跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/25 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴盈如
研究生(外文):Ying-ju Lai
論文名稱:加勁擋土牆動態反應分析
論文名稱(外文):Seismic Response Analysis of Reinforcement Earth Retaining Structures
指導教授:林三賢林三賢引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:107
中文關鍵詞:地工合成材擋土牆地震
外文關鍵詞:geotextileretaining wallseismic
相關次數:
  • 被引用被引用:6
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在921集集地震中有許多結構物倒塌,其中包含了加勁擋土牆,本研究利用之前學者提到的美國華盛頓州Rainier Avenue wall作為基本的模型,設計牆高12.6公尺且使用回包式牆面,針對常用的地震參數:最大地表加速度、頻率及延時來探討對加勁擋土牆牆面變形、加勁材內部應力及可能發生之破壞面的影響。
分析方法使用二維有限差分的程式FLAC (Fast Lagrangian Analysis of Continua),地震資料由中央氣象局提供,本研究選取測站皆設立於自由場(free-filed),所有加速度歷時對照永久位移進行基線修正(baseline correction)。
During the magnitude 7.3 Chi-Chi earthquake that occurred in Taiwan on September 21, 1999, a large number of earth retaining structure failures were observed, including the geosynthetic reinforced soil (GRS) retaining walls. Even though a few GRS structures collapsed, these failures provide a unique opportunity to summarize the seismic parameters influence on GRS structures. The GRS wall model of this research was developed to predict the seismic behavior of Rainier Avenue wall built in Seattle, Washington. The wall was 12.6m high and geotextiles were wrapped around the wall face. The two-dimensional, explicit dynamic finite difference program Fast Lagrangian Analysis of Continua (FLAC), was used to carry out the numerical experiments. The commercial computer program FLAC has become popular for modeling the GRS walls because of its excellent capacity to model geotechnical engineering stability problems and its extended programming ability (Itasca, 1995). The peak ground acceleration (PGA) is the most commonly used measure of the amplitude of a particular ground motion, as suggested by previous literatures. Some other key parameters, e.g. the frequency, the duration, and the scale of earthquakes, should be considered when we predict the behavior of the GRS retaining walls under earthquakes. The paper reports results from numerical experiments that were carried out to investigate the influence of PGA, frequency, and duration on the response of the Rainier Avenue wall. The theme of this paper is mainly to be of interest to the seismic design and research development of the GRS retaining structures.
致謝 I
摘要 II
ABSTRACT III
Table of Contents IV
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Purpose of Study 2
1.3 Scope of Work 3
1.4 Thesis Organization 4
Chapter 2 Literature Review 5
2.1 Retaining Structures 5
2.1.1 Conventional Retaining Structures 5
2.1.2 Mechanically Stabilized Earth Retaining Structures 6
2.2 Mechanism of Reinforced Earth Retaining Structures 7
2.3 Stability of Reinforced Earth Retaining Structures 8
2.2.1 External Stability 10
2.2.2 Internal Stability 10
2.4 Internal Stability Analysis of Reinforced Earth Retaining Structures 11
2.3.1 Limit Equilibrium Analysis 13
2.3.2 Working Stress Analysis 14
2.3.3 Summary of Numerical Analysis Methods 15
2.5 Dynamic Analysis of Reinforced Earth Retaining Structures 15
2.5.1 Pseudo-Static Analysis 16
2.5.2 Displacement Analysis 16
2.5.3 Working Stress Analysis 19
2.6 Review of Safety 19
2.7 Seismic Influence Parameters 21
2.7.1 Peak Ground Acceleration(PGA) 21
2.7.2 Frequency 22
2.7.3 Duration 22
Chapter 3 Developing Numerical Models Using Computer Program FLAC 25
3.1 General Description of FLAC 25
3.2 Mohr-Coulomb Material Model 25
3.3 Reinforcement Modeling 27
3.4 Requirements for Developing Numerical Models 28
3.4.1 Model Generations 29
3.4.2 Boundary Conditions 29
3.4.3 Equilibrium Criteria 30
3.4.4 Hyperbolic Soil Modulus 30
3.4.5 Reinforcement Input Properties and Arrangement 31
