跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏毅
論文名稱:以加速氯離子穿透試驗探討不同爐石使用量之混凝土耐久性
論文名稱(外文):Assessment of Slag Blend Concrete Using Acceleration Chloride Migration Test
指導教授:楊仲家黃然黃然引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:爐石耐久性
外文關鍵詞:SlagDurabilityACMTRCPT
相關次數:
  • 被引用被引用:1
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:1
本研究係利用耐久性試驗探討爐石使用量對混凝土耐久性的影響。評估耐久性試驗包括電阻係數試驗、快速氯離子滲透試驗、加速氯離子穿透試驗,並佐以力學性質之抗壓強度試驗。本試體配比變數包括水膠比(0.35、0.45、0.55)及爐石重量取代百分率(0%、10%、20%、30%、40%)。
試驗結果顯示,混凝土中爐石取代水泥少於20%時,其抗壓強度並沒有明顯的增加,但取代量達40%時,低水膠比(W/B=0.35、0.45)混凝土其抗壓強度比控制組提高約12%,高水膠比(W/B=0.55)約提高5%。依RCPT及ACMT試驗評估混凝土對氯離子的抵抗能力,在低水膠比(W/B=0.35)的混凝土,使用爐石對其抵抗氯離子能力助益不大,但在水膠比高(W/B=0.45、0.55)的混凝土,爐石確實具有降低氯離子滲透能力。以ACMT試驗求得單位時間氯離子通過量(K),由正規化分析可知,0.35水膠比取代40%爐石其單位時間氯離子通過量約為控制組的50%;0.45水膠比約為65%;0.55水膠比約為70%。
The study is to investigate the effect of slag on durability of concrete. Testing variables are slag replacement with 0%, 10%, 20%, 30%, and 40%, and water to binder ratios are 0.35, 0.45, and 0.55. Resisitivity test, accelerated chloride migration test, rapid chloride penetration test, and compressive strength test were performed.
Testing results show that the compressive strengths of slag replacement lower than 20% doesn’t increase with increasing the slag replacement. However, the compressive strengths increase slightly in the slag replacement of 40%. Results of rapid chloride penetration test and accelerated chloride migration test present that the addition of slag increases the resistance of chloride diffusion. The normalized flux of slag replacement of 40% with w/b 0.35, 0.45, 0.55 are 50%, 65%, 70% respectively.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ
第一章 緒論 1
 1-1前言 1
 1-2研究目的 1
 1-3研究方法與流程 2
第二章 文獻回顧 4
 2-1爐石的來源 4
 2-2水淬爐石的製造 4
 2-3爐石的化學成份 4
 2-4爐石的水化機理 7
 2-5孔隙結構 9
  2-5-1混凝土孔隙結構 9
  2-5-2爐石混凝土之孔隙結構及滲透性 11
 2-6爐石混凝土的特性 12
 2-7氯離子侵入對鋼筋腐蝕的影響 13
2-8快速氯離子加速試驗 14
 2-9加速氯離子穿透試驗 15
 2-10氯離子擴散機理 17
第三章 試驗計劃 19
 3-1試驗變數 19
 3-2試驗配比及試體編號 19
 3-3試驗材料 21
 3-4試驗設備 23
3-5試驗方法 27
  3-5-1混凝土電阻係數 27
  3-5-2快速氯離子滲透試驗 28
  3-5-3加速氯離子穿透試驗 30
  3-5-4氯離子滴定 31
第四章 結果與討論 34
 4-1抗壓強度 34
 4-2電阻係數試驗 37
 4-3快速氯離子滲透試驗(RCPT) 38
  4-3-1 RCPT電流值與溫度 38
4-3-2 RCPT電荷通過量 40
  4-3-3 RCPT的初始電流與電流通過量 43
 4-4加速氯離子穿透試驗(ACMT) 45
  4-4-1 ACMT電流值 45
4-4-2 ACMT電荷通過量 48
  4-4-3 ACMT單位時間氯離子通過量 50
4-4-4 ACMT電荷通過量與氯離子濃度 56
4-5添加爐石對RC結構物之影響 57
4-6綜合討論 62
第五章 結論與建議 70
5-1結論 70
5-2建議 71
參考文獻 72
1. 陳清泉, 陳振川., “爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究”, 台灣營建研究中心, pp. 5-31, 1987.
2. 王和源., “爐石的製程及添加方式對水泥強度的影響”, 國立台灣科技大學碩士論文(指導教授:黃兆龍), pp. 6-13, 1985.
3. T. C. Power., “The physical structure of Portland cement paste”, in The Chemistry of Cements, 1, Acad. Press, London, pp.391-416.
4. 黃然, 鄭安., “水淬高爐爐碴<石>粉應用於鋼筋混凝土構造物之耐久性“, 飛灰爐石於混凝土工程之合理運用論文集, 台灣營建研究院, pp.81-91, 2000年6月.
5. G. J. Osborne., “Durability of Portland blast-furnace slag cement concrete”, Cement and Concrete Research, Vol. 1, pp. 1-6, 1999.
