跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓世偉
研究生(外文):Cho Shih-Wei
論文名稱:加速氯離子移動試驗探討氯離子於水泥基複合材料中之傳輸行為
論文名稱(外文):Using Accelerated Chloride Migration Test to Study the Transport Phenomenon of Chloride Ion in Cement-based Composites Materials
指導教授:楊仲家黃然黃然引用關係
指導教授(外文):Yang Chung-ChiaHuang Ran
學位類別:博士
校院名稱:國立海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:161
中文關鍵詞:氯離子快速滲透試驗加速氯離子移動試驗礦物摻料骨材體積比
外文關鍵詞:RCPTACMTmineral admixturesvolume fraction of aggregate
相關次數:
  • 被引用被引用:33
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用加速氯離子移動試驗(accelerated chloride migration test, ACMT)來探討氯離子於水泥基複合材料中之傳輸行為;使用的水泥基複合材料分別為水泥砂漿與混凝土兩種;其中混凝土配比為考量礦物摻料的使用;水泥砂漿配比則考量不同骨材體積比。
本試驗利用外加電場機制來加速氯離子移動。試驗期間量測陰陽極電流的變化以及陽極槽氯離子濃度。由陽極槽氯離子累積濃度與時間關係圖觀之,可將氯離子傳輸歷程分為起始期、穩態期、與衰退期;而氯離子擴散係數則可以由穩態期量測之氯離子通過量,利用Nernst-Planck方程式計算求得。
試驗結果顯示混凝土中添加礦物摻料可降低氯離子移動速率,且穩態期的電流平均值與氯離子擴散係數均呈一線性關係,而陽極槽氯離子累積濃度亦與電荷量呈現線性相關性。
在水泥砂漿中,骨材對於氯離子的移動有阻隔效應、迂迴效應、與界面過渡區的影響,其中以阻隔效應為主。陽極槽氯離子累積濃度亦與電荷量有線性相關性。且其迴歸曲線斜率與混凝土所得結果相近。此外試驗期間,亦同時量測陰、陽極兩槽氯離子濃度變化,發現陰極槽氯離子濃度遞減速率與陽極槽氯離子移動速率有關,且陰極槽氯離子濃度亦與電荷量有線性相關性。表示ACMT所量測到的電荷量可以快速用來預估陽極槽氯離子移動速率。
In this study the accelerated chloride migration test (ACMT) was used to investigate the transport phenomenon of chloride ion in cement-based composites materials. This method accelerating the chloride ion was by applying an electrical potential. Two groups of cement-based composite materials, four concretes with various mineral admixtures and six mortars with various ratios of aggregate volume fraction were cast and tested. In this study, the electric current, and the chloride ion concentration in the anode cell were continuous measured during the test. During the test, there are three stages exist, initial period, steady-state period, and attenuate period with respect to the change of the chloride-ion concentration. The chloride-ion diffusion coefficient of the cement-based composites materials was calculated using the constant flux of steady-state period on the basis of the Nernst-Planck equation.
The chloride-ion diffusion coefficient of concrete indicates that the mineral admixtures can reduce the chloride permeability of concrete and a good correlation between the average values of current in steady-state period and chloride ions diffusion coefficient was observed. And the charge passed was correlated linearly with the chloride-ion concentration in the anode cell regardless of concrete mixes.
Test results of mortar can be used to study the effects of aggregate in the cement-based composites on dilution, tortuosity, and interfacial transition zone. A good correlation linearly trend exists between the chloride-ion concentration in the anode cell and the charge passed. And the slope of the regression line for mortars was similar to that of concretes. It appeared that the charge passed was correlated linearly with the chloride-ion concentration regardless of cement-based composites materials. The chloride-ion concentration in the cathode cell was also continuous determination during the test. A good correlation between the charge passed and the chloride-ion concentration in the cathode cell was also observed. Moreover, a good correlation exists between the chloride-ion migration rate in the anode cell and chloride-ion decreasing rate in the cathode cell. It appears that the charge passed of ACMT can provide a rapid method to predict the chloride-ion migration rate in the anodic cell.
摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
1-3 架構與內容 5
第二章 文獻回顧 7
2-1 水泥基複合材料離子傳輸行為 7
2-2 影響氯離子傳輸行為之材料因子 11
2-2-1 水泥質漿體基材 11
2-2-2 骨材 21
2-3 氯離子傳輸相關試驗 26
2-3-1 濃度梯度法 26
2-3-2 外加電場法 29
第三章 試驗計畫 35
3-1 配比設計 37
3-1-1 混凝土 37
3-1-2 水泥砂漿 38
3-2 組成材料性質 39
3-2-1 拌合水 40
3-2-2 膠結材料 40
3-2-3 強塑劑 42
3-2-4 粗骨材 42
3-2-5 細骨材 44
3-3 試驗方法與設備 45
3-3-1 氯離子快速滲透試驗(RCPT) 46
3-3-2 加速氯離子移動試驗(ACMT) 50
3-3-3 氯離子濃度量測(電位滴定法) 52
3-3-4 氯離子濃度量測(離子層析法) 54
3-3-5 硬固水泥基材料氯離子含量量測 56
3-3-6 力學性質試驗 57
第四章 RCPT與ACMT之電化學系統 58
4-1 陰極槽 58
4-2 陽極槽 59
4-3 水泥基複合材料試體 62
第五章 結果與討論 63
5-1 基材對水泥基複合材料氯離子傳輸行為之影響 64
5-1-1 氯離子傳輸歷程 64
5-1-2 氯離子移動速率與擴散係數 68
5-1-3 遲滯時間 72
5-1-4 壓力強度與氯離子擴散係數 75
5-1-5 電流與電量 77
5-1-6 氯離子濃度與電量 94
5-2 骨材量對水泥基複合材料氯離子傳輸行為之影響 99
5-2-1 氯離子移動速率 101
5-2-2 遲滯時間 104
5-2-3 骨材量之影響 107
5-2-4 電流與電量 120
5-3 電荷量與陰陽極槽氯離子濃度變化之關係 135
5-3-1 水泥砂漿配比陰極槽氯離子濃度變化 137
5-3-2 電荷量與陰極槽氯離子濃度變化之關係 141
第六章 結論與建議 148
6-1 結論 148
6-2 建議 149
參考文獻 151
參考文獻
1. K. Tuutti, “Corrosion of Steel in Concrete”, CBI Forsknumg Research, Swedish Cement and Concrete Research, Stockholm, Sweden, pp. 486 (1982).
2. W. J. McCarter, M. Emerson, and H. Ezirim, “Properties of concrete in the cover zone: developments in monitoring techniques”, Magazine of Concrete Research, Vol. 47, pp. 243-251 (1995).
3. W. J. McCarter, M. Emerson, and H. Ezirim, “Properties of concrete in the cover zone: water penetration, sorptivity and ionic ingress”, Magazine of Concrete Research Vol. 48, pp. 149-156 (1996).
4. C. L. Page, N. R. Short, and A. E. Tarras, “Diffusion of chloride ions in hardened cement paste”, Cement and Concrete Research, Vol. 11, pp. 395-406 (1981).
5. K. Thangavel, and N. S. Rengaswamy, “Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete”, Cement and Concrete Composite, Vol. 20, pp. 283-292 (1998).
6. V. G. Papadakis, N. M. Fardis, and G. C. Vayenas, “Physicochemical processes and mathematical modeling of concrete chlorination”, Chemical Engineering Science, Vol. 51, pp. 505-513 (1996).
7. J. Arsenault, J. P. Bigas, J. P. Ollivier, “Determination of chloride diffusion coefficient using two different steady-state methods: influence of concentration gradient”, in: C. Andrade, and J. Kropp (eds), “Proceedings of the International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete”, RILEM, pp. 150-160 (1995).
8. L. Tang, “Concentration dependence of diffusion and migration of chloride ions; Part 1. Theoretical considerations”, Cement and Concrete Research, Vol. 29, pp. 1463-1468 (1999).
9. D. Whiting, “Rapid measurement of the chloride permeability of concrete”, Public Roads, Vol. 45, pp. 101-112 (1981).
10. AASHTO T277-96, “Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration”, Standard specification for transportation materials and methods of sampling and testing (1996).
11. ASTM 1202-00, “Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration”, American Society for Testing and Materials (2000).
12. R. Feldman, L. R. Prudencio, and G. Chan, “Rapid chloride permeability test on blend cement and other concretes: correlations between charge, initial current and conductivity”, Construction and Buliding Materials, Vol. 13, pp. 149-154 (1999).
13. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability”, Cement and Concrete Composites, Vol. 21, pp. 59-72 (1999).
14. A. A. Ramezanianpour, “Effect of curing on the compressive strength resistance to chloride-ion penetration and porosity of concrete incorporating slag, fly ash or silica fume”, Cement and Concrete Composites, Vol. 17, pp. 125-33 (1995).
15. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixture”, ACI Materials Journal, Vol. 97, pp. 221-232 (2000).
16. C. Andrade, “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements”, Cement and Concrete Research, Vol. 23, pp. 724-742 (1993).
17. AASHTO T259-80, “Resistance of Concrete to Chloride Ion Pentration, Standard specification for transportation materials and methods of sampling and testing” (1980).
18. M. H. Zhang, and O. E. Gjψrv, “Permeability of high—strength lightweight concrete”, ACI Materials Journal, Vol. 88, pp. 463-469 (1991).
