# 臺灣博碩士論文加值系統

(3.229.124.74) 您好！臺灣時間：2022/08/11 07:46

:::

### 詳目顯示

:

• 被引用:2
• 點閱:368
• 評分:
• 下載:70
• 書目收藏:0
 摘要 本文主要目的是以可靠度分析既有鋼筋混凝土結構的腐蝕損傷程度，透過失效機率的計算作為評估結構受損可能性的依據。研究首先針對位於港口而長期遭受氯離子侵蝕的鋼筋混凝土碼頭，提出以機率統計學中的Poisson分佈來描述氯離子侵蝕混凝土深度的概念，並結合Fick’s第二定律的擴散理論，以近似方法計算受腐蝕結構的失效機率。再者對於受到混凝土碳化、氯離子侵蝕、硫酸鹽入侵與載重失效等破壞模式同時作用下的鋼筋混凝土橋樑基樁構件，本文除了詳盡闡述腐蝕破壞的機理外，也引入了系統整體失效的概念，提出結構整體失效機率的計算理論。研究結果顯示：（1）Poisson分佈結合Fick’s第二定律預測既有鋼筋混凝土碼頭的損傷機率，除使用方便外，其預測結果比應用線性無偏結合極值分佈預測的結果較為保守，有利於結構現況的評估。（2）採用結構系統失效機率方法評估橋樑基樁遭受碳化、鹽害、硫害及載重等同時聯合作用之失效機率，除計算簡便外，該法也具有可行性及可靠性。 關鍵字：腐蝕損傷、氯離子、失效機率、系統可靠度
 ABSTRACT In this study, the reliability analysis was used to predict the damage state of existing reinforced concrete structures. The calculation of failure probability was on the basis of evaluating structures damage due to external factors and material properties. First, the existing reinforced concrete wharf located at harbor and subjected to chloride ions ingress for a long time was to predict the failure probability by using the combination of Poisson’s distribution and Fick’s second law in diffusion. Second, the reinforced concrete bridge pile underlaid amongst carbonation, chlorination, sulfate attack and loading failure was investigated to predict the structural system joint failure probability. The present results indicate as follows: (1) The combination of Poisson’s distribution and Fick’s second law in diffusion was to predict the failure probability of existing reinforced concrete wharf. It is not only used easily but also more conservative than that of the combination of linearly unbiased estimation and extreme value distribution. (2) The structural system joint failure probability was adopted to evaluate the failure probability of the existing reinforced concrete bridge pile subjected to carbonation, chlorination sulfate attack and load at the same time. Besides convenient calculation, this method is of feasibility and reliability. Keywords: corrosion damage, chloride ions, failure probability, system reliability
 目錄 頁次 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅷ 符號說明 Ⅹ 第一章 緒論 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法 2 1.4 研究內容 3 第二章 可靠度分析既有鋼筋混凝土碼頭遭受氯離子 侵蝕作用下的損傷情況 2.1 前言 4 2.2 理論基礎 2.2.1結構可靠度耐久性、極限狀態系統的定義與 可靠度計算 7 2.2.2氯離子侵蝕現象的Poisson分佈 9 2.2.3氯離子侵蝕現象Poisson分佈與其他分佈之關係 12 2.2.4 Poisson分佈結合 第二定理 15 2.3 實例應用 2.3.1氯離子侵蝕深度的量測 16 2.3.2氯離子侵蝕失效實例計算 17 2.4 結果分析與討論 18 2.5 結論 20 第三章 可靠度分析既有鋼筋混凝土橋樑基樁腐蝕之研究 3.1 前言 22 3.2 基樁的主要腐蝕失效模式 3.2.1碳化作用誘發混凝土均勻腐蝕 23 3.2.2氯離子侵蝕引起的鋼筋局部腐蝕 24 3.2.3土壤內硫酸鹽與硫酸溶液引致基樁腐蝕之化學機制 25 3.3 結構系統可靠度評估 29 3.4 範例應用 33 3.5 結果討論 36 3.6 結論 38 第四章 結論與建議 4.1 結論 39 4.2 建議 40 參考文獻 72
 參考文獻1. 小若正倫, “裝置材料的壽命預測入門-極值統計在腐蝕中的應用”, [日]腐蝕防蝕協會, 1984.2. 王恆棟, “鋼筋混凝土結構耐久性評估基礎研究”, 博士論文, 大連理工大學, 1996.3. 姚繼濤, 趙國藩, 浦聿修, “二維標準正態聯合失效機率的計算”, 建築結構學報, 17(4), 1996.4. 洪定海, “混凝土中鋼筋的腐蝕與保護”, 中國鐵道出版社, 北京, 1998.5. 貢金鑫, “鋼筋混凝土結構基於可靠度的耐久性研究”, 大連理工大學土木工程系博士論文, 1999.6. 曹雙寅, “受腐蝕混凝土的損傷機理”, 混凝土, 第2期, 1990, pp. 2-5.7. 趙國藩, “工程結構可靠度理論與應用”, 大連理工大學出版社, 1996.8. 