跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林永聖
論文名稱:再鹼化混凝土耐久性之研究
指導教授:葉為忠
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:碳化電化學再鹼化再碳化混凝土
相關次數:
  • 被引用被引用:1
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在探討已實施再鹼化工法後之鋼筋混凝土,再受二氧化碳污染之鋼筋混凝土力學性質、物理性質和抑制鋼筋腐蝕作用的影響。研究方法系利用高壓筒裡的高壓,將其二氧化碳灌入已再鹼化之鋼筋混凝土裡,近而觀其鋼筋混凝土之物理、力學、化學性質變化。試驗變數為水灰比不同之混凝土。而本實驗設計主要有三項範疇:(1)探討第一次碳化混凝土與鹼化後再碳化混凝土之碳化深度,主要系以pH指示劑量測混凝土內部孔隙水溶液之pH值情況。(2)比較未碳化、已碳化、碳化後再鹼化、鹼化後再碳化之混凝土力學性質差異性,實驗項目為抗壓強度、彈性模數及握裹強度。(3)研究碳化後再鹼化,鹼化後再碳化混凝土之物理性質,實驗項目包括再鹼化前後與鹼化再碳化混凝土電阻係數。
研究結果顯示,混凝土會因碳化後、電化學再鹼化的影響而變得更緻密。而再碳化部分則是酸鹼中和的效應,而非第一次的碳化的化學反應。

In this study, mechanical, physical and chemical properties of a recarbonated concrete, that is carbonated second times after realkalization process is performed, was studied. Three categories were evaluated in this study and stated as follows.
(1)The carbonation depths or the first time carbonation and second carbonation depth were measured and compared. Two indicators, the phenolphthalein indicator and rainbow pH indicator, were used. Using these data, the carbonation rates for the first time and second time were compared. In addition, it is examined that whether or not the phenolphthalein indicator, which is commonly accepted, can point out the carbonation front.
(2)Three mechanical properties including compressive strength, elastic modulus and bond strength for the uncarbonated, carbonated, realkalized and recarbonated concretes were investigated.
(3)Sorptivity, absorption rate and four-probe electrical resistivity for the uncarbonated, carbonated, realkalized and recarbonated concretes were investigated.
Experiment results showed that the microstructure became denser due to carbonation and/or realkalization. The chemical reaction of recarbonation is neutralization and is thus different from that of the carbonation.

中文摘要.............................................. i
英文摘要.............................................. ii
目錄...................................................iii
圖目錄................................................ v
表目錄................................................ vii
第一章 緒論
1-1 研究動機........................................ 1
1-2 研究目的與範圍.................................. 2
1-3 研究方法與流程.................................. 3
第二章 文獻回顧
2-1 前言............................................ 6
2-2 混凝土中性化之機理.............................. 6
2-3 混凝土鋼筋之腐蝕................................ 9
2-3-1 腐蝕機理...................................... 9
2-3-2 混凝土中鋼筋腐蝕之因素........................ 10
2-3-3 鋼筋混凝土腐蝕破壞的過程...................... 13
2-4 電化學再鹼化機理................................ 16
2-5 鋼筋混凝土之握裹行為............................ 19
2-5-1 前言.......................................... 19
2-5-2 握裹力之發展與影響因素........................ 22
2-5-3 拉拔試驗分析方法.............................. 22
第三章 實驗計劃
3-1 實驗變數........................................ 25
3-2 實驗材料........................................ 25
3-3 試驗設備........................................ 30
3-4 試驗方法........................................ 35
第四章 結果與分析
4-1 前言............................................ 46
4-2 力學性質........................................ 46
4-2-1 抗壓強度...................................... 46
4-2-2 握裹強度...................................... 48
4-2-3 彈性模數...................................... 56
4-3 化學性質........................................ 57
4-3-1 碳化深度...................................... 57
4-3-2 再碳化深度.................................... 59
4-3-3 碳化速率...................................... 61
4-3-4 pH值滴定試驗.................................. 62
4-4 物理性質........................................ 63
4-4-1 吸水率........................................ 63
4-4-2 電阻係數...................................... 67
第五章 結論與建議
5-1 結論............................................ 70
5-2 建議............................................ 71
參考文獻...............................................72
謝誌
作者簡歷

1.Mehta, P. K.,“Durability of Concrete in Marine Environment—A Review”, Performance of Concrete in Marine Environment ACI SP-65, pp.1-19, 1980.
