參考文獻
1. K. Tuutti, “Corrosion of Steel in Concrete”, CBI Forsknumg Research, Swedish Cement and Concrete Research, Stockholm, Sweden, pp. 486 (1982).
2. W. J. McCarter, M. Emerson, and H. Ezirim, “Properties of concrete in the cover zone: developments in monitoring techniques”, Magazine of Concrete Research, Vol. 47, pp. 243-251 (1995).
3. W. J. McCarter, M. Emerson, and H. Ezirim, “Properties of concrete in the cover zone: water penetration, sorptivity and ionic ingress”, Magazine of Concrete Research Vol. 48, pp. 149-156 (1996).
4. C. L. Page, N. R. Short, and A. E. Tarras, “Diffusion of chloride ions in hardened cement paste”, Cement and Concrete Research, Vol. 11, pp. 395-406 (1981).
5. K. Thangavel, and N. S. Rengaswamy, “Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete”, Cement and Concrete Composite, Vol. 20, pp. 283-292 (1998).
6. V. G. Papadakis, N. M. Fardis, and G. C. Vayenas, “Physicochemical processes and mathematical modeling of concrete chlorination”, Chemical Engineering Science, Vol. 51, pp. 505-513 (1996).
7. J. Arsenault, J. P. Bigas, J. P. Ollivier, “Determination of chloride diffusion coefficient using two different steady-state methods: influence of concentration gradient”, in: C. Andrade, and J. Kropp (eds), “Proceedings of the International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete”, RILEM, pp. 150-160 (1995).
8. L. Tang, “Concentration dependence of diffusion and migration of chloride ions; Part 1. Theoretical considerations”, Cement and Concrete Research, Vol. 29, pp. 1463-1468 (1999).
9. D. Whiting, “Rapid measurement of the chloride permeability of concrete”, Public Roads, Vol. 45, pp. 101-112 (1981).
10. AASHTO T277-96, “Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration”, Standard specification for transportation materials and methods of sampling and testing (1996).
11. ASTM 1202-00, “Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration”, American Society for Testing and Materials (2000).
12. R. Feldman, L. R. Prudencio, and G. Chan, “Rapid chloride permeability test on blend cement and other concretes: correlations between charge, initial current and conductivity”, Construction and Buliding Materials, Vol. 13, pp. 149-154 (1999).
13. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability”, Cement and Concrete Composites, Vol. 21, pp. 59-72 (1999).
14. A. A. Ramezanianpour, “Effect of curing on the compressive strength resistance to chloride-ion penetration and porosity of concrete incorporating slag, fly ash or silica fume”, Cement and Concrete Composites, Vol. 17, pp. 125-33 (1995).
15. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixture”, ACI Materials Journal, Vol. 97, pp. 221-232 (2000).
16. C. Andrade, “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements”, Cement and Concrete Research, Vol. 23, pp. 724-742 (1993).
17. AASHTO T259-80, “Resistance of Concrete to Chloride Ion Pentration, Standard specification for transportation materials and methods of sampling and testing” (1980).
18. M. H. Zhang, and O. E. Gjψrv, “Permeability of high—strength lightweight concrete”, ACI Materials Journal, Vol. 88, pp. 463-469 (1991).
19. R. D. Hooton, “What is need in a permeability test for evalution of concrete quality, pore structure and permeability of cementitious materials”, Materials Research Society Symposium Proceedings, Vol. 137, pp. 1459-1475 (1987).
20. P. F. McGrath, and R. D. Hooton, “Re-evaluation of the AASHTO T259 90-day salt ponding test”, Cement and Concrete Research, Vol. 29, pp. 1239-1248 (1999).
21. C. C. Yang, S. W. Cho, and R. Huang, “The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test”, Cement and Concrete Research, Vol. 32, pp. 45-50 (2002).
22. B. F. Johannesson, “Diffusion of a mixture of cations and anions dissolved in water”, Cement and Concrete Research, Vol. 29, pp. 1261-1270 (1999).
23. N. R. Buenfeld, M. T. Shurafa-Daoudi, and I. M. McLOUGHLIN, “Chloride transport due to wick action in concrete”, in: C. Andrade, and J. Kropp (eds), “Proceedings of the International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete”, RILEM, pp. 315-324 (1995).
