跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姚其均
論文名稱:釔元素添加對銅基與鎳基非晶質合金粉末之非晶質化特性研究
論文名稱(外文):Amorphization behavior of Cu and Ni-based amorphous alloy powders by adding yttium element
指導教授:李丕耀
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:123
中文關鍵詞:非晶質合金機械合金法鎳基合金銅基合金過冷液態區
相關次數:
  • 被引用被引用:2
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
此研究為探討以機械合金法合成Cu-Zr-Ti-Y系與Ni-Zr-Ti-Y系非晶質合金粉末的非晶質化行為,所得到的結果如下:
(1)銅基合金(Cu0.6Zr0.3Ti0.1)100-XYX﹝X=0、1、2、3、4、5、6、8、10﹞,Cu60-XZr30Ti10YX﹝X=2、6、8﹞,Cu60Zr30-XTi10YX﹝X=2、6、10﹞,Cu60Zr30Ti10-XYX﹝X=2、6﹞與鎳基合金(Ni0.67Zr0.1Ti0.23)100-XYX﹝X=0、2、6、8、10﹞、Ni67-XZr10Ti23YX﹝X=6、8、12﹞、Ni67Zr10-XTi23YX﹝X=6、8﹞、Ni67Zr10Ti23-XYX﹝X=6、8、10、14﹞經過五小時機械合金法處理後可形成完全非晶質合金粉末。
(2)以取代鋯元素或鈦元素的形式,添加6 at%釔元素於銅基合金Cu60Zr30Ti10中,可擴大其過冷液態區﹝ΔTX﹞,而得到具寬廣過冷液態區組成Cu60Zr24Ti10Y6﹝81K﹞與Cu60Zr30Ti4Y6 ﹝88K﹞。
(3)用適量釔元素取代鎳基合金Ni67Zr10Ti23的鎳元素,可使原本不具過冷液態區﹝ΔTX﹞的Ni67Zr10Ti23,出現寬廣過冷液態區﹝ΔTX﹞,其組成分別為Ni59Zr10Ti23Y8﹝70K﹞、Ni58Zr10Ti23Y9﹝60K﹞與Ni57Zr10Ti23Y10﹝55K﹞之非晶質合金粉末。
(4)本實驗非晶質合金粉末的Trg 值與過冷液態區﹝ΔTX﹞之間,並無存在一線性關係,而非晶質合金粉末形成塊狀非晶質之能力,取決於其過冷液態區﹝ΔTX﹞的大小。
中文摘要…………………………………………………………………..i
英文摘要…………………………………………………………………...iii
目錄……………………………………………………………………...iv
圖目錄…………………………………………………………………vii
表目錄……………………………………………………………….xiv
一、前言…………………………………………………………………...1
二、文獻回顧…………………………………………………………...…3
2-1 非晶質合金特性………………………………………...3
2-2 塊狀非晶質合金…………………………………………...5
2-3 塊狀非晶質合金之玻璃形成能力……………………………...8
2-4 鎳基塊狀非晶質合金…………………………………….…9
2-4.1 Ni-M-P系(M = Ti, Zr, Hf, Nb)…………..9
2-4.2 Ni-Nb-Cr-Mo-P-B系……………………….10
2-4.3 Ni-Ti-Zr-(Si,Sn)系……………………….10
2-4.4 Ni-Zr-Al-Y系………………………………11
2-5 銅基塊狀非晶質合金………………………………….11
2-5.1 Cu-Ti-Zr-Ni系……………………….…...12
2-5.2Cu-Ti-Ni-Si-B系………………………….…12
2-5.3 Cu-Zr-Ti系…………………………….……13
2-5.4 Cu-Hf-Ti系…………………………………14
2-5.5 Cu-Zr-Ti-Y系…………………………….14
2-5.6 Cu-Zr-Ti-Be系…………………………...15
2-5.7 Cu-Zr-Hf-Ti系…………………………...15
2-5.8 Cu-Ti-Zr-Ni-Si-Sn系…………………….16
三、實驗步驟……………………………………………………………30
3-1 機械合金處理………………………………………………….30
3-2 粉末結構分析………………………………………………….31
3-3 熱分析………………………………………………………….32
3-4 粉末型態觀察………………………………………………….32
3-5 實驗流程圖…………………………………………………….34
四、結果…………………………………………………………………36
4-1 粉末型態觀察………………………………………….36
4-1.1 Cu-Zr-Ti-Y………………………………….36
4-1.2 Ni-Zr-Ti-Y………………………………..37
4-2 X-ray繞射分析……………………………………………38
4-2.1 Cu-Zr-Ti-Y………………………………….38
4-2.2 Ni-Zr-Ti-Y………………………………..39
4-3熱分析……………………………………………………..40
4-3.1 Cu-Zr-Ti-Y………………………………….40
4-3.2 Ni-Zr-Ti-Y………………………………..41
五、討論………………………………………………………………...110
5-1 過冷液態區﹝ΔT﹞………………………………………110
5-2 簡化玻璃轉換溫度(Trg)………………………………115
六、結論………………………………………………………………..118
參考文獻…………………………………………...…………………..120
[1] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans., JIM, 30, 965 (1989).