趙國藩, 金偉良, 貢金鑫, “結構可靠度理論”, 中國建築工業出版社, 2000.9. Ang, H-S and Tang, W. H., “ Probability Concepts in Engineering Planning and Design (Ⅱ)”, New York: John Wiley and Sons, 1984.10. Allan, M. L., “Probability of Corrosion Induced Cracking in Reinforced Concrete”, Cement and Concrete Research, Vol. 25, No. 10, 1995, pp. 1179-1190.11. Bender, C. M. and Orszag, S. A., “Advanced Mathematical Methods for Scientists and Engineers”, McGRAW-Hill Book Company, New York, 1978.12. Bljuger, F., “ Probabilistic Analysis of Reinforced Concrete Columns and Walls in Buckling”, ACI Structural journal, 1987, pp124-131.13. Broomfield, J. P., “ Corrosion of Steel in Concrete”, London: E&FN. SPON, 1997.14. Cornell, C. A., “Bounds on the Reliability of Structural System”, Journal of the Structural Division, ASCE, Vol. 93. No. 1, 1967, pp. 171-200.15. Collepardi, M., “Quick Method of Determine Free and Bound Chloride in Concrete”, Proceeding of the International RILEM Workshop “Chloride Penetration into Concrete”, Oct. 15-18, 1995, Saint-Remy-les-Chevreuse, France, (Edited by L. O. Nilsson and J. P. Olivier), RILEM, Cachan, 10-16.16. Crespo-Minguillon, C. and Cases, J. R., “ Fatigue Reliability Analysis of Prestressed Concrete Bridge”, Journal of Structural Engineering, ASCE, Vol. 124, No. 12, 1998, pp. 1458-1466.17. Corr, D. J., Monteiro, P. J. M., Kurtis, K. E. and Kiureghian, A. D., “ Sulfate Attack of Concrete: Reliability Analysis”, ACI Materials Journal, Vol. 98, No. 2, 2001, pp. 99-104.18. Ditlevsen, O., “ Narrow Reliability Bounds for Structural System”, Journal of Structural Mechanics, Vol. 7, No. 4, 1979, pp. 453-472.19. Ditlevsen, O. and Madsen, H. O., “ Proposal for a Code for the Direct Use of Reliability Methods in Structural Design”, In: Working Document of Joint Committee on Structural Safety, 1989.20. Dymiotis, C., Kappos, A. J. and Chryssanthopoulos, M. K., “ Seismic Reliability of RC Frames with Uncertain Drift and Member Capacity”, Journal of Structural Engineering, ASCE, Vol. 125, No. 9, 1999, pp.1038-1047.21. Ellingwood, B., Leyendecker, E. V. and Yao, J. T. P., “Probability of Failure From Abnormal Load”, Journal of Structure Engineering, ASCE, Vol. 109, No. 4, 1983, pp875-890.22. Enright, M. P. and Frangopol, D. M., “ Service Life Prediction of Deteriorating Concrete Bridges”, Journal of Structural Engineering, ASCE, Vol. 124, No. 3, 1998, pp. 309-317.23. Frangopol, D. M., Lin, K. Y. and Estes, A. C., “Reliability of Reinforced Concrete Girders Under Corrosion Attack”, Journal of Structural Engineering, ASCE, Vol. 123, No. 3, 1997, pp286-297.24. Gusella, V., “ Safety Estimation Method for Structural with Cumulative Damage”, Journal of Structural Engineering, ASCE, Vol. 124, No. 11, 1998, pp.1200-1209.25. Hong, H. P., Zhou, W., “Reliability Evaluation of RC Columns”, Journal of Structure Engineering, July, ASCE, Vol. 125, No. 7, 1999, pp784-790.26. Hemry, D., Bouny, V. and Chaussadent, T., “Evaluation of Chloride Penetration into Concrete by Various Methods”, Proceedings of the 2nd International RILEM Workshop “Testing and Modeling the Chloride Ingress into Concrete”, Sep. 11-12, 2000, pp. 471-486.27. Kounias, E. G., “Bounds for the Probability of a Union with Applications”, Annuals of Mathematical Statistics, 1968, Vol. 