跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 12:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張高豪
研究生(外文):Chang Kao Hao
論文名稱:矩形組合領域Helmholtz特徵值問題之研究─解析解及半解析解
指導教授:曹登皓曹登皓引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:140
中文關鍵詞:Helmholtz特徵值問題解析解半解析解特徵函數展開法選點法
外文關鍵詞:Helmholtz eigenvalue problemanalytical solutionsemi-analytical solutioneigenfunction expansion methodcollocation method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研究在Dirichlet和Neumann邊界條件下之各種矩形組合領域Helmholtz特徵值問題。首先,我們將欲求解之矩形組合領域分割成多塊矩形領域,並採用特徵函數展開法求得各領域的勢函數表示式,然後利用各個相鄰領域之連續條件及特徵函數的正交性,建立各未知係數的關係式後即可得到解析解。然而,當求解領域形狀愈來愈複雜時,要推導出解析解就會更加困難,因此,採用選點法來建立聯立方程式,則可容易地求得本問題的半解析解。最後,為了証明本論文所提之解析解及半解析解方法的推導過程和所撰寫之程式的正確可靠,我們亦以自行編寫之Q9有限元素程式來驗証,其結果顯示:本論文所提之解析解及半解析解方法的推導過程和程式均正確無誤,而且可以提供給其他的數值方法作參考。
The purpose of this thesis is to solve the Helmholtz eigenvalue problems for the domain, which is connected with multiple rectangles, bounded by Dirichlet and Neumann boundary conditions. First, we divide the whole domain into several rectangular regions and utilized the eigenfunction expansion method to obtain the potential function from each region. Then, the relationship of unknown potential coefficients can be formulated to get the analytical solutions by applying the continuity condition of each neighboring region and the orthogonality of eigenfunctions. However, it is difficult to acquire the analytical solutions due to complicated geometry. Therefore, as the collocation method is adopted to construct the simultaneous equations, the semi-analytical solution can be easily determined. Finally, in order to confirm the correctness of the process for deriving the analytical and semi-analytical solutions, a finite element scheme is employed. The results show that all procedures of our two methods are right and good performance of our programming.
中文摘要
英文摘要
目錄
表目錄
圖目錄
第一章 緒論
1 - 1 前言
1 - 2 研究動機、目的及方法
1 - 3 研究範圍及內容
第二章 理論分析
2 - 1 緒論
2 - 2 問題描述與控制方程式
2 - 2 - 1 薄膜的自由振動問題
2 - 2 - 2 封閉聲場的聲壓振動問題
2 - 3 求解領域之形狀及邊界條件
第三章 Dirichlet邊界條件矩形組合領域之解析解
3 - 1 L形領域之解析解
3 - 2 U形領域之解析解
第四章 Dirichlet邊界條件矩形組合領域之半解析解
4 - 1 L形領域之半解析解
4 - 2 U形領域之半解析解
第五章 Neumann邊界條件矩形組合領域之解析解
5 - 1 L形領域之解析解
5 - 2 U形領域之解析解
第六章 Neumann邊界條件矩形組合領域之半解析解
6 - 1 L形領域之半解析解
6 - 2 U形領域之半解析解
第七章 模式驗証與數值計算例
7 - 1 Dirichlet邊界條件矩形組合領域之計算例
7 - 1 - 1 L形領域之數值計算例
7 - 1 - 2 U形領域之數值計算例
7 - 2 Neumann邊界條件矩形組合領域之計算例
7 - 2 - 1 L形領域之數值計算例
7 - 2 - 2 U形領域之數值計算例
第八章 結論
參考文獻
附表
附圖
[1] Rayleigh, L. (1945), The theory of sound, 2nd ed., New York : Dover.
[2] Reynolds, D. D. (1981), Engineering principles of acoustics : noise and vibration control, Boston : Allyn and Bacon.
[3] Kinsler, L. E. (1982), Fundamentals of acoustics, 3rd ed., New York : Wiley.
[4] Morse, P. M. (1986), Theoretical acoustics, New York : McGraw-Hill.
[5] Meirovitch, L. (1967), Analytical methods in vibrations, New York : Macmillan.
[6] Weaver, W. (1990), Vibration problems in engineering, 5th ed., New York : Wiley.
[7] Benaroya, H. (1998), Mechanical vibration : analysis, uncertainties, and control,Upper Saddle River, N.J. : Prentice Hall.
[8] O''Neil, P. V. (1995), Advanced engineering mathematics, 4th ed.,Boston : Brooks/Cole Publishing Co., International Thomson Publishing Co.
[9] Kreyszig, E. (1996), Advanced engineering mathematics, 7th ed., New York : Wiley.
[10] Greenberg, M. D. (1998), Advanced engineering mathematics, 2nd ed., Upper Saddle River, N.J. : Prentice Hall.
[11] Lopez, R. J. (2001), Advanced engineering mathematics, Boston : Addison-Wesley Longman.
[12] Fox, L., Herrici, P. and Moler, O (1967), "Approximations and bounds for eigenvalues of elliptic operators", SIAM Journal on Numerical Analysis, Vol.4, pp.89-102.
[13] Milsted, M. G. and Hutchinson J. R. (1974), "Use of trigonometric terms in the finite element method with application to vibrating membranes ", Journal of Sound and Vibration, Vol.32, No.3, pp.327-346.
[14] Kim, Y. Y. and Kang, J. H. (1996),"Free vibration analysis of membranes using wave-type base function", Journal of Acoustical Society of America, Vol.99, No.5, pp.2938-2946.
[15] Houmat, A. (1997), "Hierarchical finite element analysis of the vibration of membranes", Journal of Sound and Vibration,
Vol.201, No.4, pp.465-472.
[16] Shu, C. and Chew, Y. T. (1997), "Fourier expansion-based differential quadrature and its application to Helmholtz eigenvalue problems", Communications in Numerical Methods in Engineering, Vol.13, pp.643-653.
[17] Kang, S. W., Lee, J. M. and Kang, Y. J.(1999), "Vibration analysis of arbitrarily shaped membranes using non-dimensional dynamic influence function", Journal of Sound and Vibration, Vol.221, No.1, pp.117-132.
[18] Kang, S. W. and Lee, J. M. (2000), "Application of free vibration analysis of membranes using the non-dimensional dynamic influence function", Journal of Sound and Vibration, Vol.234, No.3, pp.455-470.
[19] Potter, M. C. (1997), Mechanics of fluids, 2nd ed., Upper Saddle River, NJ : Prentice Hall.
[20] Norton, M. P. (1989), Fundamentals of noise and vibration analysis for engineers, 2nd ed., Cambridge [England] ; New York : Cambridge University Press.
[21] 蔡天亮 (1996),數學物理方程,上海科學技術文獻出版社。
[22] 嚴鎮軍 (1996),數學物理方程,第二版,中國科學技術大學。
[23] 廖玉麟 (1995),數學物理方程,華中理工大學。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top