19. R. D. Hooton, “What is need in a permeability test for evalution of concrete quality, pore structure and permeability of cementitious materials”, Materials Research Society Symposium Proceedings, Vol. 137, pp. 1459-1475 (1987).
20. P. F. McGrath, and R. D. Hooton, “Re-evaluation of the AASHTO T259 90-day salt ponding test”, Cement and Concrete Research, Vol. 29, pp. 1239-1248 (1999).
21. C. C. Yang, S. W. Cho, and R. Huang, “The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test”, Cement and Concrete Research, Vol. 32, pp. 45-50 (2002).
22. B. F. Johannesson, “Diffusion of a mixture of cations and anions dissolved in water”, Cement and Concrete Research, Vol. 29, pp. 1261-1270 (1999).
23. N. R. Buenfeld, M. T. Shurafa-Daoudi, and I. M. McLOUGHLIN, “Chloride transport due to wick action in concrete”, in: C. Andrade, and J. Kropp (eds), “Proceedings of the International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete”, RILEM, pp. 315-324 (1995).
24. Y. T. Puyate, and C.J. Lawrence, “Steady state solutions for chloride distribution due to wick action in concrete”, Chemical Engineering Science, Vol. 55, pp. 3329-3334 (2000).
25. 鄭有序、張國標,”動量、熱量、質量傳遞學”,復文書局,pp. 388-350 (1989)。
26. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 17-29 (1993).
27. J. F. Young, and S. Mindness, "Concrete", Prentice Hall, pp. 86-101 (1981).
28. A. M. Brandt, “Cement-based Composites: Materials, Mechanical Properties and Performance”, E & FN SPON, pp. 116-118 (1995).
29. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 118-119 (1993).
30. T. C. Power, “Permeability of Portland cement paste”, Journal of the American Concrete Institute, Vol. 26, pp. 285-298 (1954).
31. J. F. Young, and S. Mindness, "Concrete", Prentice Hall, pp 546-547 (1981).
32. ASTM C618-99, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete”, American Society for Testing and Materials (1999).
33. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 283 (1993).
34. M. Collepardi, S. Monosi, and P. Piccioli, “The influence of pozzolanic materials on the mechanical stability of cement”, Cement and Concrete Research, Vol. 25, pp. 961-968 (1995).
35. F. Yan, D. Jian, Ding, and J. J. Beaudoin, “Effect of different calcium aluminate hydrates on ettringite formation and expansion of high alumina cement-based expansive cement pastes”, Cement and Concrete Research, Vol. 26, pp. 417-426 (1996).
36. A. K. Suryavanshi, J. D. Scantlebury, and S. B. Lyon, “Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate”, Cement and Concrete Research, Vol. 26, pp. 1673-1680 (1996).
37. R. K. Dhir, M. A. K. El-Mohr, and T. D. Dyer, “Chloride binding in GGBS concrete”, Cement and Concrete Research, Vol. 26, pp. 1767-1773 (1996).
38. Y. M. Zhang, W. Y. Sun, and D. Han, “Hydration of high-volume fly ash cement pastes”, Cement and Concrete Composites, Vol. 22, pp. 445-452 (2000).
39. P. J. Nixon, “The effect of pfa with a high total alkali content on pore solution composition and alkali-silica reaction”, Magazine of Concrete Research, Vol. 38, pp. 30-35 (1986).
40. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 281-282 (1993).
41. M. D.A. Thomas, and P. B. Bamforth, “Modelling chloride diffusion in concrete effect of fly ash and slag”, Cement and Concrete Research, Vol. 29, pp. 487-495 (1999).
42. P. K. Mehta, P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 278-279 (1993).
43. 行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」,行政院公共工程委員會,1999年。
44. G. J. Osborne, “Durability of Portland blast-furnace slag cement concrete” Cement and Concrete Composites, Vol. 21, pp. 11-21 (1999).
45. A. A. Ramezanianpour “Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume”, Cement and Concrete Composites, 17, pp. 125-133 (1995).
46. R. D. Hooton and J. J. Emery, Sulfate resistance of a Canadian slag cement, ACI Materials Journal, Vol. 87, pp. 547-555 (1990).
47. J. F. Young, “Concrete”, Prentice Hall, pp. 194-197 (1981).
48. G. J. Osborne, “Durability of Portland blast-furnace slag cement concrete” Cement and Concrete Composites, Vol. 21, pp. 11-21 (1999).
49. S. P. Shah, “High performance concrete: past, present and future”, in: C. K. Leung, Z. Li, and J. T. Ding (eds), “High Performance Concrete- Workability, Strength and Durability” (The Hong Kong University of Science and Technology, Hong Kong, 2000) 3-29.
50. P. Simeonov, and S. Ahmad, "Effect of transition zone on the elastic behavior of cement-based composities", Cement and Concrete Research, Vol. 25, pp. 165-176 (1995).
