跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/26 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林素嫻
論文名稱:Inconel718超合金缺口拉伸性質及氫脆影響研究
論文名稱(外文):The influence of hydrogen permeation properties on notch tensile strength of IN718 superalloy in hydrogen-containing environment
指導教授:蔡履文
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:1
中文關鍵詞:氫滲透速率氫滲透速率視固溶量動態極化雷射退火處理氫脆敏感性
相關次數:
  • 被引用被引用:6
  • 點閱點閱:569
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本研究是針對Inconel 718 (IN718) 鎳基超合金,將固溶、時效試件及雷射退火處理試件置於大氣、氣態氫及飽和硫化氫水溶液環境中,進行缺口拉伸試驗,並利用電化學氫滲透法測量不同條件下之試件氫滲透速率(J∞L)、有效擴散速率(Deff)、視固溶量(Capp)及動態極化,進而評估不同試件處理條件對氫脆之敏感性。
由實驗結果顯示:由於Ni3Nb析出致合金基材產生強化效應,故IN 718時效試件缺口拉伸強度大於固溶試件。IN718僅在氣態氫80atm時才有氫脆產生,所以固溶及時效試件在氣態氫與大氣中強度及伸長量相當,顯示低氫脆性。因析出物會重新溶回基地,雷射試件相較於時效試件時,稍有氫脆敏感性且強度損失約為4%。在硫化氫環境中,固溶試件因質軟強度低,有較高之強度損失率。在飽和硫化氫環境中,時效試件強度損失僅0.4%,由此證明時效試件於硫化氫環境中有較佳之抗氫脆性。
就氫滲透而言,因氫在材料內部擴散受微結構阻擋較小,故固溶試件的有效擴散速率(Deff)及滲透速率(J∞L)較時效試件高,以致在飽和硫化氫環境中強度損失率大。在固溶試件中,氫大部份由內部差排所補集,為可逆補集,所以視固溶量(Capp)小於時效試件。可知比較IN718與T250麻時效鋼,鎳含量增加其氫滲透速率下降,故T250麻時效鋼氫滲透速率或是氫有效擴散速率皆遠大於IN 718,另一方面,IN718視固容量則遠大於T250麻時效鋼。
Solution-annealed specimens after 704oC/20 hr aging treatment comprise of predominantly intragranular precipitation ofγ"(Ni3Nb) with a less amount of γ''[Ni3 (Al,Ti)]. Solution-annealed specimen consists of an equiaxed grain with annealing twins inside, and is free of any fine precipitates except for some randomly distributed, blocky carbides. Two precipitatesγ"(Ni3Nb) and γ''(Ni3Ti) after aging treatments were found, which had been confirmed through X-ray diffraction. For smooth tensile specimens, the results of tensile tests indicated that aged specimens had an obviously higher strength and lower ductility than that of the solution-annealed specimens, which could be attributed to the precipitation of strengthening particles within the matrix . Notched tensile strength (NTS) of various specimens tested in air, gaseous hydrogen and saturated H2S solution. The aged and laser-treated specimens had nearly same NTS, and far greater than that of the solution-annealed one. The solution-annealed specimen still provide a higher plastic deformation before fracture than other specimens. Both aged and laser-treated specimens behaved the same trend during loading.
It indicated that the Deff of the solution-annealed specimen was about four times greater than that of the aged specimen, and the difference in permeation flux between them was limited. Both specimens showed an extremely high hydrogen solubility, especially for the aged specimen as high as 17500 mole H/m3 . The relatively low diffusivity and high solubility of the aged specimen could be attributed to the presence of fine precipitates ( reversible trapping sites ) absorbed and retarded the hydrogen diffusion inward.