6. C. Shi., “Strength, pore structure and permeability of alkali-activated slag mortars”, Cement and Concrete Research, Vol. 26, pp. 1789-1799, 1996.
7. L. Bagel., “Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume”, Cement and Concrete Research, Vol. 28, pp. 1011-1020, 1998.
8. J. Bijen., “Benefits of slag and fly ash”, Construction and Building Materials, Vol. 10, No. 5, pp. 309-314, 1996.
9. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM C 1202-97. American Society for Testing and Material, 1997.
10. R. Feldman, L. R. Prudencio, G. Chan., “Rapid chloride penmeability test on blended cement and other concretes: correlations between charge, initial current and conductivity”, Construction and Building Materials, Vol. 1, pp. 149-154, 1999.
11. C. C. Yang , S. W. Cho, R. Huang, “The relationship between charge passed and the chloride-ion concentration in concrete using steady-s- tate chloride migration test”, Cement and Concrete Research, Vol. 31, No. 3, pp. 1-6, 2002.
12. C. Andrade, “Calculation of chloride diffusion coefficients in concrete from ionic migration measurement”, Cement and Concrete Research, Vol. 23, No.3, pp. 724-742, 1993.
13. W. Princd, R. Perami, M. Espagne., “Mechanisms involved in the accelerated test of chloride permeability”, Cement and Concrete Research, Vol. 29, No.2, pp.687-694, 1999.
14. W. Prince, R. Gagne, “The effects of types of solutions used in accelerated chloride migration tests for concrete”, Cement and Concrete Research, Vol. 31, No.4 pp.775-780, 2001.
15. M. Cadtellote, C. Andrade, C. Alonso., “Modelling of the processes during steady-state migration test: Quantification of transference numbers”, Materials and Structures, Vol. 32, No.1 , pp. 180-186, 1999.
16. 吳文斌., “鋼筋混凝土腐蝕耐久性量測技術之研究”, 國立台灣海洋大學碩士論文, (指導教授:楊仲家、黃然 ), pp. 50-57.
17. F. Leng, N. Feng, X. Lu., “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete.” Cement and Concrete Research, Vol. 30, No. 3, pp. 989-992, 2000.
18. 林維民, “鋼筋混凝土中性化之探討”, 結構工程, 第九卷, 第一期, pp. 103-115, 1994.
19. P. F. McGrath, R. D. Hooton, “Influence of voltage on chloride diffusion coefficients from chloride migration tests”, Cement and Concrete Research, Vol. 26, No. 8, pp. 1239-1244, 1996.
20. C. Andrade, M. Castellote, C. Alonso, C. Gonzalez, “Relation between colourimetric chloride penetration depth and charge passed in migration tests of the type of standard ASTM C1202-91”, Cement and Concrete Research, Vol. 29, pp.417-421, 1999.
21. M. Hisada, S. Nagataki, N. Otsuki, “ Evaluation of mineral admixtures on the viewpoint of chloride ion migration through mortar”, Cement and Concrete Research, Vol. 21, pp.443-448, 1999.
22. Kevin A. MacDonald and Derek O. Northwood, “Experimental measurements of chloride ion diffusion rates using a two-compartment diffusion cell: effects of material and test variables”, Cement and Concrete Research, Vol. 25, pp.1407- 1416, 1995.
23. L. tong, O.E. Gjorv, “ Chloride diffusivity based on migration testing”, Cement and Concrete Research, Vol. 31, pp.973-982,2001.
24. G.J. Osborne, “Durability of Portland blast-furnace slag cement concrete”, Cement and Concrete Composites, Vol. 21, pp.11-21, 1999.
25. C. Dehghanian, M. Arjemandi., “ Influence of slag blended cement concrete on chloride diffusion rate”, Cement and Concrete Research, Vol. 27, pp.937-945, 1997.
26. Michael D.A. Thomas, Phil B. Bamforth, “ Modeling chloride diffusion in concrete effect of fly ash and slag”, Cement and Concrete Research, Vol. 29, pp.487-495, 1999.
27. F. Collins, J.G. Sanjayan, “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder”, Cement and Concrete Research, Vol. 29, pp.459-462, 1999.
28. M. Jamal Shannag, Asim Yeginobali, “ Properties of pastes, mortars and concretes containing natural pozzolan”, Cement and Concrete Research, Vol. 25, pp.647-657, 1995.
29. M. N. Haque and O.A. Kayyali, “ Free and water soluble chloride in concrete”, Cement and Concrete Research, Vol. 25, pp.531-542, 1995
30. A.M. Brandt, “Cement-based Composites: Materials, Mechanical Properties and Performance”, first edition 1997, pp.116-128.
31. A.M. Neville, “Properties of Concrete”, first published 1995, pp.34-37.
32. D. Li, X. Fu, X. Wu and M. Tang, “Durability study of steel slag cement”, Cement and Concrete Research, Vol. 27, No. 7, pp.983-987, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top