salmon (Oncorhynchus kisutch) treat with growth hormone and placental lactogen. Gen. Comp. Endocrinol. 98, 1-15.
Shrimpton, J. M., and McCormick, S. D. (1998). Regulation of gill cytosolic corticosteroid receptors in juvenile Atlantic salmon: interaction effects of growth hormone with prolactin and triiodothyronine. Gen. Comp. Endocrinol. 112, 262-274.
McCormick, S. D. (1996). Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+, K+-ATP ase in Atlantic salmon (Salmo salar): interaction with cortisol. Gen. Comp . Endocrinol. 101,3-11.
Takeda, K., and Kawamura , M., The Functional Unit of Na+,K+-ATP ase is a monomeric αβ protomer. Biochem. Biophy. 280, 1364-1366.
Tatsuya, S., Shepherd, B. S., Madsen, S. S., Nishioka, R. S., Siharath, K., Richman, N. H., Bern, H. A., and Grau, E. Gordon. (1997). Gen .Comp. Endorcrinol.106,95-101.
Trumper, L., Coux, G., and Elias, M. M. (2000). Effect of acetaminophen on Na+/K+ ATPase and alkaline phosphatase on plasma membranes of renal proximal tubules. Toxi. Appl. Phar. 164, 143-148.
Wing, R. D. E., Wing, G. S. E., and Sattertwaite, T. D. (2001). Changes in gill Na+, K+-ATPase specific activity during seaward migration of wild juvenile chinook salmon. J. Fish. Biol. 58, 1414-1426.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top