1.日本道路協會,道路橋示方書同解說,V耐震設計篇(1990)。
2.日本道路協會,道路橋示方書同解說,V耐震設計篇(1996)。
3.吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,第39-70頁(1979)。4.何啟誠,「土壤液化潛能之評估方法研究」,碩士論文,私立中原大學土木工程所,中壢(1992)。5.林昇甫、洪成安,神經網路入門與圖樣辨識,全華科技圖書股份有限公司,臺北(1996)。
6.蔡宜峰,「自適應共振模糊類神經網路分析大地工程問題」,碩士論文,國立台灣海洋大學河海工程所,基隆(2000)。7.賴宏源,「九二一集集地震中部地區土壤液化案例之研析」,碩士論文,國立成功大學土木工程所,台南(2000)。8.蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法,全華科技圖書股份有限公司,臺北(1997)。
9.Abu, K. M. A., “General Regression Neural Networks for Driven Piles in Cohesionless Soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 12, pp. 177-1185 (1998).
10.Adeli, H., and Yeh, C., “Perception Learning in Engineering Design,” Microcomputers in Civil Engineering, Vol. 4, No. 4, pp. 247-256 (1989).
11.Anderson, J. A., and Rosenfeld, E., Neurocomputing: Foundations of Research, Cambridge, MA: MIT Press (1989).
12.Bezdek, J. C., “Fuzzy mathematics in pattern classification,” ph. D. dissertation, Cornell University, Ithaca, N.Y. (1973).
13.Brown, D. A., and Berke, L., “Computational Simulation of Composite Ply Micromechanics Using Artificial Neural Networks,” Microcomputers in Civil Engineering, Vol. 6, pp.87-97 (1991).
14.Casagrande, A., “Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills,” Journal of Boston Society of Civil Engineering, Jan. 1936, pp. 60-64 (1936).
15.Chen, J. W., and Chen, C. Y., “A Fuzzy Methodology for Evaluation of the Liquefaction Potential,” Microcomputers in Civil Engineering, Vol. 12, No. 3, pp. 193-204 (1997).
16.Chern, S. G., Hu, R. F., Chang, Y. J., and Tsai, I. F., “Fuzz-ART Neural Networks for Predicting Chi-Chi Earthquake Induced Liquefaction in Yuan-Lin Area,” Journal of Marine Science and Technology, Vol. 10, No. 1, (2002).
17.Dai, H., and Macbeth, C., “Automatic Picking of Seismic Arrivals in Local Earthquake Data Using an Artificial Neural Network,” Geophysical Journal International, Vol. 120, pp. 758-774 (1995).
18.Dave, R. N., and Krishnapuram, R., “Robust Clustering Methods: A Unified View,” IEEE Transactions on Fuzzy Systems, Vol. 1, No. 2, pp. 270-293 (1997).
19.Ellis, G. W., Yao, C., Zhao, R., and Penumadu, D., “Stress-Strain Modeling of Sands Using Artificial Neural Networks,” Journal of Geotechnical Engineering, Vol. 121, No. 5, pp. 429-435 (1995).
20.Elton, D. J., Juang, C. H., and Sukumaran, B., “Liquefaction Susceptibility Evaluation Using Fuzzy Sets,” Soils and Foundations, Vol. 35, No. 2, pp. 49-60 (1995).
21.Garson, G. D., “Interpreting neural-network connection weights,” AI Expert, Vol. 6, No. 7, pp. 47-51 (1991).
22.Goh, A. T. C., “Seismic Liquefaction Potential Assessed by Neural Network,” Journal of Geotechnical Engineering, Vol. 120, No. 9, pp. 1467-1480 (1994).
23.Goh, A. T. C., “Neural-Network Modeling of CPT Seismic Liquefaction Data,” Journal of Geotechnical Engineering, Vol. 122, No. 1, pp. 70-73 (1996).
24.Hagan, M. T., Demuth, H. B., and Beale, M., Neural Network Design, PWS Publishing Company (1996).
25.Hanselman, D. C., Mastering MATLAB 6: A Comprehensive Tutorial and Reference, Prentice Hall International, Inc. (2001).
26.Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall International, Inc., 842p (1999).
27.Hwang, J. H., and Yang, C. W., “Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data,” Soil Dynamics and Engineering, Vol. 21, pp. 237-257 (2001).
28.Ishibashi, I., Sherif, M. A., and Cheng, W. L., “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction,” Soils and Foundations, Vol. 22, No. 1, pp. 39-48 (1982).
