跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張燿顯
研究生(外文):Chang, Yao - Xian
論文名稱:波浪作用對海床砂土動態特性與液化行為之研究
論文名稱(外文):The Study of Seabed Sand''s Dynamic Property and Liquefaction Behavior under Wave''s Effect.
指導教授:簡連貴簡連貴引用關係
指導教授(外文):Chien, Lien-Kwei
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:280
中文關鍵詞:波浪週期孔隙水壓蘭陽平原海床液化
外文關鍵詞:waveperiodpore water pressureLan-Yang Plainseabed liquefaction
相關次數:
  • 被引用被引用:17
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
一般近岸地區設計結構物基礎時,影響結構物安全的重要外力有地震力與波浪力,本研究主要針對波浪外力,考慮波浪外力對海床土壤之影響。由於波浪力的反覆作用,使得海床土壤孔隙水壓累積、有效應力降低,當孔隙水壓累積達到一定程度,將使海床土壤強度降低或產生海床土壤液化現象。海床土壤液化,其穩定性會受到破壞,因此可能進一步引起漂砂、侵蝕、淘空,最後導致附近海岸結構物傾斜、沈陷或破壞。
本研究蒐集台灣東北部海域環境資料及相關文獻,包含波浪週期、土壤物理性質、超額孔隙水壓激發、海床液化、波浪作用在海床表面之應力等資料,主要針對於波浪反覆荷重作用下海床土壤產生不穩定或液化之現象做深入的研究。選擇以台灣東北部宜蘭頭城─國際通信海纜登陸站之近岸海床砂土為試驗砂樣,利用濕搗法製作重模試體,以自研式動力三軸試驗系統之反覆荷重來模擬波浪由上而下傳遞於海床表面的外力,並考慮四種外力作用週期(1、5、9、12秒)、覆土厚度(30kPa、50kPa)及土壤相對密度(35%、55%)等不同條件之試體進行試驗,以釐清各家學者在反覆作用外力之週期對飽和砂土液化行為影響之不同論點。另外相同於以往學者在海床液化方面,針對於砂土孔隙水壓激發之特性進行探討。
除釐清反覆作用外力之週期對飽和砂土液化行為影響外,並針對Nataraja & Gill (1983)、Ishihara & Yamazaki (1984)以及陳景文&楊朝景 (1996)學者所提出海床土壤液化潛能評估方法之準則及其演進,加以整理介紹,同時針對此三種評估方法之優缺點進行比較分析,以作為修正海床液化評估方法之參考。
進一步的針對各學者尚未考慮到的近岸水深地形之影響因素加入於海床液化潛能評估方法中,利用近海波譜模式(Near Shore Spectrum Wave Model)分析在某一季節波浪週期作用下,因地形影響因素之波高分佈情形,以及將本研究之試驗結果─海床砂土受實際波浪週期作用下之反覆剪力強度比代入,進而發展出更完整、更符合實際現地的海床液化潛能評估方法。將其應用於蘭陽平原近岸沿海海床之液化潛能評估,以求得海床液化範圍及厚度。
Generally speaking, the significant external forces that influence the safety of constructions in the near shore areas are earthquake force and wave force. This research aimed at the wave force and its influences on the seabed soil. The seabed soil’s pore water pressure accumulated and the effect stress decreased under the repeated wave force. When the pore water pressure reaches to a certain level will reduce the strength or cause liquefaction of the seabed soil. Liquefaction of the seabed soil will cause damage to seabed’s stability and may induce drifting sands, erosions, hollows and leads to leaning, sinking and destruction of the nearshore structures.
This research gathered environmental data of northeast Taiwan sea area and other related documents such as the wave period, the physical characters of the soil, the pore water pressure, the liquefactions of seabed and the stress of seabed surface under wave’s influences etc. and do thorough research of instabilities or liquefactions of seabed soil under wave’s influences. To ascertain different scholars’ divided theories of saturated soil liquefaction under periods of repeated external force, this research selected sand soil from Toucheng Cable Station, Tou-Cheng Yi-Lan, northeast coast of Taiwan, as the experimental samples; used moist tamping (MT) method, and self-studied three-axis power experiment system, which simulated the external forces sent down to the seabed from the wave; and considered of samples under different conditions, experimented with different external force acting periods (1、5、9、12 seconds), covered soil thicknesses (30kPa, 50 kPa) and related soil densities (35%, 55%), then, investigated the characteristics of soil excited pore water pressure as the scholars.
