跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/23 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊銘賢
論文名稱:地貌瞬時單位歷線模式中逕流運行時間機率分佈之研究
指導教授:李光敦李光敦引用關係
學位類別:博士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
中文關鍵詞:水文統計學水力學地理資訊系統
相關次數:
  • 被引用被引用:1
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
晚近所發展之地形性逕流模式,能有效地反應集水區地文特性與降雨特性對逕流歷線的影響。此類地形性水文模式中較完備者,為運動波-地貌瞬時單位歷線模式。該模式可經由水力學觀點配合集水區河川網路特性,推衍時變性之水文反應函數,可便捷地應用於推求集水區之逕流量。然而,模式中對於逕流運行時間機率分佈之假設,前人研究仍未有一致定論,且長久以來均應用概念化模式之假設,致使模式之參數無法適切地反應集水區的物理意義。
事實上,逕流運行時間機率分佈包含集水區地文之統計特性與逕流之水力特性。因此若能求得逕流長度之機率分佈與逕流長度和逕流時間之關係,則可應用推衍分佈理論推導逕流運行時間之機率分佈。本研究以臺灣地區集水區為例,應用卜桑程序及數值高程模式推求漫地流與渠流之逕流長度機率分佈;同時利用運動波方程式描述逕流運行時間與逕流運行長度之關係,再由推衍分佈理論推導得到逕流運行時間分佈。此外,研究中探討不同逕流運行時間分佈假設,對運動波-地貌瞬時單位歷線與直接逕流歷線之影響,並進行地文因子之敏感度分析。
摘要
目錄
表錄
圖錄
第一章導論
1.1 研究目的
1.2 前人研究
1.2.1 集水區地形性逕流模式相關研究
1.2.2 逕流運行時間分佈相關研究
1.2.3 集水區渠流與漫地流長度分佈相關研究
1.2.4 逕流運行時間與逕流長度關係相關研究
1.3 研究方法
第二章 運動波-地貌瞬時單位歷線理論
2.1 地貌瞬時單位歷線
2.2 逕流運行時間分佈
2.3 平均逕流運行時間推估
第三章 集水區漫地流與渠流長度分佈
3.1 卜桑程序理論
3.2 應用卜桑程序推導逕流長度機率分佈
3.3 應用數值高程模式推求地文因子
3.3.1 流向判定與河川網路擷取
3.3.2 利用數值高程模式推求地文因子
第四章 應用運動波理論推求逕流長度與時間之關係
4.1 運動波理論
4.2 漫地流逕流長度與時間之關係式
4.3 渠流逕流長度與時間之關係式
第五章 應用推衍分佈理論推導逕流運行時間分佈
5.1 推衍分佈理論
5.2 漫地流逕流運行時間分佈
5.3 渠流逕流運行時間分佈
第六章 研究結果與討論
6.1 逕流長度分佈驗證
6.1.1 研究集水區簡介
6.1.2 渠流長度分佈分析
6.1.3 漫地流長度分佈分析
6.2 逕流運行時間分佈驗證
6.2.1 研究集水區簡介
6.2.2 研究集水區地文分析
6.2.3 以運動波-地貌瞬時單位歷線模式模擬直接逕流歷線
6.3 逕流運行時間分佈對運動波-地貌瞬時單位歷線之影響
6.4 地文因子與有效降雨強度對逕流運行時間分佈之影響
第七章 結論
參考文獻
附錄一 符號說明表
附錄二 個人資料
李光敦,魏啟村 (1996). “地形性水文系統之研究(二),” 農委會85科技-1.11-林-03-1(7)研究報告,14-15。
李光敦,許志揚,江申,張進鑫,楊銘賢 (1996). “考慮河川網路之集流時間推求方式-以運動波理論為基礎,” 國科會專題研究計畫成果報告NSC 85-2211-E-019-009號。
李光敦,楊銘賢 (1998). “上游集水區適用集流時間公式之探討,” 臺灣水利,第46卷,第1期,60-71。
李光敦,俞維昇,楊銘賢,施匯銘 (1999). “汐止地區瑞伯颱風與芭比絲颱風洪災分析,” 國立臺灣海洋大學河海工程研究所研究報告,臺灣士林地方法院檢察署委託,4-13。
李光敦,楊銘賢,鄭璟生 (2001). “建立集水區地文因子查詢系統,” 農業工程學報,第47卷,第1期,75-86。
虞國興,黃志強 (1992). “無關機率點繪法公式,” 臺灣水利,第40卷,第3期,22-33。
楊銘賢,李光敦 (1998). “逕流運行時間分佈對運動波-地貌瞬時單位歷線影響之初步研究,” 臺灣水利,第46卷,第4期,76-89。
Agnese, C., D’asaro, D., and Giordano, G. (1988).“Estimation of the time scale of the geomorphologic instantaneous unit hydrograph from effective streamflow velocity,” Water Resour. Res., 24(7), 969-978.