39, No.6.28. Liang, M. T., Zhao, G. F., Liao, Y. S. and Liang, C. H., “Linearly Unbiased Estimation Combined With JC Method for the Carbonation Contamination of Some Concrete Bridge in Taipei”, Journal of Marine Science and Technology, Vol. 8, No. 2, pp.78-89, 2000.29. Mirza, S. A., “ Probability-Based Strength Criterion for Reinforced Concrete Slender Columns”, ACI Structural journal, pp459-466, 1987.30. Mori, Y. and Ellingwood, B. R., “ Reliability-based Service-life Assessment of Aging Concrete Structure”, Journal of Infrastructure Systems, ASCE, Vol. 119, No. 5, 1993, pp. 1600-1621.31. Mori, Y. and Ellingwood, B. R., “ Maintaining Reliability of Concrete Structures. Ⅰ: Role of Inspection/ Repair”, Journal of Structural Engineering, ASCE, Vol. 120, No. 3, 1994, pp. 824-845.32. Mori, Y. and Ellingwood, B. R., “ Maintaining Reliability of Concrete Structures.Ⅱ: Role of Inspection/ Repair”, Journal of Structural Engineering, ASCE, Vol. 120, No. 3, 1994, pp. 846-862.33. Matsushima, M., Seki, H. and Matsui, K., “ A Reliability Approach to Landing Pier Optimum Repair Level”, ACI Materials Journal, Vol. 95, No. 3, 1998, pp. 218-225.34. Ng, S. K. and Moses, F., “Prediction of Bridge Service Life Using Time-Dependent Reliability Analysis”, Bridge Management, Vol. 3 (Edited by J. E. Harding, G. A. Parke and M. J. Ryall), E&FN Spon, London, pp.26-33, 1996.35. Rosowsky, D. V. and Cheng, N., “ Reliability of Light-frame Roof Systems in Hurricane Prone Regions, Part Ⅰ: Wind Load”, Journal of Structural Engineering, ASCE, Vol. 125, No. 7, 1999a, pp. 725-733.36. Riley, K. F., Hobson, M. P. and Bence, S. J., “Mathematical Methods for Physics and Engineering, Cambridge University Press, Cambridge, U. K., 1998.37. Somuah, S. K., Boah, J. K., Leblanc, P., Al-Tayylb, A. J. and Al-Mana, A. I., “Effect of Sulfate and Carbonate Ions on Reinforcing Steel Corrosion as Evaluated Using AC Impedance Spectroscopy”, ACI Materials Journal, Vol. 88, No. 1, January-February 1991, pp. 49-55.38. Stewart, M. G. and Rosowsky, D. V., “Time-dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks”, Structural Safety, 1998, Vol. 20, pp. 91-109.39. Stewart, M. G. and Val, D. V., “Role of Load History in Reliability-Based Decision Analysis of Aging Bridge”, Journal of Structure Engineering, ASCE, Vol. 125, No. 7, 1999, pp776-783.40. Young, J. F., Mindess S., Gray R. J. and Bentur A., “ The Science and Technology of Civil Engineering Materials”, London: Prentice-Hall International, Inc., c1998.41. Zhang, M. and Mahadevan, S., “Reliability-based Reassessment of Corrosion Fatigue Life”, Structural Safety, Vol. 23, 2001, pp77-91.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 橋梁生命週期成本評估-構件劣化預測模式之研究 2 可靠度分析既有鋼筋混凝土結構物之損傷情況

 無相關期刊

 1 機電系統的壽命可靠度評估 2 混凝土耐久性影響因素及評估方法之研究 3 Kramers-Kronig轉換法預測鋼筋混凝土結構之損傷狀態 4 矩形高樓結構抗風安全可靠度分析 5 決策優選比較分析法評估既有鋼筋混凝土橋樑之損傷等級 6 玻纖粉應用於混凝土中可行性之研究 7 從起重機自動檢查功能探討安全使用可靠度 8 在熱循環下晶圓級晶片尺寸構裝可靠度分析 9 模糊邏輯在捷運環控系統可靠度-可用度-可維修度分析之應用 10 再鹼化混凝土耐久性之研究 11 鹼活化爐石粉混凝土性質之探討 12 商用鎳基超合金在H2/H2S及H2/H2S/H2O混合氣氛下之高溫腐蝕研究 13 樹脂粉替代細骨材對混凝土特性之研究 14 快閃記憶體操作與可靠度分析研究 15 加勁擋土牆動態反應分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室