This research didn’t only ascertain the divided theory but also introduce different standards of seabed soil liquefaction evaluation methods by Nataraja & Gill (1983), Ishihara & Yamazaki (1984) and Jing-Wen Chen & Chao-Jin Yang (1996) and their evolvement, then compared and analyzed these three evaluation methods’ advantages and defects to be the reference resources revising the seabed liquefaction evaluation methods.
Furthermore, this research leaded in the influential elements of the near shore water depth and land shape that most scholars didn’t take in to consideration yet. By using the Near Shore Spectrum Wave Model (NSW) , we may analyze the distribution of wave height influenced by the land shape under a certain season’s wave period and lead in the experiment’s results, seabed sand’s cyclic shear stress strength ratio under actual periods of wave force then evolve a more complete, more practical and more accurate seabed soil liquefaction evaluation methods. And put it into use of the liquefaction evaluation around Lanyang plain to seek the liquefaction depth and range of the seabed.
摘 要 I
Abstract III
目 錄 V
表 目 錄 VIII
圖 目 錄 IX
第一章 緒 論 1
1-1研究背景 1
1-1-1台灣周邊海事工程現況分析 1
1-1-2近岸地區海床土壤液化災害 6
1-2研究目的 9
1-3研究架構 11
1-4論文內容 12
第二章 文獻回顧 15
2-1影響海床穩定之外力∼地震力與波浪力 15
2-2波浪外力的考量 17
2-3孔隙水壓力 19
2-3-1孔隙水壓激發分析模式 19
2-3-2孔隙水壓實驗及現場研究 23
2-3-3孔隙水壓數學及數值解析 25
2-4波浪作用引致海床土壤不穩定之因素 28
2-4-1剪力破壞 28
2-4-2海床液化 31
2-5液化之定義 35
2-6影響砂土液化強度之因素 37
2-6-1土壤組構特性之影響 37
2-6-2試驗狀態之影響 43
2-6-3應力狀態之影響 47
2-6-4動態作用之影響 51
2-7結語 54
第三章 試驗砂樣、儀器及試驗方法 55
3-1試驗砂樣描述 55
3-1-1試驗砂樣來源 55
3-1-2試驗砂樣基本性質 56
3-2試驗儀器與相關設備 61
3-2-1供壓系統 61
3-2-2量測系統 64
3-2-3控制及資料擷取系統 67
3-3儀器之校正 74
3-3-1電控調壓閥(E/P)之校正 74
3-3-2線性可變差動變壓器(LVDT)之校正 74
3-3-3體積變化儀(Volume Change)之校正 75
3-3-4訊號調節放大器(Amplifier)之校正 76
3-3-5荷重計(Load Cell)之校正 76
3-3-6孔隙水壓計(Pressure Transducer)之校正 77
3-4試驗方法 79
3-4-1動力三軸試驗 79
3-4-2試體準備方式 79
3-4-3試驗步驟 82
3-5試驗規劃 86
第四章 波浪作用對海床土壤抗液化強度之影響 89
4-1研究範圍、名詞定義 89
4-1-1研究範圍 89
4-1-2波浪作用力 92
4-1-3海床破壞定義 92
4-1-4抗液化強度與反覆剪應力比 94
4-1-5波浪作用次數 94
4-1-6波浪引起海床土壤之剪應力 96
4-2自研式動力三軸系統之試驗結果 99
4-2-1自研式動力三軸試驗結果與CKC動力三軸系統之比較 99
4-2-2砂土液化試驗結果 101
4-3不同波浪週期對海床沉積土壤抗液化強度的影響 107
4-3-1低相對密度不同海床深度之探討 109
4-3-2中等相對密度不同海床深度之探討 110
4-3-3不同波浪週期對土壤抗液化強度變化之探討 112
4-4波浪作用次數與抗液化強度 118
4-5波浪作用對不同土層深度動態強度的影響 124
4-6波浪作用力對不同相對密度動態強度的影響 130
第五章 波浪作用下海床土壤孔隙水壓激發特性 135
5-1孔隙水壓激發 135
5-2 Seed孔隙水壓激發模式曲線分析 138
5-3黃俊鴻孔隙水壓激發三階段分析 148
5-3-1波浪與地震外力週期引致孔隙水壓激發之差異 149
