跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳仁彰
研究生(外文):Jen Chang Chen
論文名稱:二維顆粒堆積電腦模擬之研究
論文名稱(外文):The Study of Particle Packing using 2-D Computer Simulation
指導教授:楊仲家黃 然
指導教授(外文):C. C. YangR. Huang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:143
中文關鍵詞:顆粒堆積結構二維顆粒堆積模擬規則堆積隨機堆積堆積密度
外文關鍵詞:Particle Packing Structure2-D Computer SimulationOrdered PackingRandom PackingPacking Density
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
顆粒堆積結構影響顆粒複合材料的性質與行為,本研究以Java程式語言撰寫網路運算之二維顆粒堆積模擬程式,依照不同堆積結構共開發四個模擬程式:(1) 二維單一粒徑規則堆積 (2) 二維單一粒徑隨機堆積 (3) 二維單一粒徑隨機緊密堆積 (4) 二維多種粒徑隨機堆積。使用者透過網路瀏覽器直接向伺服器端下載程式至用戶端執行,程式基本輸入之參數為容器尺寸、顆粒尺寸、漿體厚度,輸出結果為堆積結構、堆積密度、空隙率、填塞之顆粒數及圖形化之漿體連通路徑,以電腦模擬顆粒堆積結構可提供視覺化及快速重複試驗之優點,然而演算法決定了模擬程式之正確性與執行速度。
研究結果顯示堆積密度及空隙率在規則堆積時,受容器尺寸與顆粒尺寸之餘數及漿體厚度影響;而在隨機堆積時,堆積密度及空隙率受到顆粒尺寸、漿體厚度、填塞順序、總顆粒數、迴圈執行次數影響。填塞之顆粒數則隨容器尺寸、顆粒尺寸、總顆粒數、迴圈執行次數而變化。

The particle packing structure affects the properties of particulate materials. This study is to simulate the 2-D packing structure by using computer simulation. The four simulation programs were developed to simulate different packing structure: (1) 2-D mono-sized sphere ordered packing; (2) 2-D mono-sized sphere random packing; (3) 2-D mono-sized sphere random close packing; (4) 2-D multi-sized sphere random packing.
The programs were written by Java programming language. The advantage of Java is web-based programming. All of the simulation programs were uploaded to the server. The user can use browser to run the programs on the net. The basic inputs of program are the container size, particle size, and thickness of matrix film. The outputs are packing structure, packing density, porosity, numbers of the specified particle, and connective paths of matrix film.
Computational results show that the remainder of the container size/net length of two particles affects the packing density of ordered packing. For the random packing, the key factors are the particle size distribution, filling order, numbers of iteration and total particles, and thickness of matrix film.

Chinese Abstract……...…………………………………………………..I
English Abstract……………………………………..…………………..II
Table of Contents……..………………………………………………...III
List of Tables…………………..…………………………………………V
List of Figures…………………….…………………………………..VIII
Chapter 1 Introduction……………..……………………………………1
1.1 Motivation……………………………………………………………..1
1.2 Background……………………………………………………………2
1.3 Research highlight…………………………………………………….5
1.4 Research procedure……………………………………………………6
Chapter 2 Review of the Past Works……………………………………8
2.1 Physical characteristics of aggregate………………………………….8
2.2 Packing models of the past works……………………………………..8
2.2.1 Empirical models………………………………………………..9
2.2.2 Analytical models………………………………………………14
2.3 Brief discussions of Java programming………...……………………18
2.3.1 What’s Java…………………………………………………….18
2.3.2 Programming paradigms……………………………………….19
2.3.3 Discussions of Java Applet…………………………………….19
2.3.4 A simple example: Hello Java……………………………….…20
Chapter 3 Implementation of Computer Simulation…………………26
3.1 Mathematical deduction of packing models…………………………26
3.1.1 Two-dimensional mono-sized sphere ordered packing………...26
3.1.2 Two-dimensional mono-sized sphere random packing………...31
3.1.3 Two-dimensional mono-sized sphere random close packing….34
3.1.4 Two-dimensional multi-sized sphere random packing………...37
3.2 Java programming……………………………………………………38
3.2.1 The design structure of program……………………………….39
3.2.2 Program of double circle structure……………………………..39
3.2.2.1 The mono-sized sphere structure……………………….41
3.2.2.2 The multi-sized sphere structure………………………..41
3.2.3 Program of ordered packing……………………………………41
3.2.4 Program of random packing……………………………………42
Chapter 4 Results and Discussions…………………………………….45
4.1 Two-dimensional mono-sized sphere ordered packing………………46
4.2 Two-dimensional mono-sized sphere random packing………………52
4.3 Two-dimensional mono-sized sphere random close packing………..62
4.4 Two-dimensional multi-sized sphere random packing………………72
Chapter 5 Conclusions and Suggestions for Future Studies…………83
5.1 Concluding remarks………………………………………………….83
5.2 Suggestions for future studies………………………………………..85
References……………………………………………………………….87
Appendix A Program of 2-D mono-sized sphere ordered packing…….102
Appendix B Program of 2-D mono-sized sphere random packing…….108
Appendix C Program of 2-D mono-sized sphere random close packing115
Appendix D Program of 2-D multi-sized sphere random packing…….122
Appendix E An alternate method of mixture design:
The aggregate packing method..........................................................139
Acknowledgements
About the Author

1.Neville, A. M., Properties of Concrete, 4th ed., Addison Wesley Longman, 1995.