24. Y. T. Puyate, and C.J. Lawrence, “Steady state solutions for chloride distribution due to wick action in concrete”, Chemical Engineering Science, Vol. 55, pp. 3329-3334 (2000).
25. 鄭有序、張國標,”動量、熱量、質量傳遞學”,復文書局,pp. 388-350 (1989)。
26. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 17-29 (1993).
27. J. F. Young, and S. Mindness, "Concrete", Prentice Hall, pp. 86-101 (1981).
28. A. M. Brandt, “Cement-based Composites: Materials, Mechanical Properties and Performance”, E & FN SPON, pp. 116-118 (1995).
29. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 118-119 (1993).
30. T. C. Power, “Permeability of Portland cement paste”, Journal of the American Concrete Institute, Vol. 26, pp. 285-298 (1954).
31. J. F. Young, and S. Mindness, "Concrete", Prentice Hall, pp 546-547 (1981).
32. ASTM C618-99, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete”, American Society for Testing and Materials (1999).
33. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 283 (1993).
34. M. Collepardi, S. Monosi, and P. Piccioli, “The influence of pozzolanic materials on the mechanical stability of cement”, Cement and Concrete Research, Vol. 25, pp. 961-968 (1995).
35. F. Yan, D. Jian, Ding, and J. J. Beaudoin, “Effect of different calcium aluminate hydrates on ettringite formation and expansion of high alumina cement-based expansive cement pastes”, Cement and Concrete Research, Vol. 26, pp. 417-426 (1996).
36. A. K. Suryavanshi, J. D. Scantlebury, and S. B. Lyon, “Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate”, Cement and Concrete Research, Vol. 26, pp. 1673-1680 (1996).
37. R. K. Dhir, M. A. K. El-Mohr, and T. D. Dyer, “Chloride binding in GGBS concrete”, Cement and Concrete Research, Vol. 26, pp. 1767-1773 (1996).
38. Y. M. Zhang, W. Y. Sun, and D. Han, “Hydration of high-volume fly ash cement pastes”, Cement and Concrete Composites, Vol. 22, pp. 445-452 (2000).
39. P. J. Nixon, “The effect of pfa with a high total alkali content on pore solution composition and alkali-silica reaction”, Magazine of Concrete Research, Vol. 38, pp. 30-35 (1986).
40. P. K. Mehta, and P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 281-282 (1993).
41. M. D.A. Thomas, and P. B. Bamforth, “Modelling chloride diffusion in concrete effect of fly ash and slag”, Cement and Concrete Research, Vol. 29, pp. 487-495 (1999).
42. P. K. Mehta, P. J. M. Monteiro, “Concrete-Structure, Properties, and Materials”, Prentice Hall, pp. 278-279 (1993).
43. 行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」,行政院公共工程委員會,1999年。
44. G. J. Osborne, “Durability of Portland blast-furnace slag cement concrete” Cement and Concrete Composites, Vol. 21, pp. 11-21 (1999).
45. A. A. Ramezanianpour “Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume”, Cement and Concrete Composites, 17, pp. 125-133 (1995).
46. R. D. Hooton and J. J. Emery, Sulfate resistance of a Canadian slag cement, ACI Materials Journal, Vol. 87, pp. 547-555 (1990).
47. J. F. Young, “Concrete”, Prentice Hall, pp. 194-197 (1981).
48. G. J. Osborne, “Durability of Portland blast-furnace slag cement concrete” Cement and Concrete Composites, Vol. 21, pp. 11-21 (1999).
49. S. P. Shah, “High performance concrete: past, present and future”, in: C. K. Leung, Z. Li, and J. T. Ding (eds), “High Performance Concrete- Workability, Strength and Durability” (The Hong Kong University of Science and Technology, Hong Kong, 2000) 3-29.
50. P. Simeonov, and S. Ahmad, "Effect of transition zone on the elastic behavior of cement-based composities", Cement and Concrete Research, Vol. 25, pp. 165-176 (1995).
51. A. Bentur, S. Diamond, and S. Mindess, “The microstructure of the steel fiber-cement interface”, Journal of Materials Science, Vol. 20, pp. 3610-3620 (1985).
52. D. Breton, A. Carles-Gibergues, G. Ballivy, and J. Grandet, "Contribution to the formation mechanism of the transition zone between rock-cement paste", Cement and Concrete Research, Vol. 23, pp. 335-346 (1993).