5-3-2不同反覆應力比影響下之超額孔隙水壓情形 149
5-3-3不同相對密度下之超額孔隙水壓情形 149
5-3-4不同有效應力下之超額孔隙水壓情形 150
第六章 近岸海床地區液化潛能評估之分析 161
6-1研究區域之描述 161
6-1-1地象 162
6-1-2海域氣象 165
6-2海床土壤液化評估方法之探討 167
6-2-1 Nataraja & Gill海床液化之簡易評估法(1983) 167
6-2-2 Ishihara & Yamazaki海床液化潛能評估法(1984) 171
6-2-3陳景文&楊朝景之海床液化潛能評估法(1996) 176
6-3海床液化潛能研究分析 182
6-3-1海床液化潛能評估法之分析過程 182
6-3-2海床液化潛能評估法分析結果之探討 195
6-3-3分析探討之結論 199
6-4海床液化潛能評估方法之修正 201
6-4-1評估方法修正之步驟 201
6-4-2海床液化潛能之分析結果 209
第七章 結論與建議 227
7-1結論 227
7-2建議 233
參考文獻 235
附錄一 海床液化潛能評估方法之分析數據結果 241
附錄二 碩士學位論文口試之投影片 251
[1]
Ishihara, K., and A. Yamazaki, (1984),〝Analysis of Wave-Induced Liquefaction in Sea-bed Deposits of Sand〞, Soils and Foundations, Vol.24, No.3, pp.85-100.
[2]
Seed, H. B., Martin, P. P., and Lysmer, J., (1976),〝Pore-Water Pressure Changes During Soil Liquefaction〞, Journal of the Geotechnical Engineering Division, ASCE, Vol.102, No.GT4, Proc. Paper 12074, Apr., pp.323-346.
[3]
Lee, K.L. and Focht, J. A., (1975),〝Liquefaction Potential of Ekofish Tank in North Sea〞, Journal of the Geotechnical Engineering Division, ASCE, Vol.101, No.GT1, pp.1-18
[4]
Tsui, Y.T. and Helfrich, S. C., (1983).〝Wave-induced pore pressure in submerged sand layer〞Journal of the Geotechnical Engineering Division, ASCE, 109(4), pp.603-618.
[5]
Maeno, Y. H. and Hasegawa, T., (1985).〝Evaluation of wave-induced pore pressure in sand layer by wave steepness〞Coastal Engineering in Japan,28, pp.31-44
[6]
Demars, K. R. and Vanover, E.A., (1985).〝Measuremwnr of wave-induced pressures and stresses in a sand bed〞Marine Geotechnology,6(1), pp.29-59.
[7]
Zen, K. and Yamazaki, H., (1990).〝Mechanism of wave-induced liquefaction and densification in seabed〞, Soils and Foundations, 30(4), pp.90-104
[8]
Tsai, C. P. and Lee, T. L., (1994),〝Standing wave induced soil response in a porous seabed〞Proceedings 24th International Conference on Coastal Engineering, ASCE, pp.3369-3377.
[9]
Tsai, C. P. and Lee, T. L., (1995),〝Standing wave induced pore pressure in a porous seabed〞, Ocean Engineering, 22(6), pp.505-517.
[10]
Huang, H. H., Hwang, K. S. and Lee, B. H., (1996),〝Wave boundary layer flows and pore pressures in permeable beds〞, Proceedings 25th International Conference on Coastal Engineering, ASCE, pp.3219-3230.
[11]
Bennett, R. H., Faris, J. R., (1979),〝Ambient and dynamic pore pressures in fine-grained subnarine sediments:Mississippi〞, Applied Ocean Research 1(3), pp.115-123.