29.Jang, J. S., Sun, C. T., and Mizutani, E., Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall International, Inc., 614p (1997).
30.Juang, C. H., and Chen, C. J., “A Rational Method for Development of Limit State for Liquefaction Evaluation Based on Shear Wave Velocity Measurements,” International Journal for Numerical and Analytical Method in Geomechanics, Vol. 24, pp. 1-27 (2000).
31.Juang, C. H., and Chen, C. J., “CPT-Based Liquefaction Evaluation Using Artificial neural networks,” Computer-Aided Civil and Infrastructure Engineering, Vol. 14, No. 3, pp. 221-229 (1999).
32.Juang, C. H., Chen, C. J., and Tien, Y. M., “Appraising CPT-Based Liquefaction Resistance Evaluation Methods: Artificial Neural Networks Approach,” Canadian Geotechnical Journal, Vol. 36, No 3, pp. 443-454 (1999).
33.Juang, C. H., Chen, C. J., Jiang, T., and Andrus, R. D., “Risk-Based Liquefaction potential Evaluation Using Standard Penetration Tests,” Canadian Geotechnical Journal, Vol. 37, pp. 1195-1208 (2000).
34.Juang, C. H., Lee, D. H., and Sheu, C., “Mapping Slope Failure Potential Using Fuzzy Sets,” Journal of The Geotechnical Engineering, Vol. 118, No. 3, pp. 475-494 (1992).
35.Krishnapuram, R., and Keller, J. M., “A Possibilistic Approach to Clustering,” IEEE Transactions on Fuzzy Systems, Vol. 1, No. 2, pp. 98-110 (1993).
36.Lee, K. L., and Fitton, J. A., “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils and Foundations, STP 450, pp. 71-96 (1969).
37.Lin, C. T., and Lee, C. S. G., Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelligent Systems, Prentice Hall (1996).
38.Ni, S. H., Lu, P. C., and Juang, C. H., “A Fuzzy Neural Network Approach to Evaluation of Slope Failure Potential,” Microcomputers in Civil Engineering, Vol. 11, pp. 59-66 (1996).
39.Robertson, P. K., and Wride, C. E., “Cyclic Liquefaction and its Evaluation Based on SPT and CPT,” Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Edited by Youd, T. L. and Idriss, I. M., NCEER-97-0022 (1997).
40.Ross, G. A., Seed, H. B., and Migliaccio, R. R., “Bridge Foundations in Alaska earthquake,” Journal of the Soil Mechanics and Foundations Division, Vol. 95, No. SM3, Proc. Paper 4223, May (1969).
41.Seed, H.B., “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of The Geotechnical Engineering Division, Vol. 105, No. GT2, Feb., pp. 201-255 (1979).
42.Seed, H. B., and Idriss, I. M., “Simplified Procedures for Evaluation Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. SM9, pp. 1249-1273 (1971).
43.Seed, H. B., Idriss, I. M., and Arango I., “Evaluation of Liquefaction Potential Using Field Performance Data,” Journal of the Geotechnical Engineering Division, Vol. 109, No. 3, pp. 458-482 (1983).
44.Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal of Geotechnical Engineering, Vol. 111, No. 12, pp. 1425-1445 (1985).
45.Shi, J., Ortigao, J. A. R., and Bai, J., “Modular Neural Networks for Predicting Settlements During Tunneling,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 5, pp. 389-395 (1998).
46.Tokimatsu, K., and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based on SPT-N Value and Fines Content,” Soils and Foundations, Vol. 23, No. 4, pp. 56-74 (1983).
47.Tung, A. T. Y., Wang, Y. Y., and Wong, F. S., “Assessment of Liquefaction Potential Using Neural Networks,” Soil Dynamics and Engineering, Vol. 12, pp. 325-335 (1993).
48.Wang, J., and Rahman, M. S., “A Neural Network Model for Liquefaction-Induced Horizontal Ground Displacement,” Soil Dynamics and Earthquake Engineering, Vol. 18, pp. 555-568 (1999).
49.Wong, R.T., Seed H. B., and Chan, C. K., “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of The Soil Mechanics and Foundations Division, Vol. 101, No. GT6, pp. 571-583 (1975).
50.Xie, X. L., and Beni, G., “A Validity Measure for Fuzzy Clustering,” IEEE Transactions on Pattern analysis and Machine Intelligence, Vol. 13, No. 8, pp. 841-847 (1991).
51.Zadeh, L. A., “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353 (1965).