3.4.6 Model Facing System 34
3.4.7 Wall Construction 36
3.5 Dynamic Loading 36
3.5.1 Boundary Conditions 36
3.5.2 Input Motion4 37
3.5.3 Damping 37
Chapter 4 Modeling Results of Dynamic Analyses 38
4.1 Introduction 38
4.2 Design Check 39
4.3 Numerical Modeling Results after Construction 39
4.3.1 Case History and Numerical Model 39
4.3.2 Modeling Results 46
4.3 Numerical Modeling Results of Dynamic Analyses 46
4.4.1 Ground Motion 46
4.4.2 Modeling Results 54
4.4 Summary and Conclusions 65
Chapter 5 Parametric Study of the Design Factors Influence on Seismic Response 76
5.1 Analyses Matrix of the Parametric Study 76
5.1.1 Input Ground Motion 76
5.1.2 Control Factors 78
5.1.3 Model Category 78
5.1.4 Matrix 79
5.2 Modeling Results of High Wall 80
5.2.1 Ratio of Reinforcement Length to Wall Height(Le/H) 80
5.2.2 Stiffness of Reinforcement(J) 83
5.3 Modeling Results of Short Wall 83
5.3.1 Ratio of Reinforcement Length to Wall Height(Le/H) 83
5.3.2 Spacing of Reinforcement(Sv) 83
5.3.3 Stiffness of Reinforcement(J) 89
5.4 Summary and Conclusions 89
Chapter 6 Conclusions and Recommendations 102
6.1 Conclusions 102
6.2 Recommendations 104
References 105
Chinese Geosynthetics Association(2001)地工合成材料加勁擋土結構設計與施工手冊, 中華地工材料協會, pp. 4.13-4.30.
Bathurst, R.J. and Hatami, K.(1998)“Seismic Response Analysis of a Geosynthetic -Reinforced Soil Retaining Wall”, Geosynthetics International, Industrial Fabrics Association International, Vol. 5, Nos. 1-2, pp. 127-166.
Boyle, S.R.(1995)“Deformation Prediction of Geosynthetic Reinforced Retaining Walls”, Ph.D. Dissertation, University of Washington, Seattle, 66p
Cai, Z. and Bathurst, R.J.(1995)“Deterministic Sliding Block Methods for Estimating Seismic Displacements of Earth Structures”, Soil Dynamics and Earthquake Engineering, Elsevier, Vol. 15, pp. 255-268.
Central Weather Bureau(2002)“Acceleration Time-History Data”
Chiang, C.C.(2002)“Static & Seismic Performance Analysis of Modular Faced Geosynthetic Reinforced Soil Wall” Master of Science Thesis, Taiwan Ocean University
Das, B.M.(1999)Principles of Foundation Engineering, International Thomson Publishing Company, pp. 387-389
Elias V., and Christopher, B.R.(1997)Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, Design and Construction Guidelines, Report No. FHWA-SA-96-071, Federal Highway Administration, 110p
Gupta, A.K.(1990)Response Spectrum Method, CRC Press Inc
Itasca Consulting Group(1999)FLAC-Fast Lagrangian Analysis of Continua, Itasca Consulting Group, Inc., Minneapolis, Command Reference, Theory and Background, and Optional Features.
Lee, W.F.(2000)“Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls,”Ph.D. Dissertation, University of Washington, Seattle
Lee, W.F. and Lin, S.S. et al.(2001)“Seismic Performance Analysis of Modular Block Faced GRS Walls,”Seismic Design and Performance of Mechanically Stabilized Earth Retaining Structures, Proceedings of the International Geosynthetics Engineering Forum, Taipei, Chinese Geosynthetics Association, pp. 175-188.
Lin, C.C. (2002)Personal communication
Lindquist, D.D.(1998)“Seismic Modeling of Geosynthetic-Reinforced Slops,”Master of Science Thesis, University of Washington, Seattle, pp. 39-73.
National Concrete Masonry Association (NCMA)(1997)Design Manual for Segmental Retaining Walls, 2nd Edition, J.G. Collin, Ed., NCMA, Herndon, pp. 91-110.
National Concrete Masonry Association (NCMA)(1998)Segmental Retaining Walls-Seismic Design Manual, 1st Edition, R.J. Bathurst, Ed., NCMA, Herndon, pp. 31-51.
Santvoort, G..P.T.M.(1995)Geosynthetics in Civil Engineering, A.A. Balkema, pp. 44-48
Kramer, S.L.(1996)Geotechnical Earthquake Engineering, Prentice Hall, pp. 54-105.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