[12]
Okusa, S. and Uchida, A., (1980),〝Pore-water pressure change in submarine sediments due to waves〞, Marine Geotechnology, 4(2), pp.145-161.
[13]
Maeno, Y. H. and Hasegawa, T., (1987),〝In-situ measurements of wave-induced pore pressure for predicting properties of seabed deposits.〞, Coastal Engineering in Japan, 30(1), pp.99-115.
[14]
Zen, K. and Yamazaki, H., (1991),〝Field observation and analysis of wave-induced liquefaction in seabed〞, Soils and Foundations, 31(4), pp.90-104.
[15]
Zen, K. and Yamazaki, H., (1993),〝Wave-induced liquefaction in a permeable seabed〞, Report, Port and Harbour Research Institite., Japan,31(5), pp.155-192.
[16]
Putnam, J. A.,(1949).〝Loss of wave energy due to percolation in a permeable sea bottom.〞, Transactions, American Geophysical Union,30(3), pp.349-356.
[17]
Reid, R. O. and Kajiura, K., (1957),〝On the damping of gravity waves over a permeable sea bed〞, Transactions, American Geophysical Union,38, pp.662-666.
[18]
Sleath, J. F. A., (1970),〝Wave-induced pressures in beds of sand〞, Journal of Hydraulics Division, ASCE, 96(2), pp.367-378.
[19]
Moshagen, H. and Torum, A., (1975),〝Wave induced pressures in permeable seabeds〞, Journal of Waterways, Harbors and Coastal Engineering Division, ASCE, 101(1), pp.49-57.
[20]
Prevost, J. H., Eide, O. and Anderson, K. H., (1975),〝Discussion on Wave induced pressures in permeable seabeds〞, Journal of Waterways, Harbors and Coastal Engineering Division, ASCE, 101(1), pp.464-465.
[21]
Yamamoto, T., Koning, H. L., Sellmeiher, H. and van Hijum, E. V., (1978), 〝On the response of a poro-elastic bed to water waves〞, Journal of Fluid Mechanics, 87, pp.193-206.
[22]
Madsen, O. S., (1978),〝Wave-induced pore pressures and effective stresses in a porous bed〞, Geotechnique, 28, pp.377-393.
[23]
Hsu, J. R. C. and Jeng, D.S., (1994),〝Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness〞, International Journal for Numerical and Analytical Methods in Geomechanics, 18(11), pp.785-807.
[24]
Rahman, M.S., (1991),〝Wave-induced instability of seabed:Mechanism and conditions〞, Marine Geotechnology 10, pp.277-299.
[25]
Rahman, M.S., (1997),〝Instability and movement of oceanfloor sediments:A review〞, International Journal of Offshore and Polar Engineering 7(3), pp.220-225.
[26]
Mitchell, J.K., Tsui, K.K., Sangrey, D.A., (1972),〝Failure of submarine slopes under wave action〞, Proceeding 13th International Conference on Coastal Engineering, ASCE, 2, pp.1515-1539.
[27]
Bea, R.G., Wright, S.G., Sircar, P., Niedoroda, A.W., (1983),〝Wave-induced slides in South Pass block 70, Mississippi Delta〞, Journal of Geotechnical Engineering, ASCE, 109(1), pp.619-644.
[28]
Nataraja, M.S. and Gill, H.S., (1983),〝Ocean Wave-Induced Liquefaction Analysis〞, Journal of Geotechnical Engineering, ASCE, 109(4), pp.573-590.
[29]
Finn, W.D.L., Siddnarthan, R., Martin, G.R., (1983),〝Response of seafloor to ocean waves〞, Journal of Geotechnical Engineering, ASCE 109(4), pp.556-572.
[30]
Lee, H.J., Edwards, B.D., (1986),〝Regional method to assess offshore slope stability〞, Journal of the Geotechnical Engineering, ASCE 112(5), pp.489-509.
[31]
Rahman, M.S., Jaber, W.Y., (1986),〝A simplified drained analysis for wave-induced liquefaction in ocean floor sands〞, Soils and Foundations 26(1), pp.57-68.