[2] A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Jpn. J. Appl. Phys., 27, L2248 (1988).
[3] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans., JIM, 31, 177 (1990).
[4] Peker and W. L. Johnson, Appl. Phys. Lett., 63, 2342 (1993).
[5] A. Inoue, T. Shibata and T. Zhang, Mater. Trans., JIM, 36, 1420 (1995).
[6] A. Inoue, Y. Shinohara and J. S. Gook, Mater. Trans., JIM, 36, 1427 (1995).
[7] A. Inoue and A. Katsuya, Mater. Trans., JIM, 37, 1332 (1996).
[8] A. Inoue, N. Nishiyama and T. Matsuta, Mater. Trans., JIM, 37, 181 (1996).
[9] S. Ashley, Mechanical Engineering, June, 72 (1998).
[10] M. Boudard, B. Arcondo, and H. Sirkin, J. Mater. Sci., 26, 6517 (1991).
[11] Y. D. Dong, G. Gragan, And M. G. Scott, J. Non-Cryst. Solids, 43, 403 (1981).
[12] S. Budurov, V. Fotty, S. Toncheva, and R. Kovacheva, Mater. Sci. Eng., A133, 455 (1991).
[13] M. Hagiwara, A. Inoue, and T. Masumoto, Metall. Trans. A, 12A, 1027 (1981).
[14] L. Q. Xing, D. Q. Zhao, X. C. Chen, and X. S. Chen, Mater. Sci. Eng., A157, 211 (1992).
[15] T.G. Park, S. Yi, and D.H. Kim, Scripta Mater., 43, 109 (2000).
[16] S. Yi, T. G. Park, and D. H. Kim, J. Mater. Res., 15, 2425 (2000).
[17] X. H. Lin and W. L. Johnson, J. Appl. Phys., 78, 6514 (1995).
[18] T. Zhang, A. Inoue and T. Masumoto, Mater. Sci. Eng., A181/A182, 1423 (1994).
[19] K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto, Mater. Sci. Eng., A179/A180, 692 (1994).
[20] X. Wang, I. Yoshii, A. Inoue, Y. H. Kim, and I. B. Kim, Mater. Trans. JIM, 40, 1130 (1999).
[21] S. Yi, J. S. Jang, W. T. Kim, D. H. Kim, Mater. Lett. 48, 258 (2001).
[22] A. Inoue, W. Zhang , T. Zhang and K. Kurosaka, Mater. Trans., JIM, 42, 1149 (2001).
[23] T. Zhang, K. Kurosaka and A. Inoue, Mater. Trans., JIM, 42, 2042 (2001).
[24] A. Inoue, T. Zhang, K. Kurosaka and W. Zhang , Mater. Trans., JIM, 42, 1800 (2001).
[25] A. Inoue, W. Zhang , T. Zhang and K. Kurosaka, Acta Mater., 49, 2645(2001).
[26] A. Inoue, W. Zhang , T. Zhang and K. Kurosaka, Mater. Trans., JIM, 42, 1805 (2001).
[27] W. Klement, R. H. Willen, P. Duwez, Nature (London), 187, 869 (1960).