2.Wheat, H. G. and Eliezer, Z., “Some Electrochemical Aspects of Corrosion of Steel in Concrete”, Corrosion, Vol.41, No.11, pp.640-645, 1985.
3.Hansson, C. M., “Comments on Electrochemical Measurements of The Rate of Corrosion of Steel in Concrete”, Cement and Concrete Research, Vol.14, No.4, pp.574-580, 1984.
4.Braid, T., Cairns-Smith A.G, and Snell D.S., “Morphology and CO2 Uptake in Tobermorite Gel, Journal of Colloid and Interface Science, 1975,50(2), pp.387-391.
5.Kazutaka S., Tadahiro, N. and Suketoshi I., “Formation and Carbonation of C-S-H in Water”, Cement and Concrete Research, 15(2), pp.213-224, 1985.
6.Zdenek S., “Carbonation of Porous Concrete and Its Main Binding Components”, Cement and Concrete Research, 1(6), pp.645-662, 1971.
7.LEA F.M., “The Chemistry of Cement and Concrete”, Arnold, London, 1970.
8.Mehta, P. K., “Concrete Structure, Properties, and Materials”, Prentice Hall, 1993.
9.Al-Kadhimi T. K. H., Banfill P. F. G., Millard S. G., and Bungey J. H. “An Accelerated Carbonation Procedure For Studies On Concrete”, Advances in Cement Research, Vol.8, No.30, pp.47-59, 1996.
10.曾善賜,“混凝土電化學再鹼化技術之研究”,國立台灣海洋大學河程學系碩士論文,基隆, 2001。
11.Mangat, P. S. and Molloy, B. T., “Influence of PFA, Slag and Microsilica on Chloride Induced Corrosion of Reinforcementin Concrete”, Cement and Concrete Research, Vol. 21 No. 5, pp.819-834, 1991.
12.ACI Committee 226, “Silica Fume in Concrete”, ACI Materials Journal, March-Aprial, pp.158-166, 1987.
13.Cook, J., “Research and Application of High Strength Concrete Using Class C Fly Ash”, Concrete International, Design and Construction, Vol.4, No.7, pp.72-80, 1982.
14.陳振川,“高性能混凝土研發與推動現況”,營建新知,159期,pp.25-27,1996。
15.Collins, W. D. and Weyers, R. E., “Chemical Treatment of Corroding Steel Reinforcement After Removal of Chloride-Contaminated Concrete”, Corrosion, Vol.49, No.1, pp.74-88, 1993.
16.Mehta P. K. and Monteiro J. M., “Concrete Structures, Properties and Materials”, 2nd Edition, Prentice Hall Inc., New Jersey, 1993.
17.Papadakis, V. G., Vayenas, C. G. and Farads, M. N., “ A Reaction Engineering Approach to Problem of Concrete Carbonation”, ACI Journal, Vol.35, No.10, pp.1639-1650, 1989
18.Hausmannu, D. A., “Steel Corrosion in Concrete”, Materials Protection, Vol.6, No.11, pp.19-23, 1967.
19.Diamond, S., “Cement, Concrete and Aggregates”, Vol.8, No.2, pp.97-102, 1986.
20.邱小雲、周燕,“舊建築物的檢測加固與維護”,地震出版社,pp.15-32, 1992。
21.Mehta, P. K., “Concrete Structure, Properties, and Materials”, Prentice Hall, 1993.
22.Banfill, P. F. G., ”Realkalisation of Carbonated Concrete —Effect on Concrete Properties”, Construction and Building Materials, Vol.11, No.4, pp.255-258, 1997.