[32]
Henkel, D.H., (1970),〝The role of waves in causing submarine landslides〞, Geotechnique 20(1), pp.75-80.
[33]
Shiaw-Yih Tzang,(臧效義)(1992),〝Water Wave-induced Soil Fluidization in a Cohesionless Fine-Grained Seabed〞, dissertation of Ph.D., University of California at Berkeley.
[34]
AnnajiRao V. Chillarige, N.R. Morgenstern, P.K. Robertson, and H.A.Christian, (1997),〝Seabed instability due to flow liquefaction in the Fraser River delta.〞, Can. Geotech. Journal, Vol.34, pp.520-533.
[35]
陳景文,楊朝景,(1996),〝高雄附近沿海砂質海床之液化潛能評估〞,中國土木水利工程學刊,第八卷,第一期,第1-12頁。
[36]
Tsotsos, S., Georgiadis, M., Damaskindou, A., (1989),〝Numerical analysis of liquefaction potential of partially drained seafloor〞, Coastal Engineering 13(2), pp.117-128.
[37]
Umehara, Y., Zen, K., Yoshizawa, H., (1991),〝Design concept of treated ground by premixing method〞, Proceedings of the International Conference on Geotechnical Engineering For Coastal Development─Theoty and Practice on Soft Ground(Geot-Coastal 91), Yokohama, Japan, 1, pp.519-524.
[38]
Townsend, F. C., (1978), 〝A Review of Factors Affecting Cyclic Triaxial Tests〞, Dynamics Geotechnical Testing, ASTM, STP 654, pp.365-383.
[39]
Lee and Fitton(1969), 〝Factors Affecting The Cyclic Loading Strength of Soil〞, Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp71-96,.
[40]
Wong, R.T., Seed H. B., and Chan, C. K., (1975),〝Cyclic Loading Liquefaction of Gravelly Soils〞, Journal of The Soil Mechanics and Foundations Division, ASCE, Vol.101, No.GT6, pp.571-583.
[41]
Ishibashi, I., Sherif, M. A., and Cheng, W. L., (1982),〝The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction〞, Soils and Foundations, Vol.22, No.1, pp.39-48.
[42]
Vaid, Yoginder P., Et Al., (1985)〝Confining Pressure, Grain Angularity, and Liquefaction〞Journal of Geotechnical Engineering, ASCE, Vol.111, No.10, Oct., pp.1229-1235.
[43]
Vaid, Y.P. Et Al., (1990),〝Particle Gradation and Liquefaction〞Journal of Geotechnical Engineering, ASCE, Vol.116, No.4, April, pp.698-703.
[44]
吳偉特, (1979),〝台灣地區砂性土壤液化潛能之初步分析〞,土木水利季刊第六卷,第二期, pp.39-70.
[45]
Seed H. B. and Idriss, I.M., (1967),〝Analysis Of Soil Liquefaction : Niigata Earthquake〞JSMFD , ASCE , Vol. 93 , No. SM3, pp. 83-108.
[46]
Kenneth L. Lee, And H. Bolton Seed, (1967),〝Cyclic Stress Conditions Causing Liquefaction Of Sand〞, Journal Of The Soil Mechanics And Foundations Division, ASCE, Vol.93, No.SM1, pp.47-70, Jan.
[47]
Seed, H.B., (1979),〝Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes〞, Journal of The Geotechnical Engineering Division, ASCE, Vol.105, No.GT2, Feb., pp.201-255.
[48]
Umehara, Y., Zen, K. and Hamada, K., (1985),〝Evaluation of soil Liquefaction Potentials in Partially Drained Conditions〞, Soils and Foundations, Vo1.25, No.2, pp.57-72.
[49]
Shen, C. K., Yrymoed, J.L., And Uyeno, C.K., (1977),〝The Effects of Fines on Liquefaction of Sands〞, Proceeding of The Ninth International Conference on Soil Mechanics and Foundations Engineering, Tokyo, Vol.2, pp.381-385.