2.黃兆龍, 混凝土性質與行為, 初版, 詹氏書局, 1997.
3.湛淵源, “水泥漿質與量對混凝土工程行為之影響,” 台灣科技大學營建工程研究所博士論文(指導教授:黃兆龍), 1999.
4.Shilstone, J. M., “Concrete Mixture Optimization,” Concrete International, Vol. 6, No. 6, pp.33-39, 1990.
5.蔡聰誠, “顆粒組成材料力學性質與行為,” 台灣工業技術學院營建工程研究所碩士論文(指導教授:黃兆龍), 1992.
6.Larrard, F. D., Sedran, T., “Optimization of Ultra-High-Performance Concrete by Use of a Packing Model,” Cement and Concrete Research, Vol. 24, No. 6, pp.997-1009, 1994.
7.王和源, “堆積效應對骨材與膠結材複合性質之影響,” 台灣工業技術學院營建工程研究所博士論文(指導教授:黃兆龍), 1994.
8.王和源, 蔡聰誠, 林豐益, 黃兆龍, “T&C Tower高性能混凝土配比與骨材堆積關係,” 飛灰及爐石混凝土應用研討會專輯, 中大土木材料工程叢書(十四), pp.13-27, 1994.
9.蔡聰誠, 王和源, 黃兆龍, “顆粒堆積對高性能混凝土性質之影響,” 飛灰及爐石混凝土應用研討會專輯, 中大土木材料工程叢書(十四), pp.29-43, 1994.
10.Goltermann, P., Johansen, V., Palbol, L., “Packing of Aggregates: An Alternative Tool to Determine the Optimal Aggregate Mix,” ACI Materials Journal, Vol. 94, No. 5, pp.435-443, 1997.
11.Glavind, M., Pederson, E. J., “Packing Calculations Applied for Concrete Mix Design,” Proceedings of Creating with Concrete, University of Dundee, pp.1-10, 1999. (Download from the Internet)
12.殷慶立, 蘇慕真, “水泥基材料強度影響因素: 分析與綜述,” 硅酸鹽通報, 第4期, pp.60-63, 1999.
13.方裕欽, “緻密混凝土工程性質之研究,” 台灣科技大學營建工程研究所碩士論文(指導教授:黃兆龍), 2000.
14.Johansen, V., Andersen, P. J., “Particle Packing and Concrete Properties,” Materials Science of Concrete, Vol. 2, The American Ceramics Society, pp.111-147, 1991.
15.German, R. D., Particle Packing Characteristics, 1st ed., Metal Powder Industries Federation, 1989.
16.賈魯強, 黎璧賢, “漫談顆粒體物理,” 物理雙月刊, 第23卷, 第4期, pp.503-510, 2001.
17.Bridgwater, J., “Particle Technology,” Chemical Engineering Science, Vol. 50, No. 24, pp.4081-4089, 1995.
18.Hecht, C. A., “Appolonian Packing and Fractal Shape of Grains Improving Geomechanical Properties in Engineering Geology,” Pure and Applied Geophysics, Vol. 157, pp.487-504, 2000.
