( 您好!臺灣時間:2022/08/20 14:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yen-Jen Chang
論文名稱(外文):Integrated Fuzzy Clustering Neural Network Structure for Evaluating Liquefaction of Soil.
指導教授(外文):Shuh-Gi Chern
外文關鍵詞:clusteringdivide-and-conquer methodologyneuro-fuzzy systemsoil liquefaction
  • 被引用被引用:7
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
There are hundred of cases of ground failure and damage to structures due to liquefaction during earthquakes in Japan, Chile, China, Central America, and the United State. Recently in 1999, considerable amount of damage had been caused in central part of Taiwan by Chi-Chi earthquake induced liquefaction. Numerous studies have been conducted to understand the behavior of saturated cohesionless soil under earthquake loading. A lot of theoretical and empirical methods have also been developed for evaluation of liquefaction potential. Many of the existing assessment methods are developed from observations of the performance of sites during earthquake. Using field record like STP-N or CPT-qc, simplified empirical correlations are established between the soil and the seismic properties and the occurrence or nonoccurrence of liquefaction at the site. However, current simplified methods seem not so suitable and may fail for evaluating some sites of Chi-Chi earthquake induced liquefaction. This paper presents a neuro-fuzzy system to solve these complex problems.
In this study, a neuro-fuzzy system is developed, based on divide-and-conquer methodology, integrated fuzzy system, clustering algorithm, and neural network method. Consequently, the Chi-Chi earthquake data as well as other reported data are used to evaluate earthquake induced liquefaction potentials. With the help of case studies, it is shown that the proposed model has less error rate than conventional empirical methods, and is able to predict liquefaction potentials much more satisfactory than other neural network methods.
摘要 I
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 研究方法 2
1-4 研究內容 3
第二章 文獻回顧 6
2-1 群聚分析 6
2-1-1 群聚分析演算法 6
2-1-2 模糊 C-means群聚分析 7
2-1-3 機率 C-means群聚分析 9
2-2 類神經網路 11
2-2-1 類神經網路的發展背景 11
2-2-2 生物神經元與人工神經元 13
2-2-3 類神經網路在大地工程領域之應用 14
2-3 模糊理論 15
2-3-1 模糊理論的發展背景 15
2-3-2 模糊集合與歸屬函數 16
2-3-3 模糊系統與模糊規則 17
2-3-4 模糊理論在大地工程領域之應用 18
第三章 土壤液化潛能評估 22
3-1 前言 22
3-2 土壤液化之定義 22
3-3 土壤液化之機制 23
3-4 影響土壤液化潛能之因素 24
3-4-1 現地狀況 24
3-4-2 土壤性質 25
3-4-3 地震特性 27
3-5 土壤液化評估方法 27
3-5-1 Seed簡易經驗法 28
3-5-2 Tokimatsu & Yoshimi液化評估法 30
3-5-3 日本道路橋液化評估法 31
3-5-4 新日本道路橋液化評估法 33
3-5-5 NCEER修正的Seed簡易經驗法 36
第四章 整合式模糊群聚類神經網路架構 47
4-1 前言 47
4-2 系統模式 47
4-3 模糊規則萃取 48
4-3-1 修正型PCM群聚分析 49
4-3-2 分類適切性指標 52
4-3-3 規則補集 52
4-4 學習法則 53
4-4-1 架構學習 54
4-4-2 參數學習 55
第五章 案例分析 61
5-1 前言 61
5-2 資料處理 61
5-2-1 資料蒐集 61
5-2-2 輸入參數選擇 62
5-2-3 輸入參數正規化 64
5-3 系統參數設定 64
5-4 分析結果 67
5-4-1 類神經模糊系統與傳統液化評估法分析結果比較 67
5-4-2 類神經模糊系統與倒傳遞類神經網路分析結果比較 68
5-5 參數相對重要性 69
第六章 結論與建議 91
6-1 結論 91
6-2 建議 91
參考文獻 93
附錄 99
Garson方法 99
9.Abu, K. M. A., “General Regression Neural Networks for Driven Piles in Cohesionless Soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 12, pp. 177-1185 (1998).