51. A. Bentur, S. Diamond, and S. Mindess, “The microstructure of the steel fiber-cement interface”, Journal of Materials Science, Vol. 20, pp. 3610-3620 (1985).
52. D. Breton, A. Carles-Gibergues, G. Ballivy, and J. Grandet, "Contribution to the formation mechanism of the transition zone between rock-cement paste", Cement and Concrete Research, Vol. 23, pp. 335-346 (1993).
53. D. N. Winslow, M. D. Cohen, D. P. Bentz, and E. J. Garboczi, “Percolation and pore structure in mortars and concrete”, Cement and Concrete Research, Vol. 24, pp. 25-37 (1994).
54. R. J. Detwiler, O. K. Kjellsen, and O. E. Gjψrv, “ Resistance to chloriede intrusion of concrete cured at different temperatures”, ACI Materials Journal, Vol. 88, pp. 19-24 (1991).
55. R. J. Detweiler and C. A. Fapohunda, “ A comparison of two methods for measuring the chloride ion permeability of concrete”, Cement, Concrete, and Aggregate, Vol. 15, pp. 70-73 (1993).
56. 翁在龍、卓世偉、楊仲家、黃然, “ 表層滲透劑對混凝土特性影響之研究“, 防蝕工程, (accepted) (2002).
57. L. Tang, and L. Nilsson, “Rapid determination of the chloride diffusivity in concrete by applying an electrical field”, ACI Materials Journal, Vol. 89, pp. 49-53 (1992).
58. C. Andrade, M. A. Sanjuan, A. Recuero, and O. Rio, “Calculation of chloride diffusivity in concrete from migration experiments, in non steady-state conditions”, Cement and Concrete Research, Vol. 24, pp. 1214-1228 (1994).
59. M. Castellote, C. Andrade, and C. Alonso, “Electrochemical chloride extraction: influence of testing conditions and mathematical modelling”, Advanced in Cement Research, Vol. 11, pp. 63-80 (1999).
60. ASTM 192-98, “Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory”, American Society for Testing and Materials (1998).
61. ASTM 94-00, “Standard Specification for Ready-Mixed Concrete”, American Society for Testing and Materials (1994).
62. AASHTO T26-79, “Quality of Water to be Used in Concrete”, Standard specification for transportation materials and methods of sampling and testing (1979).
63. ASTM 494-99, “Standard Specification for Chemical Admixtures for Concrete”, American Society for Testing and Materials (1999).
64. ASTM 33-99, “Standard Specification for Concrete Aggregates”, American Society for Testing and Materials (1999).
65. AASHTO T260-94, “Sampling and Testing for Total Chloride Ion in Concrete Raw Materials”, Standard specification for transportation materials and methods of sampling and testing (1994).
66. ASTM 39-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, American Society for Testing and Materials (1999).
67. 萬其超,”電化學”,台灣商務印書館, 台北, pp. 1-5(1996).
68. T. L. Brown, H. E. LeMay, and B. E. Bursten, “Chemistry: The Central Science”, Prentice-Hall, pp. 712 (1991).
69. Moeller, T., “Inorganic Chemistry:A Modern Introduction”, John Wiley & Sons Inc, Appendix IV, (1982).
70. W. Prince, R. Pérami, and M. Espagne, “Mechanisms involved in the accelerated test of chloride permeability”, Cement and Concrete Research, Vol. 29, pp. 687-694 (1999).
71. M. Castellote, C. Andrade, and C. Alonso, “Modelling of the processes during steady-state migration tests: Quantification of transference numbers”, Materials and Structures, Vol. 32, pp. 180-196 (1999).
72. O. Truc, J. P. Oilvier, and M. Carcasses, “A new way for determining the chloride diffusion coefficient in concrete from steady state migration test”, Cement and Concrete Research, Vol. 30, pp. 217-226 (2000).
73. D. A. G. Bruggeman, ‘Calculation different physical constant from heterogeneous substance I. Dielectric and conductivity mix-term of isotropic substance’, Ann. Phys. Vol. 24, pp. 636-679 (1935).
74. E. J Garboczi, D. P. Bentz, and L. M. Schwartz, “Modelling the influence of the interfacial zone on the DC electrical conductivity of mortar”, Advance Cement Based Materials, Vol. 2, pp. 169-181 (1995).
75. K. A. Snyder, D. P. Bentz, E. J. Garboczi, and D. N. Winslow, “Interfacial zone percolation in cement-aggregate composites”, Interfaces in Cementitious Composites, Proceedings of the International Conference, Toulouse, Oct. 1992 (E & FN SPON, London), pp. 259-268 (1993).
76. S. W. Cho, C. C. Yang, R. Huang, "Influence of aggregate content on the transport properties of mortar using accelerated chloride migration test," Concrete Science and Engineering, Vol. 4, pp. 84-90 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top