19.Tsai, J., Taylor, R., Chothia, C., Gerstein, M., “The Packing Density in Proteins: Standard Radii and Volumes,” Journal of Molecular Biology, Vol. 290, pp.253-266, 1999.
20.Bierwagen, G., Fishman, R., Storsved, T., Johnson, J., “Recent Studies of Particle Packing in Organic Coatings,” Progress in Organic Coatings, Vol. 35, pp.1-9, 1999.
21.Dunitz, J. D., Filippini, G., Gavezzotti, A., “A Statistical Study of Density and Packing Variations among Crystalline Isomers,” Tetrahedron, Vol. 56, pp.6595-6601, 2000.
22.Mindess, S., Young, J. F., Concrete, 1st ed., Prentice-Hall, 1981.
23.Mehta, P. K., Concrete: Structure, Properties, and Materials, 1st ed., Prentice-Hall, 1986.
24.Allen, T., Particle Size Measurement Volume 1: Powder Sampling and Particle Size Measurement, 5th ed., Chapman & Hall, 1997.
25.Allen, T., Particle Size Measurement Volume 2: Surface Area and Pore Size Determination, 5th ed., Chapman & Hall, 1997.
26.Nolan, G. T., Kavanagh, P. E., “Random Packing of Nonspherical Particles,” Powder Technology, Vol. 84, pp.199-205, 1995.
27.Mayadunne, A., Bhattacharya, S. N., Kosior, E., “Modelling of Packing Behavior of Irregularly Shaped Particles Dispersed in a Polymer Matrix,” Powder Technology, Vol. 89, pp.115-127, 1996.
28.Podczeck, F., Sharma, M., “The Influence of Particle Size and Shape of Components of Binary Powder Mixtures on the Maximum Volume Reduction Due to Packing,” International Journal of Pharmaceutics, Vol. 137, pp.41-47, 1996.
29.Zou, R. P., Yu, A. B., “Evaluation of the Packing Characteristics of Mono-sized Non-spherical Particles,” Powder Technology, Vol. 88, pp.71-79, 1996.
30.Smith, L. N., Midha, P. S., “Computer Simulation of Morphology and Packing Behavior of Irregular Particles, for Predicting Apparent Powder Densities,” Computational Materials Science, Vol. 7, pp.377-383, 1997.
31.Mora, C. F., Kwan, A. K. H., “Sphericity, Shape Factor, and Convexity Measurement of Coarse Aggregate for Concrete Using Digital Image Processing,” Cement and Concrete Research, Vol. 30, pp.351-358, 2000.
32.Zheng, J. M., Carlson, W. B., Reed, J. S., “The Packing Density of Binary Powder Mixtures,” Journal of the European Ceramic Society, Vol. 15, pp.479-483, 1995.
33.Hwang, K. J., Wu, Y. S., Lu, W. M., “Effect of the Size Distribution of Spheroidal Particles on the Surface Structure of a Filter Cake,” Powder Technology, Vol. 91, pp.105-113, 1997.
34.Stovall, T., Larrard, F. D., Buil, M., “Linear Packing Density Model of Grain Mixtures,” Powder Technology, Vol. 48, pp.1-12, 1986.
35.Cundall, P. A., Strack, O. D. L., “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, Vol. 29, No. 1, pp.47-65, 1979.
36.Cheng, Y. F., Guo, S. J., Lai, H. Y., ”Dynamic Simulation of Random Packing of Spherical Particles,” Powder Technology, Vol. 107, pp.123-130, 2000.
37.Liu, G. L., Thompson, K. E., “Influence of Computational Domain Boundaries on Internal Structure in Low-Porosity Sphere Packings,” Powder Technology, Vol. 113, pp.185-196, 2000.
38.Oda, M., Nemat-Nasser, S., Mehrabadi, M. M., “A Statistical Study of Fabric in a Random Assembly of Spherical Granules,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 6, pp.77-94, 1982.
39.陳堯中, “以TRUBAL探討顆粒材料之力學行為,” 顆粒材料力學研習會研習資料, 國立台灣工業技術學院營建工程技術系及中華民國結構工程學會主辦, pp.59-89, 1991.
40.張大鵬, 黃兆龍, 林仁益, 王景信, “顆粒材料巨微觀模式探討複合材料行為之初步研究,” 顆粒材料力學研習會研習資料, 國立台灣工業技術學院營建工程技術系及中華民國結構工程學會主辦, pp.1-19, 1991.