Akan, A. O. (1985). “Kinematic-wave method for peak runoff estimates,”J. Transp. Div., ASCE, 111(4), 419-425.
Bobee, B., and Ashkar, F. (1991). The Gamma Family and Derived Distributions Applied in Hydrology, Water Resources Publications, U.S.A., 190-192.
Bras, R. L. (1990). Hydrology: An Introduction to Hydrologic Science, Addison-Wesley Publishing Company, U.S.A.
Chaudhry, M. H. (1993). Open-Channel Flow, Prentice-Hall, New Jersey, 483 pp.
Chen, C. N., and Wong, T. S. W. (1993). “Critical rainfall duration for maximum discharge from overland plane,” J. Hydr. Engrg., ASCE, 119(4), 1040-1045.
Cheng, B. L. M. (1982). “A study of geomorphologic instantaneous unit hydrograph,” Ph.D. thesis, Dept. of Civil Engrg., Univ. of Illinois at Urbana-Champaign, U.S.A.
Clark, C. O. (1945). “Storage and the unit hydrograph,” Tran., ASCE, 110(2261), 1419-1446.
Chow, V. T. (1959). Open-Channel Hydraulics, McGraw-Hill, New York, p.113.
Chow, V. T., Maidment, D. R. and Mays, L. W. (1988). Applied Hydrology, McGraw-Hill, New York, 572 pp.
Cundy, T. W., and Tento, S. W. (1985). “Solution to the kinematic wave approach to overland flow routing with rainfall excess given by Philip‘s equation,” Water Resour. Res., 21(8), 1132-1140.
Dooge, J. C. I. (1959). “A general theory of the unit hydrograph.” J. Geophys. Res., 64(1), 241-256.
Eagleson, P. S. (1970). Dynamic Hydrology, McGraw-Hill, New York.
Engman, E. T. and Gurney, R. J. (1991). Remote Sensing in Hydrology, Chapman and Hall Book Co., 103-126.
Franchini, M., and O’Connell, P. E. (1996). “An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph,” J. Hydrol., 175, 407-428.
Grey, D. M. (1961). “Interrelationships of watershed characteristics,” J. Geophys. Res., 66(4), 1215-1223.
Gupta, V. K., Waymire, E., and Wang, C. T. (1980). “A representation of an instantaneous unit hydrograph from geomorphology,” Water Resour. Res., 16(5), 855-862.
Gupta, V. K., Waymire, E. and Rodriguez-Iturbe, I. (1986). “On scales, gravity and network structure in basin runoff,” In: V. K. Gupta, I. Rodriguez-Iturbe, and E. F. Wood (Editors), Scale Problems in Hydrology, Reidel, Dordrecht, p.159-184.
Gupta, V. K., and Mesa, O. J., (1988). “Runoff generation and hydrologic response via channel network geomorphology-recent progress and open problems,” J. Hydrol., 102, 3-28.
Haan, C. T. (1977). Statistical Methods in Hydrology, Iowa State University Press.
Henderson, F. M., and Wooding, R. A. (1964). “Overland flow and groundwater flow from a steady rainfall of finite duration,” J. Geophys. Res., 69(8), 1531-1540.