總 目 錄
第一章 簡 介 1
第二章 文獻回顧 2
2.1 IN718冶金學特性 2
2.2 氫脆理論與機構 7
2.3 氫臨界濃度與捕集位置 9
2.4 應力腐蝕破裂 9
2.5 動態極化 11
2.6 氫滲透 12
2.7 數據分析方法 16
2.8 應力腐蝕試驗方法 19
第三章 實驗步驟 37
3.1 實驗材料 37
3.2 熱處理程序 37
3.3 雷射表面退火處理 37
3.4 拉伸試驗 37
3.5 強度損失率計算 38
3.6 破斷面觀察 38
3.7 氫滲透 39
3.8 動態極化 40
第四章 結果與討論 45
4.1 IN718拉伸機械性質 45
4.2 缺口拉伸機械性質 45
4.2.1 IN718缺口試件拉伸性質 45
4.2.2 IN718與T250缺口拉伸性質比較 47
4.3 強度損失率 47
4.4 拉伸試驗破斷面 48
4.5 IN718動態極化 50
4.6 IN718之氫滲透 50
4.7 IN718與T250之氫滲透比較 52
第五章 結論 82
第六章 參考文獻 84
圖 目 錄
圖2-1 γ''相與γ"相之原子排列形式 23
圖2-2 IN718中γ"與δ相存在溫度範圍 24
圖2-3 IN718合金恆溫變態圖 25
圖2-4 補集位置與氫作用示意圖 26
圖2-5 產生應力腐蝕之條件 27
圖2-6 不同速率下應力腐蝕破壞,材料變形度 27
圖2-7 鈍態膜破裂模式 28
圖2-8 氫脆模式示意圖 29
圖2-9 Tafel 曲線圖 30
圖2-10 氫滲透實驗試片之邊界狀態圖 31
圖2-11 氫進入試片模式 32
圖2-12 氫在陰極溶解與吸附過程 33
圖2-13 Lag-time 法示意圖 34
圖2-14 Breakthrough time法示意圖 35
圖2-15 慢速率拉伸試驗機示意圖 36
圖3-1 缺口拉伸試件及雷射處理位置 42
圖3-2 氣態氫20大氣壓缺口拉伸試件 42
圖3-3 電化學氫滲透儀器裝置圖 43
圖3-4 動態極化裝置圖 44
圖4-1 IN718試件於各實驗環境中之缺口拉伸強度 55
圖4-2 IN718各試件於大氣環境中之拉伸測試曲線圖 56
圖4-3 IN718各試件於氣態氫環境中之拉伸測試曲線圖 57
圖4-4 IN718各試件於硫化氫環境中測試速率為0.0075mm/min之拉伸測試曲線圖 58
圖4-5 IN718固溶試件於各環境中之拉伸測試曲線圖 59
圖4-6 IN718時效試件於各環境中之拉伸測試曲線圖 60
圖4-7 IN718各試件於各試驗環境中拉伸測試伸長 61
圖4-8 IN718試件於各試驗環境中之強度損失率 62
圖4-9 IN718固溶試件於各環境中之巨觀拉伸破斷面(a)大氣環境(b)氣態氫環境(c)飽和硫化氫環境拉伸速率為0.0075mm/min(d)飽和硫化氫環境拉伸速率為0.0015mm/min 63-64
圖4-10 IN718固溶試件於各環境中之SEM巨觀拉伸破斷面(a)大氣環境(b)氣態氫環境(c)飽和硫化氫環境拉伸速率為0.0075mm/min(d)飽和硫化氫環境拉伸速率為0.0015mm/min 65-66
圖4-11 IN718固溶試件於各環境中之SEM微觀拉伸破斷面(a)(b) 飽和硫化氫環境拉伸速率為0.0075mm/min(c)(d)飽和硫化氫環境拉伸速率為0.0015mm/min 67-68
圖4-12 IN718時效試件於各環境中之巨觀拉伸破斷面(a)大氣環境(b)氣態氫環境(c)飽和硫化氫環境拉伸速率為0.0075mm/min(d)飽和硫化氫環境拉伸速率為0.0015mm/min 69-70
圖4-13 IN718時效試件於各環境中之SEM微觀拉伸破斷面(a)大氣環境(b)氣態氫環境 71
圖4-14 IN718時效試件於各環境中之SEM微觀拉伸破斷面(a)氣態氫環境(b)飽和硫化氫環境拉伸速率為0.0075mm/min 72
圖4-15 IN718時效試件於硫化氫拉伸速率為0.0015mm/min之拉伸破斷面(a)SEM巨觀拉伸破斷面(b)SEM微觀拉伸破斷面 73
圖4-16 IN718雷射試件於各環境中之巨觀拉伸破斷面(a)大氣環境(b)氣態氫環境(c)飽和硫化氫環境拉伸速率為0.0075mm/min(d)飽和硫化氫環境拉伸速率為0.0015mm/min 74-75
圖4-17 IN718雷射試件於各環境中之SEM巨觀拉伸破斷面(a) 飽和硫化氫環境拉伸速率為0.0075mm/min (b)飽和硫化氫環境拉伸速率為0.0015mm/min 76
圖4-18 IN718雷射試件於各環境中之SEM微觀拉伸破斷面(a)氣態氫環境(b)飽和硫化氫環境拉伸速率為0.0015mm/min 77