10.Adeli, H., and Yeh, C., “Perception Learning in Engineering Design,” Microcomputers in Civil Engineering, Vol. 4, No. 4, pp. 247-256 (1989).
11.Anderson, J. A., and Rosenfeld, E., Neurocomputing: Foundations of Research, Cambridge, MA: MIT Press (1989).
12.Bezdek, J. C., “Fuzzy mathematics in pattern classification,” ph. D. dissertation, Cornell University, Ithaca, N.Y. (1973).
13.Brown, D. A., and Berke, L., “Computational Simulation of Composite Ply Micromechanics Using Artificial Neural Networks,” Microcomputers in Civil Engineering, Vol. 6, pp.87-97 (1991).
14.Casagrande, A., “Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills,” Journal of Boston Society of Civil Engineering, Jan. 1936, pp. 60-64 (1936).
15.Chen, J. W., and Chen, C. Y., “A Fuzzy Methodology for Evaluation of the Liquefaction Potential,” Microcomputers in Civil Engineering, Vol. 12, No. 3, pp. 193-204 (1997).
16.Chern, S. G., Hu, R. F., Chang, Y. J., and Tsai, I. F., “Fuzz-ART Neural Networks for Predicting Chi-Chi Earthquake Induced Liquefaction in Yuan-Lin Area,” Journal of Marine Science and Technology, Vol. 10, No. 1, (2002).
17.Dai, H., and Macbeth, C., “Automatic Picking of Seismic Arrivals in Local Earthquake Data Using an Artificial Neural Network,” Geophysical Journal International, Vol. 120, pp. 758-774 (1995).
18.Dave, R. N., and Krishnapuram, R., “Robust Clustering Methods: A Unified View,” IEEE Transactions on Fuzzy Systems, Vol. 1, No. 2, pp. 270-293 (1997).
19.Ellis, G. W., Yao, C., Zhao, R., and Penumadu, D., “Stress-Strain Modeling of Sands Using Artificial Neural Networks,” Journal of Geotechnical Engineering, Vol. 121, No. 5, pp. 429-435 (1995).
20.Elton, D. J., Juang, C. H., and Sukumaran, B., “Liquefaction Susceptibility Evaluation Using Fuzzy Sets,” Soils and Foundations, Vol. 35, No. 2, pp. 49-60 (1995).
21.Garson, G. D., “Interpreting neural-network connection weights,” AI Expert, Vol. 6, No. 7, pp. 47-51 (1991).
22.Goh, A. T. C., “Seismic Liquefaction Potential Assessed by Neural Network,” Journal of Geotechnical Engineering, Vol. 120, No. 9, pp. 1467-1480 (1994).
23.Goh, A. T. C., “Neural-Network Modeling of CPT Seismic Liquefaction Data,” Journal of Geotechnical Engineering, Vol. 122, No. 1, pp. 70-73 (1996).
24.Hagan, M. T., Demuth, H. B., and Beale, M., Neural Network Design, PWS Publishing Company (1996).
25.Hanselman, D. C., Mastering MATLAB 6: A Comprehensive Tutorial and Reference, Prentice Hall International, Inc. (2001).
26.Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall International, Inc., 842p (1999).
27.Hwang, J. H., and Yang, C. W., “Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data,” Soil Dynamics and Engineering, Vol. 21, pp. 237-257 (2001).
28.Ishibashi, I., Sherif, M. A., and Cheng, W. L., “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction,” Soils and Foundations, Vol. 22, No. 1, pp. 39-48 (1982).
29.Jang, J. S., Sun, C. T., and Mizutani, E., Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall International, Inc., 614p (1997).
30.Juang, C. H., and Chen, C. J., “A Rational Method for Development of Limit State for Liquefaction Evaluation Based on Shear Wave Velocity Measurements,” International Journal for Numerical and Analytical Method in Geomechanics, Vol. 24, pp. 1-27 (2000).