Henderson, F. M. (1965). Open Channel Flow, Macmillan, New York, P.364.
Huggins, L. F., and Burney, J. R. (1982). “Surface runoff, storage and routing,” Hydrologic Modeling of Small Watersheds, Ed. by C.T. Haan et al., ASCE Monograph No. 5.
Izzard, C. F. (1944). “The surface-profile of overland flow,” Trans., AGU, 25, 959-968.
Jenson, S. K., and Domingue, J. O. (1988) “Extracting topographic structure from digital elevation data for geomorphic information system analysis,” Photogramm. Eng. Remote Sensing, 54(11), 1593-1600.
Jin, C.-X. (1992). “A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types,” Water Resour. Res., 28(2), 479-486.
Kerby, W. S. (1959). “Time of concentration for overland flow,” Civil Engrg., 29(3), 174.
Kibler, D. F., and Woolhiser, D.(1970). “The kinematic cascade as a hydrologic model,” Hydrology Paper No. 39, Colorado State Univ., Fort Collins.
Kirpich, Z. P. (1940). “Time of concentration of small agricultural watersheds,” Cicil Engrg., (N. Y.), 10(6), 362.
Knighton, D. (1998). Fluvial Forms and Processes: a New Perspective. Arnold, London, 383pp.
Krumbein, W. C., and Shreve, R.L. (1970). “Some statistical properties of dendritic channel networks,” Tech. Rep. 13, Off. of Nav. Res. Task 389-150, Dept. of Geol. Sci., Northwestern Univ., Evanston, Illinois.
Kull, D. W. and Feldman, A. D. (1998). “Evolution of Clark’s unit graph method to spatially distributed runoff,” J. Hydrologic Engrg., ASCE, 3(1), 9-19.
Larsen, R. J., and Marx, M. L. (1986). An Introduction to Mathematical Statistics and Its Applications, 2nd edn. Prentice-Hall, Englewood Cliffs, New Jersey, 630pp.
Lee, K. T., and Yen, B. C. (1997). “Geomorphology and kinematic-wave based Hydrograph derivation,” J. Hydr. Engrg., ASCE, 123(1), 73-80.
Leopold, L. B., and Langbein, W. B. (1962). “The concept of entropy in landscape evolution,” U. S. Geol. Surv. Prof. Pap. 500-A, 1-20.
Luce, C. H., and Cundy, T. W. (1992). “Modification of the kinematic wave-Philip infiltration overland flow model,” Water Resour. Res., 28(4), 1179-1186.
Mancini, M., Troch, P. A., and Wood, E. F. (1994). “Overland flow routing over a range of catchment scales,” In: R. Rosso, A. Peano, I. Becchi, and G. A. Bemporad (Editors), Advances in Distributed Hydrology, Water Resources Publications, U.S.A., 225-244.
Maxwell, J. C. (1960). “Quantitative geomorphology of the San Dimas National Forest,” Tech. Rep. 19, Proj. NR 389-042, Dept. of Geol., Columbia Univ., New York.
Mesa, O. J., and Mifflin, E. R. (1986). “On the relative role of hillslope and network geometry in hydrologic response,” In: V. K. Gupta, I. Rodriguez-Iturbe, and E. F. Wood (Editors), Scale Problems in Hydrology, Reidel, Dordrecht, 1-17.
McCuen, R. H., Wong, S. L., and Rawls, W. J. (1984). “Estimating urban time of concentration,” J. Hydr. Engrg., ASCE, 110(7), 887-904.
Montgomery, D. R., and Foufoula-Georgiou, E. (1993). “Channel network source representation using digital elevation models,” Water Resour. Res., 29(12), 3925-3934.
Naden, P. S. (1992). “Spatial variability in flood estimation for large catchments: the exploitation of channel network structure,” Hydrol. Sci. J., 37(1-2), 53-71.
O’Callaghan, J., and Mark, D. M. (1984). “The extraction of drainage networks from digital elevation data,” Computer Vision, Graphics and Image Processing, 28, 323-344.