圖4-19 IN718雷射試件於各環境中之SEM微觀拉伸破斷面(a)氣態氫環境(b)飽和硫化氫環境拉伸速率為0.0015mm/min 78
圖4-20 IN718固溶試件在0.1N H2SO4溶液中腐蝕動態極化曲線 79
圖4-21 IN718時效試件在0.1N H2SO4溶液中腐蝕動態極化曲線 79
表 目 錄
表3-1 IN718化學成分 41
表3-2 試片氫滲透之條件 41
表4-1 IN718缺口拉伸性質 53
表4-2 T250缺口拉伸性質 54
表4-3 IN718在0.1N H2SO4溶液的腐蝕性質 80
表4-4 IN718氫滲透結果 81
第六章、參考文獻
1. H. L. Eiseletein “Metallurgy of a columbium-Hardened Nickel- Chromium-Iron Alloy ”, ASTM STP 369, (1965).
2. Bulletin of Huntington Alloy “Inconel Alloy 718 “ 3ed, (1978).
3. C. T. Sims and W. C. Hagel, ”The Superalloys”.
4. R. C. HaLL, “The Metallurgical of Alloy 718 ” Transaction of the ASME, Journal of Basic Engineering, 9, (1967), p. 511.
5. C. P. Sullivan and M. J. Donachie Jr. “Microstructures and Mechanical Properties of Iron-Base (-Containing) Superalloys” Metals Engineering Quarterly, 11, (1971), p. 1.
6. F. J. Rizzo and J. D. Buzzanell “Effect of Chemistry Variations on the Structural Stability of Alloy 718 ”, J. of Metals, 10, 1969, p. 34.
7. Bulletin of Huntington Alloys, “INCONEL Alloy 718”.
8. D. F. Paulonis, J. M. Oblak, and D. S. Duvall, “Precipitation in Nickel-Base Alloy 718”, Trans. of the ASM, Vol. 62, (1969), p. 611.
9. P. S. Kotval, “Identification of the Strengthening Phase in Inconel Alloy 718”, Trans. of AIME, 242(8), (1968), p. 764.
10. R. Cozar and Pineal, “Morphology of γ" and γ'' Precipitates and Thermal Stability of Inconel 718 Type Alloys” , Met. Trans., Vol. 4A, 1, (1973), p. 47.
11. M. C. Chaturvedi and D. W. Chung, “Yielding Behavior of a γ" Precipitation Strengthened Co Ni Cr Nb Fe Alloy”, Met. Trans., Vol. 12A, (1981), p. 77.
12. I. Kirman and D. H. Warrington, “The Precipitation of Ni3Nb Phases in a Ni- Fe- Cr-Nb Alloy”, Met. Trans., Vol. 1, 10, (1970), p. 2667.
13. W. E. Quist, R. Taggart, and D. H. Polonis, “The Influence of Iron and Aluminum on the Precipitation of Metastable Ni3Nb Phase in the Ni-Nb System ”, Met. Trans., Vol. 2, 3, (1971), p. 825.
14. D. S. Duvall, “Coherency Strengthening in Ni Base Alloys Hardened by DO22γ"Precipitates”, Met. Trans., Vol. 5, 1, (1974), p. 143.
