跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建宏
研究生(外文):Chen, Chien-Hung
論文名稱:玻纖粉應用於混凝土中可行性之研究
論文名稱(外文):Feasibility Study of Application of Glass Fiber Powder on Concrete
指導教授:楊仲家黃然黃然引用關係
指導教授(外文):C. C. YangR. Huang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:玻璃纖維粉混凝土替代細骨材
外文關鍵詞:glass fiber powderconcretereplacement of fine aggregate
相關次數:
  • 被引用被引用:12
  • 點閱點閱:3042
  • 評分評分:
  • 下載下載:207
  • 收藏至我的研究室書目清單書目收藏:0
環保意識抬頭高漲,波特蘭水泥生產所帶來的二氧化碳造成溫室效應與骨材開採所帶來的環境衝擊已不被大眾所接受,因此替代水泥的卜作嵐材料與人造骨材的開發應用與研究便具有相當的競爭力與說服力。
本研究係針對國內工業副產品-電子級玻璃纖維束(E-glass fiber),經機器切割研磨成細粉顆粒狀後,添加於混凝土中進行相關研究,期能促使環境資源永續發展。首先就研磨完成之玻璃纖維粉進行材料特性分析,再以替代細骨材方式應用於水泥砂漿中進行抗壓強度試驗,瞭解玻璃纖維粉對水泥質材料之影響,最終試驗以替代細骨材或部分水泥(爐石與飛灰)方式應用於混凝土複合材料,藉由相關試驗研究玻纖粉混凝土力學性質、耐久性質與微觀機制,並研判該材料應用於混凝土工程之可行性。
研究結果顯示,考慮經濟成本與基本新拌硬固性質,玻璃纖維粉最佳替代細骨材量約達30%~ 40%,抗壓強度值與抵抗硫酸鹽侵蝕能力,隨玻纖粉替代量增加而提昇,但新拌混凝土工作性隨替代量增加而降低,可利用強塑劑加以改善;另外替代部分水泥(爐石與飛灰)方面,力學性質隨替代量增加而降低,然而替代量的增加卻可提昇耐久性能,綜合研究結果評估工業副產品-玻璃纖維粉有再利用的價值。
The production process of Portland cement makes CO2 emission, and natural aggregate is more and more few in Taiwan. The issue of environmental protection is important for engineer. This study is to utilize the E-glass fiber powder on concrete. The characteristics of E-glass fiber powder and the compressive strength of mortar were tested. Workability test, compressive strength test, elastic modulus test, splitting strength test, sulfate attack test and SEM observation were performed to evaluate the effect.
Testing results show that E-glass fiber powder replacement for fine aggregate can increase compressive strength and sulfate resistance. The workability decreases as E-glass fiber powder increases, and addition of superplasticizer may be advantageous. On the other hand, E-glass fiber powder replacement for slag and fly ash shows that compressive strength reduces at all ages, but sulfate resistance is better than control mix. The utilization of E-glass fiber powder as aggregate on concrete is possible.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅶ
第一章 緒論 1
1.1 前言 1
1.2 研究目的 1
1.3 研究流程 2
第二章 文獻回顧 4
2.1 廢棄物再生利用 4
2.2 混凝土摻料 6
2.2.1 爐石與飛灰 7
2.2.2 纖維 8
2.2.3 玻璃 10
2.3 骨材替代品 12
2.3.1 力學性質 13
2.3.2 耐久性質 15
2.4 ACI混凝土配比設計 17
第三章 試驗方法與步驟 23
3.1 試驗材料 24
3.2 配比設計 32
3.2.1 水泥砂漿 32
3.2.2 混凝土 34
3.3 試驗儀器設備 38
3.4 試驗方法 40
第四章 試驗結果與討論 44
4.1 水泥砂漿力學性質 45
4.2 混凝土工作性質 52
4.3 混凝土力學性質 53
4.4 混凝土耐久性質 70
4.5 微觀觀察 74
第五章 結論與建議 80
5.1 結論 80
5.2 建議 80
參考文獻 81
參考文獻
1. M. S. Wei, K. H. Huang, “Recycling and Reuse of Industrial Wastes in Taiwan,” Waste Management, Vol. 21, No. 1, pp.93-97, 2001.