Olivera, F., and Maidment, D. (1999). “Geomorphic information systems (GIS)-based spatially distributed model for runoff routing,” Water Resour. Res., 35(4), 1155-1164.
Robinson, J. S., Sivapalan, M., and Snell, J. D. (1995). “On the relative roles of hillslope processes, channel routing, and network geomorphology in the hydrologic response of natural catchments,” Water Resour. Res., 31(12), 3089-3101.
Rodriguez-Iturbe, I., and Valdes, J. B. (1979). “The geomorphologic structure of hydrologic response,” Water Resour. Res., 15(6), 1409-1420.
Schumm, S. A. (1956). “Evolution of drainage systems and slope in badlands at Perth Amboy, New Jersey,” Bulletin of the Geological Society of America, 67, 597-646.
Shreve, R. L. (1966). “Statistical law of stream numbers,” Journal of Geology, 74, 17-37.
Smart, J. S. (1968). “Statistical properties of stream lengths,” Water Resour. Res., 4, 1001-1014.
Smart, J. S. (1969). “Distribution of interior link lengths in natural channel networks,” Water Resour. Res., 5 (6), 1337-1342.
Smart, J. S. (1978). “The analysis of drainage network composition,” Earth Surface Proc., 4, 129-170.
Strahler, A. N. (1952). “Hypsometric (area-altitude) analysis of erosional topography,” Bulletin of the Geological Society of America, 63, 1117-1142.
Sturges, H. A. (1926). “The choice of a class interval,” Journal American Statistical Association, 21, 65-66.
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I. (1991). “On the extraction of channel networks from digital elevation data,” Hydrologic Processes, 5 (1), 81-100.
Tarboton , D. G., Bras, R. L. and Rodriguez-Iturbe, I. (1992). “ A physical basis for drainage density,” Geomorphology, 5(1/2), 59-76.
Taylor, A. B., and Schwarz, H. E. (1952). “Unit hydrograph lag and peak flow related to basin characteristics,” Trans. AGU, 33, 235-246.
Troutman, B. M., and Karlinger, M. R. (1985). “Unit hydrograph approximations assuming linear flow through topologically random channel networks,” Water Resour. Res., 21(5), 743-754.
Troutman, B. M., and Karlinger, M. R. (1986). “Averaging properties of channel networks using methods in stochastic branching theory,” In: V. K. Gupta, I. Rodriguez-Iturbe, and E. F. Wood (Editors), Scale Problems in Hydrology, Reidel, Dordrecht, p.185-216.
US Army Corps of Engineers (1990). HEC-1 Flood hydrograph package, User’s manual and programmer’s manual, Hydrologic Engineering Center, Davis, California.
van der Tak, L. D. and Bras, R. L. (1990). “Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph,” Water Resour. Res., 26(10), 2393-2400.
Viessman, W., and Lewis, G. L. (1996). Introduction to Hydrology, HarperCollins College Publishers.
Wang, X., and Yin, Z.-Y. (1998). “A comparison of drainage networks derived from digital elevation models at two scales,” Journal of Hydrology, 210, 221-241.
Willgoose, G., Bras, R. L. and Rodriguez-Iturbe, I. (1989). “ A physically-based channel network and catchment evolution model,” Report 322, Ralph M, Parsons Laboratory, Dept. of Civil Engineering, MIT, Cambridge, Mass.
Wooding, R. A. (1965). “A hydraulic model for the catchment-stream problem, I. kinematic-wave theory,” J. Hydrol., 3(3), 254-267.
Wyss, J. (1988). “Hydrologic modelling of New England river basins using radar rainfall data,” Cambridge, Mass.: MIT department of earth, atmospheric, and planetary sciences. M.S. thesis.
Yang, M.-S. (1999). Discussion of “Evolution of Clark’s unit graph method to spatially distributed runoff,” J. Hydrologic Engrg., ASCE, 4(1), 89.
Yang, M.-S., and Lee, K. T. (2001). “Determination of probability distributions for Strahler stream lengths based on Poisson process and DEM,” Hydrol. Sci. J., 46(5), 813-824.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top