15. J. F. Barker, “A Superalloy for Medium Temperature”, Metal Progress, 5, (1962), p. 72.
16. Aerospace Structural Metal Hand book.
17. W. J Boesch and H. B. Canada, “Precipitation Reactions and Stability of Ni3Nb in Inconel Alloy 718 ”, J. of Metals, 10, (1969), p. 34.
18. M. C. Chaturvedi and D. W. Chung, “Effect of Iron addition on the Precipitation Behavior of Co Ni Cr Alloy Containing Nb”, Met. Trans., Vol, 11, (1979), p. 1579.
19. M. Raghavan, “Precipitation in a Cu-30 pct Ni-1pct Nb Alloy”, Met. Trans., Vol. 8A. 7, (1977), p. 1071.
20. J. F. Muller and M. J. Donachie, JR. “The Effect of Solution and Intermediate Heat Treatments on the Notch-Rupture Behavior of Inconel 718”, Met. Trans., Vol. 6A, 13, (1975), p. 2221.
21. 楊俊彬, “INCONEL 718 GTA 銲接及其銲後熱處理之研究”國立臺灣大學, (1985)
22. 王維誠, “'INCONEL 718 電漿銲接與熱處理特性研究” 國立臺灣大學, (1985)
23. J. F. Barker, E. W. Ross, and, J. F. Radauich, “Long Time Stability of Inconel 718”, J. of Metals, 1, (1970), p. 31.
24. Chester T Sims, William C Hage, “The Superalloys”
25. A. Turnbull, R. G. Ballinger, I. S. Hwang, M. M. Morra, M. Psaila-Dombrowski, and R. M. Gates, “Hydrogen Transport in Nickel-Base Alloys”, Metallurgical Transactions A , Vol. 23A, (1992), pp. 3231-3244.
26. W. J. Mills, “Effect of Heat Treatment on the Tensile and Fracture Toughness Behavior of Alloy 718 Weldments”, W. J. 63(8), p. 237-s.
27. L. A. James, “Fatigue-Crack Growth in Inconel 718 Weldments at Elevated Temperatures”,. Welding Journal, 57(1), (1978), p. 17-s.
28. I. M. Bernstein, Mater. Sci. Eng., Vol. 6, (1976), p. 1.
29. 李文志, “高強度鋼之缺口拉伸性質與氫滲透研究”國立臺灣海洋大學材料工程所碩士論文, (2000)
30. A. R. Troianio, Trans ASM, Vol.52, (1960), p. 54.
31. R. J. Walter, W. T. Chndler, in:I. M. Bernstein, A. W. Thompson (Eds), Proceeding of an international conference on the effects of hydrogen on materials properties and selection and structural design, Champion, USA, (1973), pp. 515-525.
32. G. M. Pressouyre, Phd Thesis, Carnegie-Mellon University, (1972).
33. G. M. Pressouyre, Metall. Trans., Vol. 10A, (1979), p. 1571.
34. N. R. Quick, and H. H. Johnson, Acta Metall, Vol. 26, (1978), p. 903.
35. Metals Handbook, 9ed., Vol.8, Mechanical Testing, pp. 495-536.
36. Denny A. Jones “Principles and Prevention of Corrosion”, 2nd, (1996), (1992) by Prentice-Hall, Inc.
37. R. W. Staehle, “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys”, National Association of Corrosion Engineers, (1977), p. 180.
38. E. N. Pugh, “A Post Conference Evaluation of Our Understanding of the failure Mechanisms, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloys”, Edited by R. W. Staehle, J. Hochmann, R. D. Mccright and J. E. Slater, Association of Corrosion Engineers, Houston, Texas, (1977), pp. 37-51.