[50]
鍾瑞敏, (1981),〝砂土中黏土含量對液化潛能之影響〞, 國立台灣大學土木工程研究所碩士論文.
[51]
江鈞平, (1984),〝壓密與顆粒性質對含微量黏土細砂之液化潛能的影響〞,國立台灣大學土木工程研究所,碩士論文.
[52]
Seed, H.B., Tokimatsu K., Harder, L.F. and Riley M. Chung, (1985),〝Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations〞, Geotech. Eng., ASCE, Vol.111, No.12, Dec, pp.1425-1445.
[53]
楊騰芳, (1986),〝細料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響〞國立台灣大學土木工程研究所碩士論文.
[54]
Chung, K. Y. C., And Wong I. H., (1982),〝Liquefaction Potential of Soils With Plastic Fines〞, Soil Dynamics And Earthquake Engineering Conference, Southampton.
[55]
Prakash, S. and Sandova, J.A., (1992),〝Liquefaction of Low Plasticity Silts〞, Soil Dynamics and Earthquake Engineering, pp.373-379.
[56]
林義傑,(1998),〝雲林麥寮抽砂回填土壤液化強度與變形特性之探討〞, 國立台灣海洋大學河海工程研究所,碩士論文,基隆.
[57]
Mehmet A.Sherif, Isao Ishibashi and Chuzo Tsuchiya, (1977),〝Saturation Effects on Initial Soil Liquefaction〞, Journal of The Geotechnical Engineering Division, ASCE, Vol.103, No.GT8, Aug., Pp.914-917.
[58]
鄭文隆, 郭奇正,(1987),〝未飽和砂性土壤承受反覆剪應力之孔隙水壓上升研究〞土木水利季刊第十四卷, 第三期, pp.59-74.
[59]
Xia, H., and Hu, T., (1991),〝Effects of Saturation and Back Pressure on Sand Liquefaction〞Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362.
[60]
Mulilis, J. P., Seed, H. B., Chan, C. K., (1977),〝Resistance to Liquefaction Due to Sustained Pressure〞Journal of Geotechnical Engineering Division, ASCE, Vol.103, No.GT7, July, Pp.793-797.
[61]
Seiichi Miura Et Al., (1984),〝Cone Penetration Characteristics and Its Correlation to Static and Cyclic Deformation-Strength Behaviors of Anisotropic Sand〞Soils and Foundations, Vol. 24, No.2, June, Pp.58-74.
[62]
Yoshiaki Yoshimi, Kohji Tokimatsu, Osamu Kaneko, and Yorio Makihara., (1984),〝Undrained Cyclic Shear Strength of A Dense Niigata Sand〞Soils and Foundations,Vol.24,No.4,Dec,Pp.131-145.
[63]
Yoshimi, Y., Tokimatsu, K., and Hosaka, Y., (1989),〝Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples〞Soils and Foundations, Vol.29, No.1, pp.93-104.
[64]
Tatsuoka, F., Et Al., (1986),〝Some Factors Affecting Cyclic Undrained Triaxal Strength of Sand〞Soils and Foundations, Vol.26, No.3, pp.99-116.
[65]
Tokimatsu, K., And Nakamura, K., (1986),〝A Liquefaction Test Without Membrane Penetration Effects〞Soils And Foundations, Vol.26, No.4, pp.127-138.
[66]
Evans, M.D., Seed, H.B., Seed, R.B., (1992),〝Membrane Compliance and Liquefaction of Sliced Gravel Specimens〞Journal of Geotechnical Engineering, ASCE , Vol.118, No.6, pp.856-872.
[67]
Bjerrum, L., (1973),〝Geotechnical Problems in Foundations of Structures in the North Sea〞Geotechnique, Vol.23, No.3, pp.319-358.
[68]
Pickering, D. J., (1973),〝Drained Liquefaction Testing in Simple Shear〞 Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.99, No.SM12, pp.1179-1184.
[69]
Bretch, H. and Schwab, H. H., (1977),〝Liquefaction of a Fully Saturated Sand under Anisotropic Initial State of Stress in a Controlled Drainage System〞Proceedings of DMSR 77, Vol.2, pp.149-159.