41.廖慶隆, “顆粒材料分析模式及其應用簡介,” 顆粒材料力學研習會研習資料, 國立台灣工業技術學院營建工程技術系及中華民國結構工程學會主辦, pp.33-57, 1991.
42.楊東華, “以諧和模式及平衡模式建立顆粒材料組成律之研究,” 台灣工業技術學院營建工程研究所博士論文(指導教授:廖慶隆), 1995.
43.王仲宇, “顆粒力學的發展對複合材料力學行為研究的啟示,” 顆粒材料力學研習會研習資料, 國立台灣工業技術學院營建工程技術系及中華民國結構工程學會主辦, pp.21-31, 1991.
44.Liao, C. L., Chan, T. C., “A Generalized Constitutive Relation for a Randomly Packed Particle Assembly,” Computers and Geotechnics, Vol. 20, No. 3/4, pp.345-363, 1997.
45.Wang, C. Y., Wang, C. F., Sheng, J., “A Packing Generation Scheme for the Granular Assembles with 3D Ellipsoidal Particles,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp.815-828, 1999.
46.David, C., Introduction to Modern Statistical Mechanics, 1st ed., Oxford University Press, 1987.
47.Matsubara, H., “Computer Simulations for the Design of Microstructural Developments in Ceramics,” Computational Materials Science, Vol.14, pp.125-128, 1999.
48.張蘭芳, 黃濼, 盧春和, “數據抽象與系統建模方法,” 桂林工學院學報, 第19卷, 第1期, pp.76-80, 1999.
49.Harrington, J. L., Java Programming: An IS Perspective, 1st ed., John Wiley & Sons, 1998.
50.Deitel, H. M., Deitel, P. J., Java: How To Program, 2nd ed., Prentice-Hall, 1998.
51.Veith, T. L., Kobza, J. E., Koelling, C. P., “Netism: Java-based Simulation for the World Wide Web,” Computers & Operations Research, Vol. 26, pp.607-621, 1999.
52.Corcoran III, A. L., Wainwright, R. L., “A Genetic Algorithm for Packing in Three Dimensions,” Association for Computing Machinery (ACM), pp.1021-1030, 1992.
53.Padberg, M., “Packing Small Boxes into a Big Box,” Mathematical Methods of Operations Research, Vol. 52, pp.1-21, 2000.
54.Stroeven, P., Stroeven, M., “Assessment of Packing Characteristics by Computer Simulation,” Cement and Concrete Research, Vol. 29, pp.1201-1206, 1999.
55.Sonka, M., Hlavac, V., Boyle, R., Image Processing, Analysis, and Machine Vision, 2nd ed., PWS, 1998.
56.Bhatia, S. K., Soliman, A. F., “Frequency Distribution of Void Ratio of Granular Materials Determined by an Image Analyzer,” Soils and Foundations, Vol. 30, No. 1, pp.1-16, 1990.
57.Li, L., Chan, P., Zollinger, D. G., Lytton, R. L., “Quantitative Analysis of Aggregate Shape Based on Fractals,” ACI Materials Journal, Vol. 90, No. 4, pp.357-365, 1993.
58.江東, 王建華, 陳佩佩, 鄭世書, “分形理論在汶南煤礦紅層微孔隙結構特徵定量評價中的應用探討,” 江蘇地質, 第23卷, 第1期, pp.34-37,1999.
59.Ippolito, I., Samson, L., Bourles, S., Hulin, J. —P., “Diffusion of a Single Particle in a 3D Random Packing of Spheres,” The European Physical Journal E, Vol. 3, pp.227-236, 2000.
60.Garboczi, E. J., Bentz, D. P., “Modelling of the Microstructure and Transport Properties of Concrete,” Construction and Building Materials, Vol. 10, No. 5, pp.293-300, 1996.
61.Gutierrez-Wing, C., Santiago, P., Ascencio, J. A., Camacho, A., Jose-Yacaman, M., “Self-assembling of Gold Nanoparticles in One, Two, and Three Dimensions,”
62.Wakai, F., Enomoto, N., Ogawa, H., “Three-Dimensional Micro structural Evolution in Ideal Grain Growth- General Statistics,” Acta Materialia, Vol. 48, pp.1297-1311, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top