53. D. N. Winslow, M. D. Cohen, D. P. Bentz, and E. J. Garboczi, “Percolation and pore structure in mortars and concrete”, Cement and Concrete Research, Vol. 24, pp. 25-37 (1994).
54. R. J. Detwiler, O. K. Kjellsen, and O. E. Gjψrv, “ Resistance to chloriede intrusion of concrete cured at different temperatures”, ACI Materials Journal, Vol. 88, pp. 19-24 (1991).
55. R. J. Detweiler and C. A. Fapohunda, “ A comparison of two methods for measuring the chloride ion permeability of concrete”, Cement, Concrete, and Aggregate, Vol. 15, pp. 70-73 (1993).
56. 翁在龍、卓世偉、楊仲家、黃然, “ 表層滲透劑對混凝土特性影響之研究“, 防蝕工程, (accepted) (2002).57. L. Tang, and L. Nilsson, “Rapid determination of the chloride diffusivity in concrete by applying an electrical field”, ACI Materials Journal, Vol. 89, pp. 49-53 (1992).
58. C. Andrade, M. A. Sanjuan, A. Recuero, and O. Rio, “Calculation of chloride diffusivity in concrete from migration experiments, in non steady-state conditions”, Cement and Concrete Research, Vol. 24, pp. 1214-1228 (1994).
59. M. Castellote, C. Andrade, and C. Alonso, “Electrochemical chloride extraction: influence of testing conditions and mathematical modelling”, Advanced in Cement Research, Vol. 11, pp. 63-80 (1999).
60. ASTM 192-98, “Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory”, American Society for Testing and Materials (1998).
61. ASTM 94-00, “Standard Specification for Ready-Mixed Concrete”, American Society for Testing and Materials (1994).
62. AASHTO T26-79, “Quality of Water to be Used in Concrete”, Standard specification for transportation materials and methods of sampling and testing (1979).
63. ASTM 494-99, “Standard Specification for Chemical Admixtures for Concrete”, American Society for Testing and Materials (1999).
64. ASTM 33-99, “Standard Specification for Concrete Aggregates”, American Society for Testing and Materials (1999).
65. AASHTO T260-94, “Sampling and Testing for Total Chloride Ion in Concrete Raw Materials”, Standard specification for transportation materials and methods of sampling and testing (1994).
66. ASTM 39-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, American Society for Testing and Materials (1999).
67. 萬其超,”電化學”,台灣商務印書館, 台北, pp. 1-5(1996).
68. T. L. Brown, H. E. LeMay, and B. E. Bursten, “Chemistry: The Central Science”, Prentice-Hall, pp. 712 (1991).
69. Moeller, T., “Inorganic Chemistry:A Modern Introduction”, John Wiley & Sons Inc, Appendix IV, (1982).
70. W. Prince, R. Pérami, and M. Espagne, “Mechanisms involved in the accelerated test of chloride permeability”, Cement and Concrete Research, Vol. 29, pp. 687-694 (1999).
71. M. Castellote, C. Andrade, and C. Alonso, “Modelling of the processes during steady-state migration tests: Quantification of transference numbers”, Materials and Structures, Vol. 32, pp. 180-196 (1999).
72. O. Truc, J. P. Oilvier, and M. Carcasses, “A new way for determining the chloride diffusion coefficient in concrete from steady state migration test”, Cement and Concrete Research, Vol. 30, pp. 217-226 (2000).
73. D. A. G. Bruggeman, ‘Calculation different physical constant from heterogeneous substance I. Dielectric and conductivity mix-term of isotropic substance’, Ann. Phys. Vol. 24, pp. 636-679 (1935).
74. E. J Garboczi, D. P. Bentz, and L. M. Schwartz, “Modelling the influence of the interfacial zone on the DC electrical conductivity of mortar”, Advance Cement Based Materials, Vol. 2, pp. 169-181 (1995).
75. K. A. Snyder, D. P. Bentz, E. J. Garboczi, and D. N. Winslow, “Interfacial zone percolation in cement-aggregate composites”, Interfaces in Cementitious Composites, Proceedings of the International Conference, Toulouse, Oct. 1992 (E & FN SPON, London), pp. 259-268 (1993).
76. S. W. Cho, C. C. Yang, R. Huang, "Influence of aggregate content on the transport properties of mortar using accelerated chloride migration test," Concrete Science and Engineering, Vol. 4, pp. 84-90 (2002).