[70]
Mitchell, R. J. and Dubin, B. I., (1982),〝Pore Pressure Generation and Dissipation in Dense Sands under Cyclic Loading〞Journal of the Canada Geotechnics, Vol.108, No.GT7, pp935-952.
[71]
Bouckovalas, G., Stamatopoulos, C.A. and Whitman, R.V., (1991),〝Analysis of Seismic Settlements and Pore Pressures in Centrifuge Tests〞Journal of the Geotechnical Engineering Division, ASCE, Vol.117,10, pp.1492-1508.
[72]
Seed, H.B. and Peacock, William H., (1971),〝Test Procedure for Measuring Soil Liquefaction Characteristics〞Journal of the Geotechnical Engineering Division, ASCE, Vol.101, No.GT6, June., pp.1099-1119.
[73]
Castro, Gonzalo And Poulos, Steeve J., (1977),〝Factors Affecting Liquefaction And Cyclic Mobility〞Journal Of The Geotechnical Engineering Division, ASCE, Vol.103, No.GT6, June., pp.501-516.
[74]
J.P. Mulilis, C.K. Chan, and Seed H.B., (1975),〝The Effect of Method of Sample Preparation on The Cyclic Stress-Strain Behavior of Sand〞Report No. EERC 75-18,U.C.Berkeley Earthquake Engineering Research Center.
[75]
Xia, H., and Hu, T., (1991),〝Effects of Saturation and Back Pressure on Sand Liquefaction〞Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362.
[76]
Seed, H.B. and Peacock, William H., (1971),〝Test Procedure for Measuring Soil Liquefaction Characteristics〞Journal of the Geotechnical Engineering Division, ASCE, Vol.101, No.GT6, June., pp.1099-1119.
[77]
Isao Ishibashi And Sherif, Mehmet A., (1974),〝Soil Liquefaction by Torsional Simple Shear Device〞Journal of The Geotechnical Engineering Division, ASCE, Vol.100, No.GT8, Aug., pp.871-888.
[78]
Ishihara, K., Sodekawa, M. and Tanaka, Y., (1978),〝Effects of Overconsolidation on Liquefaction Characteristics Of Sands Containing Fines〞Dynamic Geotechnical Testing, ASTM, STP 654,pp.246-264.
[79]
Finn, W. D. and Barsty, D. T., (1970),〝Effect of Strain History on Liquefaction of Sand〞JSMFD, ASCE, June, pp.1917-1934.
[80]
Sukhmander Singh, Seed, H. B., And Chan, C. K., (1982),〝Undisturbed Sampling of Saturated Sands by Freezing〞Journal of The Geotechnical Engineering Division, ASCE, Vol.108, No.GT2, Feb., pp.247-264.
[81]
Peacock, W. H. and Seed, H. B., (1968),〝Sand Liquefaction Under Cyclic Loading Simple Shear Conditions〞Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.94, No.SM3, pp.689-708.
[82]
Yoshimi, Y. and Oh-oka, H., (1975),〝Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sands〞Soils and Foundations, Vol.15, No.3, pp.27-40.
[83]
O-hara, S., Kotsubo, S. and Yamamoto, T., (1985),〝Pore Pressure Developed in Saturated Sand Subjected to Cyclic Shear Stress under Partial-drainage Conditions〞Japanese. Social of Soil Mechanics and Foundation Engineering, Vol.25, No.2, pp.45-56.
[84]
謝祥暉,(2001),〝回填土壤剪力波特性與抗液化強度相關性之研究〞, 國立台灣海洋大學河海工程研究所,碩士論文,基隆.
[85]
蔡丁貴, 郭金棟,(1994), 〝蘭陽平原海岸侵蝕研究之規劃〞, 行政院國家科學委員會專題研究計畫成果報告.
[86]
簡連貴, 張志新,(1999), 〝反覆荷重下海岸結構物基礎變形與破壞行為之探討(一)∼波浪對海床土層應力與液化行為影響之研究〞, 財團法人中興工程顧問社專案研究計畫.
[87]
Das, Braja M., (1998),〝Principles of geotechnical engineering〞─4th ed.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top