[28] H. S. Chen, Mater. Sci. Eng., 25, 151 (1976).
[29] H. S. Chen, J. Appl. Phys., 49, 3289 (1978).
[30] H. W. Kui, D. Turnbull, Appl. Phys. Lett., 47,146 (1985).
[31] A. Inoue, Acta Mater., 48, 279 (2000).
[32] C.C. Hays, C.P. Kim and W.L. Johnson, Appl. Phys. Lett., 75, 1089 (1999).
[33] L. Q. Xing, P. Ochin, J. Mater. Sci. Lett., 16, 1277 (1997).
[34] A. Inoue, Bulk Amorphous Alloys (M. Magini ed., Trans Tech Publication Ltd, Switzerland) 140 (1999).
[35] A. Inoue, Mater. Sci. Eng., A226, 357 (1997).
[36] A. Inoue, T.Negishi, H. M. Kimura, T. Zhang, A. R. Yavari, Mater. Trans., JIM, 39, 318 (1998).
[37] H. S. Chen,Mater. Prog. Phys., 43, 353 (1980).
[38] Z.P. Lu,H. Tan, Y. Li and S.C. Ng, Scripta Mater., 42, 667 (2000).
[39] T. B. Massalski, Binary Alloy Phase Diagrams, (ASM International, Metals Park, OH, 1990)
[40] A. Inoue, A. Kitamura and T. Masumoto, Mater. Trans., JIM, 20, 404 (1979).
[41] A. Inoue, A. Kitamura and T. Masumoto, J. Mater. Sci., 18, 753 (1983).
[42] M. Nose and T. Masumoto, Sci. Rep. Res. Inst. Tohoku Univ., A-28, 222 (1980).
[43] A. Inoue, K. Kobayashi and T. Masumoto, Proc. Conf. on Metallic Glasses, Sci. Tech., Budapest, 217 (1980).
[44] K. Yamauchi and Y. Nakagawa, Jpn. J. Appl. Phys., 10, 1730 (1971).
[45] A. Inoue, T. Masumoto, M. Kikuchi and T. Minemura, Sci. Rep. Res. Inst. Tohoku Univ., A-27, 127 (1979).
[46] A. Inoue, A. Kitamura and T. Masumoto, J. Mater. Sci., 16, 1895 (1981).
[47] M. Naka, K.Hashimoto and T. Masumoto, J. Non-Cryst. Solids, 34, 257 (1979).
[48] A. Inoue, T. Naohara, T. Masumoto and K. Kumada, Mater. Trans., JIM, 20, 577 (1979).
[49] R. Akatsuka, T. Zhang, H. Koshiba and A. Inoue, Mater. Trans., JIM, 40, 258 (1999).
[50] H. Kakiuchi, A. Inoue, M. onuki, Y. Takano and T. Yamaguchi, Mater. Trans., JIM, 42, 678 (2001).
[51] T. Zhang and A. Inoue, Mater. Trans., JIM, 41, 1463 (2000).
[52] T. Zhang and A. Inoue, Mater. Trans., JIM, 40, 301 (1999).
[53] A. Inoue, Mater. Trans., JIM, 36, 866 (1995).
[54] E. S. Park, H. K. Lim, W. T. Kim, D. H. Kim, J. Non-Cryst. Solids, 298, 15 (2002).
[55] R. Nagaranjan, K. Aoki, and k. Chattopadhyay, Mater. Sci. Eng. A179/180, 198 (1994).
[56] M. Lasocka, Mater. Sci. Eng. 23, 173 (1976).
[57] H. E. Kissinger, J. Res. Natl. Bur. Stand. 57, 217 (1956).
[58] Z. P. Lu, Y. Li, S. C. Ng, J. Non-Cryst. Solids, 270, 103 (2000).
[59] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng and T. T. Goh, Scripta Mater., 36,783 (1997).
[60] A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, 2342 (1993).
[61] Y. Zhang, M. X. Pan, D. Q. Zhao, R. J. Wang and W. H. Wang, Mater. Trans., JIM, 41, 1410 (2000).
[62] L. Wang, C. Li, L. Ma, A. Inoue, J. Alloys and Compounds, 339,216 (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