39. G. Fontana, Corrosion Engineering, McGraw-Hill (1987), pp. 41-50.
40. W. Beck, J. O’M. Bockris, M. A. Genshaw, P. K. Subramanyan, Metallurgical Transactions, (1971), pp. 883-888.
41. M. A. V. Davanathan and Z. Stachurski, J. of the Electrochem., Vol. 110, (1963), p. 886.
42. 魯萬鈞, 微觀組織對鋼材氫滲透之影響”海洋大學材料工程所碩士論文, (1995)
43. 何開發, “TMCP 鋼板銲件之腐蝕性及微觀組織對銲件氫滲透影響之研究”, 海洋大學材料工程所碩士論文,(1997)
44. M. A. V. Davanthan and Z. Stachurski, J. of the Electrochem., Vol. 111, (1964), p. 619.
45. 吳建國, “金屬材料在氫能源工業中破壞的問題”, 材料科學, Vol. 8B, (1986), p. 13.
46. B. G. Pound, Corrosion, Vol. 46, No. 1, pp. 50-55.
47. G. M. Pressouyre and I. M. Bernstein, Acta Metall. Vol. 27, (1979), p. 89.
48. I. M. Bernstein and G. M. Pressouyre, in Hydrogen Degradation of Ferrous Alloys, R. A. Oriani, J. P. Hirth, and M. Smialowski, eds, (Park Ridge, NJ: Noyes Publications, 1985), p. 641.
49. B. G. Pound, SRI International, Final Report, U. S. Office of Naval Research Contract No. N00014-86-C-0233 (1988).
50. B. G. Pound, Corrosion, Vol. 45, No.1, pp. 18-25.
51. B. G. Pound, Corrosion Science, 42 (2000), pp. 1269-1281.
52. J. Xu, X. K. Sun, Q. Q. Liu, and W. X. Chen, “Hydrogen Permeation Behavior in IN718 and GH761 Superalloys”, Metallurgical and Materials Transations A, Vol. 25A, (1994), pp. 539-544.
53. N. Kishimoto, T. Tanabe, T. Suzuki, and H. Yoshida: J. Nucl. Mater, Vol. 131, (1985), pp. 274-260.
54. A. J. Kummick and H. H. Johnson, Met. Trans. Trans., Vol. 5, (1974) p. 1199.
55. G. R. Caskey and W. L. Pillinger, Met. Trans., Vol. 6A, (1975) p. 467.
56. T. M. Harris and R. L. Latanision, Hydrogen Effects on Materials Behavior, edited by N. R. Moody and A. W. Thompson, TMS, (1990) p. 113.
57. A. M. Brass, A. Chanfrean and J. Cheae, Hydrogen Effects on Materials Behavior, edited by N. R. Moody and A. W. Thompson, TMS, (1990) p. 19.
58. Jianhong He, Seiji Fukuyama, Kiyoshi Yokogawa and Akihiko Kimura, Materials Transactions, JIM, Vol. 35, No. 10 (1994), pp. 689-694.
59. R. J. Walter, R. P. Jewett and W. T. Chandler, Materials Science and Engineering, Vol. 5, (1969), pp. 98-110.
60. B. G. Pound, G. A. Wright and R. M. Sharp, Acta metall. Vol. 35, No 1, (1987), pp. 263-270.
61. Akio Hirose, Materials Science and Engineering, A219 (1996) pp. 71-79.
62. J. A. Harrisand T. F. Lemke, Materials Performance, (1972), pp. 11-15.
63. L. Fournier, D. Delafosse, T. Magnin, Materials Science and Engineering, A269, (1999), pp. 111-119.
64. R. D. McCright, Ph. D Thesis, The Ohio State Univ. Columbus, OH, (1971)
65. 魯萬鈞, “鐵鋁基合金環境脆化與腐蝕性質之研究”國立臺灣海洋大學材料工程所博士論文,(2001)
66. R. J. Walter, and W. T. Chandler, Materials Science and Engineering, Vol. 8, (1971), pp. 90-97.
67. M. G. Fontana and N. L. Greene, Corr. Eng, (1978), p. 111.
68. P. D. Hicks and C. J. Altstetter, “Internal Hydrogen Effect on Tensile Properties of Iron- and Nickel-Base Superalloys ”,Metallurgical Transactions A, Vol. 21A, (1990), pp. 365-372.
69. B. G. Pound, “ Hydrogen Trapping in Precipitation-Hardened Alloys ”, Acta metal. Mater. Vol. 38, No. 12, (1990), pp. 2373-2381.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top