2. 沈得縣, 李素馨, 蘇南, 劉霈, 綠營建工程方案-道路工程建立綠營建工程設計規範及設計準則, 行政院公共工程委員會, 2001.
3. A. Palos, N. A. D’Souza, C. T. Snively, R. F. Reidy Ⅲ, “Modification of Cement Mortar with Recycled ABS,” Cement and Concrete Research, Vol. 31, No. 7, pp. 1003-1007, 2001.
4. W. H. Huang, “Improving the Properties of Cement-Fly Ash Grout Using Fiber and Superplasticizer,” Cement and Concrete Research, Vol. 31, No. 7, pp. 1033-1041, 2001.
5. A. H. J. Al-Tayyib, M. M. Al-Zahrani, “Corrosion of Steel Reinforcement in Polypropylene Fiber Reinforced Concrete Structures,” ACI Material Journal, Vol. 87, No. 2, pp. 108-113, 1990.
6. P. Soroushian, F. Mirza, A. Alhozaimy, “Permeability Characteristics of Polypropylene Fiber Reinforced Concrete,” ACI Material Journal, Vol. 92, No. 3, pp. 291-295, 1995.
7. T. R. Naik, S. S. Singh, C. O. Huber, B. S. Brodersen, “Use of Post-Consumer Waste Plastics in Cement-Based Composites,” Cement and Concrete Research, Vol. 26, No. 10, pp. 1489-1492, 1996.
8. J. Pera, L. Coutaz, J. Ambroise, M. Chababbet, ”Use of Incinerator Bottom Ash in Concrete,” Cement and Concrete Research, Vol. 27, No. 1, pp. 1-5, 1997.
9. 中國國家標準CNS 3036, 卜特蘭水泥混凝土用飛灰及天然或煆燒卜作嵐攙和物, 2001.
10. 中國國家標準CNS 12549, 混凝土及水泥墁料用水淬高爐爐碴粉, 1993.
11. ASTM C 989-99, “Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars,” Annual Book of ASTM Standards, Vol. 04. 02, 1999.
12. 業茂財, 飛灰混凝土施工與品管, 飛灰及爐石混凝土應用研討會, pp.91-106, 1994.
13. H. Okamura, M. Ouchi, “Self-Compactability of Fresh Concrete-Liquid and Solid,” Proceeding of an International Symposium on High Performance Concrete, pp. 161-168, 2000.
14. 中國國家標準CNS 11271, 卜特蘭飛灰水泥用飛灰, 2001.
15. ASTM C 618-99, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete,” Annual Book of ASTM Standards, Vol. 04. 02, 1999.
16. 公共工程飛灰混凝土使用手冊, 行政院公共工程委員會, 1999.
17. S. B. Park, E. S. Yoon, B. I. Lee, “Effects of Processing and Materials Variations on Mechanical Properties of Lightweight Cement Composites,” Cement and Concrete Research, Vol. 29, No. 2, pp. 193-200, 1999.
18. B. Mu, Z. Li, J. Peng, “Short Fiber-Reinforced Cementitious Extruded Plates with High Percentage of Slag and Different Fibers,” Cement and Concrete Research, Vol. 30, No. 8, pp. 1277-1282, 2000.
19. 趙悠舜, 玻璃纖維水泥複合材料之基本力學性質之研究, 交通大學碩士論文, 1995.
20. W. Liang, J. Cheng, Y. Hu, H. Luo, “Improved Properties of GRC Composites Using Commercial E-glass Fibers with New Coatings,” Materials Research Bulletin, Vol. 37, No. 4, pp. 641-646, 2002.
21. Y. Zhang, W. Sun, L. Shang, G. Pan, “The Effect of High Content of Fly Ash on the Properties of Glass Fiber Reinforced Cementitious Composites,” Cement and Concrete Research, Vol. 27, No. 12, pp. 1885-1891, 1997.