23.施建志,“ 結構物檢測評估與補強-結構物腐蝕問題及其防蝕技術”,臺灣營建研究院,pp.175-248,2000。
24.Mietz, J., “Electrochemical Realkalisation for Rehabilitation of Reinforced Concrete structures”, Materials and Corrosion, Vol.46, pp.527-533, 1995.
25.Mattila, J. S. and Pentti, M. J., “The Performance of Different Realkalisation Methods”, Concrete Repair, Rehabilitation and Protection, Edited by Dhir R. K. and Jones M. R., pp.483-491, 1996.
26.Andrade, C., Castellote , M., Sarria, J. and Alonso, C., “Evolution of Pore Solution Chemical,Electro-Osmosis and Rebar Corrosion Rate Induced by Realkalisation”, Materials and Structures, Vol.32, pp.427- 436 , 1999.
27.Velivasakis, E. E., Heneriksen, S. K. and Whitmore, D., “Chloride Extraction and Realkalization of Reinforced Concrete Stop Steel Corrosion”, Journal of Performance of Constructed Facilities, Vol.12, No.2, pp.77-84, 1998.
28.ACI Committee 408, “State-of-the-Art Report:Bond Under Cyclic Loads”, ACI Materials Journal, Vol.88, No.6, pp.408, 1991.
29.Kemp. E. L., “Bond in Reinforced Concrete: Behavior and Design Criteria”, ACI Journal, Tittle No.83-7, pp.50-57, January-February, 1986.
30.Lutz L. A. and Gergely, D., “ Mechanics of Bond and Slip of Deformed Bars in Concrete, “ ACI Journal, Proceeding, V.64, No.11, pp.711-721, 1976.
31.Edwards A. D. and Yannopoulos, P. J., “Local Bond-Stress to Slip Relationships for Hot Rolled Detormed Bars and Mild Steel Pflain Bars ”, ACI Journal, Proceeding, V76, No.3, pp.405-420, Mar , 1979.
32.Hwang S. J., Lee Y.Y. and Lee C. S., “ Effect of Silica Fume on the Splice Strength of Deformed Bars of High-Performace Concrete”, ACI Structural Journal, V.91, No.3, pp.294-303, May-June 1994.
33.Cox H. L., “Analysis of Effect of Orientation of Fiber on Stiffness and Strength”, British Journal of Applied Physics, V.3, pp.72-79, March, 1952.
34.Currie, R. J., “Carbonation Depths in Structural-quality Concrete”, Building Research Establishment Report, pp.19, 1986.
35.Papadakis, V. G., Vayenas, C. G. and Fardis, M. N., “Fundamental Modeling and Experimental Investigation of Concrete Carbonation”, ACI Materials Journal, pp.363-373, July-Aug 1991.
36.馬康俊,“鋼筋混凝土建築物中性化診斷模式之研究-以台北市地區為例”,國立臺灣工業技術學院工程技術研究所設計技術學程碩士論文,台北,1994
37.Al-Kadhimi T. K. H., Banfill P. F. G., Millard S. G. and Bungey, J. H., “An Accelerated Carbonation Procedure for Studies on Concrete”, Advances in Cement Research, 8(30), pp.47-59, 1996.
38.環保署,“國家環境保護計畫”,中華民國行政院環境保護署,1998。
39.Andrade, C., Castellote, M., Sarria, J. and Alonso, C., “Evolution of Pore Solution Chemical,Electro-Osmosis and Rebar Corrosion Rate Induced by Realkalisation”, Materials and Structures, Vol.32, pp.427- 436, 1999.
40.洪定海,“混凝土中鋼筋的腐蝕與保護”,中國鐵道出版社,1998。
41.Morris, W., Moreno, E. I. and Sauges, A. A., “Practical Evaluation of Resistivity of Concrete in Test Cylinders a Wenner Array Probe”, Cement and Concrete Research, Vol.26, No.12, pp.1779-1787, 1996.
42.蔡得時 譯,”混凝土電阻與腐蝕關係之研究”,建材新知,180 期,1996。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top