31.Juang, C. H., and Chen, C. J., “CPT-Based Liquefaction Evaluation Using Artificial neural networks,” Computer-Aided Civil and Infrastructure Engineering, Vol. 14, No. 3, pp. 221-229 (1999).
32.Juang, C. H., Chen, C. J., and Tien, Y. M., “Appraising CPT-Based Liquefaction Resistance Evaluation Methods: Artificial Neural Networks Approach,” Canadian Geotechnical Journal, Vol. 36, No 3, pp. 443-454 (1999).
33.Juang, C. H., Chen, C. J., Jiang, T., and Andrus, R. D., “Risk-Based Liquefaction potential Evaluation Using Standard Penetration Tests,” Canadian Geotechnical Journal, Vol. 37, pp. 1195-1208 (2000).
34.Juang, C. H., Lee, D. H., and Sheu, C., “Mapping Slope Failure Potential Using Fuzzy Sets,” Journal of The Geotechnical Engineering, Vol. 118, No. 3, pp. 475-494 (1992).
35.Krishnapuram, R., and Keller, J. M., “A Possibilistic Approach to Clustering,” IEEE Transactions on Fuzzy Systems, Vol. 1, No. 2, pp. 98-110 (1993).
36.Lee, K. L., and Fitton, J. A., “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils and Foundations, STP 450, pp. 71-96 (1969).
37.Lin, C. T., and Lee, C. S. G., Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelligent Systems, Prentice Hall (1996).
38.Ni, S. H., Lu, P. C., and Juang, C. H., “A Fuzzy Neural Network Approach to Evaluation of Slope Failure Potential,” Microcomputers in Civil Engineering, Vol. 11, pp. 59-66 (1996).
39.Robertson, P. K., and Wride, C. E., “Cyclic Liquefaction and its Evaluation Based on SPT and CPT,” Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Edited by Youd, T. L. and Idriss, I. M., NCEER-97-0022 (1997).
40.Ross, G. A., Seed, H. B., and Migliaccio, R. R., “Bridge Foundations in Alaska earthquake,” Journal of the Soil Mechanics and Foundations Division, Vol. 95, No. SM3, Proc. Paper 4223, May (1969).
41.Seed, H.B., “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of The Geotechnical Engineering Division, Vol. 105, No. GT2, Feb., pp. 201-255 (1979).
42.Seed, H. B., and Idriss, I. M., “Simplified Procedures for Evaluation Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. SM9, pp. 1249-1273 (1971).
43.Seed, H. B., Idriss, I. M., and Arango I., “Evaluation of Liquefaction Potential Using Field Performance Data,” Journal of the Geotechnical Engineering Division, Vol. 109, No. 3, pp. 458-482 (1983).
44.Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal of Geotechnical Engineering, Vol. 111, No. 12, pp. 1425-1445 (1985).
45.Shi, J., Ortigao, J. A. R., and Bai, J., “Modular Neural Networks for Predicting Settlements During Tunneling,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 5, pp. 389-395 (1998).
46.Tokimatsu, K., and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based on SPT-N Value and Fines Content,” Soils and Foundations, Vol. 23, No. 4, pp. 56-74 (1983).
47.Tung, A. T. Y., Wang, Y. Y., and Wong, F. S., “Assessment of Liquefaction Potential Using Neural Networks,” Soil Dynamics and Engineering, Vol. 12, pp. 325-335 (1993).
48.Wang, J., and Rahman, M. S., “A Neural Network Model for Liquefaction-Induced Horizontal Ground Displacement,” Soil Dynamics and Earthquake Engineering, Vol. 18, pp. 555-568 (1999).
49.Wong, R.T., Seed H. B., and Chan, C. K., “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of The Soil Mechanics and Foundations Division, Vol. 101, No. GT6, pp. 571-583 (1975).
50.Xie, X. L., and Beni, G., “A Validity Measure for Fuzzy Clustering,” IEEE Transactions on Pattern analysis and Machine Intelligence, Vol. 13, No. 8, pp. 841-847 (1991).
51.Zadeh, L. A., “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353 (1965).
第一頁 上一頁 下一頁 最後一頁 top