22. J. Péra, J. Ambroise, “Fiber-Reinforced Magnesia-Phosphate Cement Composites for Rapid Repair,” Cement and Concrete Composites, Vol. 20, No. 1, pp. 31-39, 1998.
23. V. C. Li, H. J. Kong, S. G. Bike, “Fiber Reinforced High Performance Concrete Material,” Proceeding of an International Symposium on High Performance Concrete, pp. 71-86, 2000.
24. Ostertag, C.P., Yi, C.K., Vondran, G., “Tensile Strength Enhancement in Interground Fiber Cement Composites,” Cement and Concrete Composites, Vol. 23, pp. 419-425, 2001.
25. M. Zhu, R. C. Wetherhold, D. D. L. Chung, ”Evaluation of The Interfacial Shear in a Discontinuous Carbon Fiber/Mortar Matrix Composite,” Cement and Concrete Research, Vol. 27, No. 3, pp. 437-451, 1997.
26. 林利垣, 碳纖維混凝土之工程性質研究, 交通大學碩士論文, 1991.
27. 李志信, 纖維混凝土材料磨耗性質與機理之探討, 台灣大學碩士論文, 1998.
28. R. W. Cahn, E. A. Davis, I. M. Ward, An Introduction to Composite Materials, pp.16-19, 1990.
29. A. K. Kaw, Mechanics of Composite Materials, pp. 1-20, 1997.
30. A. M. Brandt, Cement-Based Composites: Materials, Mechanical Properties and Performance, pp. 5-84, 1995.
31. G. J. Z. Xu, D. F. Watt, P. P. Hudec, “Effectiveness of Mineral Admixtures in Reducing ASR Expansion,” Cement and Concrete Research, Vol. 25, No. 6, pp. 1225-1236, 1995.
32. Y. Shao, T. Lefort, S. Moras, D. Rodriguez, ”Studies on Concrete Containing Ground Waste Glass,” Cement and Concrete Research, Vol. 30, No.1, pp.91-100, 2000.
33. 黃憲弘, 廢玻璃應用於混凝土骨材之研究, 雲林科技大學碩士論文, 2000.
34. T. Nishikawa, M. Takatsu, M. Daimon “Fracture Behavior of Hardened Cement Paste Incorporating Mineral Additions,” Cement and Concrete Research, Vol. 25, No. 6, pp. 1218-1224, 1995.
35. I. B. Topcu, ”Physical and Mechanical Properties of Concretes Produced with Waste Concrete,” Cement and Concrete Research, Vol. 27, No. 12, pp. 1817-1823, 1997.
36. S. Mindness, J. F. Young, Concrete, 1st ed., Prentice-Hall, 1981.
37. A. M. Neville, Properties of Concrete, 4th ed., Addison Wesley Longman, 1995.
38. H. Uchikawa, S. Hanehara, H. Hirao, “Influence of Microstructure on the Physical Properties of Concrete Prepared by Substituting Mineral Powder for Part of Fine Aggregate,” Cement and Concrete Research, Vol. 26, No.1, pp.101-111, 1996.
39. ACI 211.1-91, “Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete,” ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete, pp. 38, 1994.
40. ASTM C 109/C 109M-99, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2- in. or [50- mm] Cube Specimens),” Annual Book of ASTM Standards, Vol. 04. 01, 1999.
41. ASTM C 31/C 31M-98, “Standard Practice for Making and Curing Concrete Test Specimens in the Field,” Annual Book of ASTM Standards, Vol. 04. 02, 1998.
42. ASTM C 143/C143 M-98, “Standard Test Method for Slump of Hydraulic-Cement Concrete,” Annual Book of ASTM Standards, Vol. 04. 02, 1998.
43. ASTM C 39/C 39M-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” Annual Book of ASTM Standards, Vol. 04. 02, 1999.
44. ASTM C469-94, “Standard Test Method for Static Modulus of Elasticity and Possion''s Ratio of Concrete in Compression,” Annual Book of ASTM Standards, Vol. 04. 02, 1994.
45. ASTM C496-96, “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens,” Annual Book of ASTM Standards, Vol. 04. 02, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top