跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林金龍
研究生(外文):Chin-lung lin
論文名稱:三氯乙烯在鹽水溶液之分解特性
論文名稱(外文):Biodegradation og trichloroethylene in saline environment
指導教授:李志源李志源引用關係
指導教授(外文):C.Y.Lee
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:三氯乙烯鹽度鹽水
外文關鍵詞:trichloroethylene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以淡水和3.6%鹽度的含酚進流水來培養酚氧化菌,淡水菌來源為食品公司廢水處理廠的污泥,3.6%鹽度菌菌源取自基隆港內港灣的海水(在本文中將以上兩種細菌簡稱為淡水酚氧化菌和耐鹽性酚氧化菌)。兩種進流水都以酚為唯一的碳源,以連續流的方式培養。控制化學恆定反應器內的溶氧約在5 mg/L 以上,使反應器內保持好氧狀態,且pH維持在6左右。本研究目的在探討這兩類細菌於鹽水溶液中分解三氯乙烯(Trichloroethylene , TCE)之行為。實驗分為四部份,第一部份為量測細菌在各鹽度下,分別對酚、betaine、甲苯、TCE、sucrose的比攝氧率。第二部份為在淡水和3.6%鹽度下探討TCE與另一化合物(betaine、甲苯、sucrose)共存時,是否能促進TCE之分解。第三部份為在不同鹽度下甲苯與TCE之競爭抑制情況。第四部份則探討Cl離子濃度是否為抑制TCE在鹽水中共代謝分解的主要因素。
由實驗結果發現,以攝氧率為指標,可了解各種化合物的分解情況。當菌種長期以某種基質馴化後,對其馴化時所採用的基質利用速度特別快。如淡水酚氧化菌對酚濃度為2 mg/L時的比攝氧率為124.0 mg-O2/hr-gVSS,對甲苯濃度為2 mg/L時的比攝氧率為31.3 mg-O2/hr-gVSS。當sucrose和betaine濃度為2 mg/L時的比攝氧率約在7 mg-O2/hr-gVSS。由另外實驗結果得知,當細胞處於休止狀態下隨著鹽度改變時,耐鹽性酚氧化菌的比攝氧率都大於淡水酚氧化菌。且在不同鹽度下,添加betaine對提高比攝氧率的效果有限。
為促進TCE在3.6%的鹽度下的分解,在實驗中分別添加甲苯、betaine和sucrose於血清瓶中,使TCE與其他化合物共存。結果發現,在3.6%的鹽度下無論加入何種化合物,對淡水酚氧化菌和耐鹽性酚氧化菌而言,都無法增加TCE的分解量;另外又發現,淡水酚氧化菌在淡水環境能以甲苯為基質,生長新的細胞。耐鹽性酚氧化菌在3.6%鹽水環境下無法利用甲苯。
第三部份的實驗結果,進一步澄清甲苯和TCE在不同鹽度下之競爭抑制現象。鹽度在1%以下時,添加甲苯雖然會使TCE分解的速度降低,但能增加TCE的分解總量。而當鹽度提高到大於2.5%時,甲苯分解的速度會隨著鹽度減緩,且促進共代謝TCE的情況也變得不明顯。最後,在第四部份實驗,利用NaCl和Na2SO4為鹽度來源,分別配製鹽水溶液。結果發現,兩種鹽度來源對TCE分解之抑制效果相差不大,此表示Cl離子並非抑制共代謝的主要因素。
Two chemostat reactors were used to cultivate phenol oxidizing bacteria in this study, where one reactor was seeded with sludge from wastewater treatment plant of a food company and continuously fed with phenol dissolved in distilled water ( bacteria obtained from this reactor was called salinity-free water phenol oxidizers , SFPOxidizers), the other reactor was seeded with seawater from Keelung Port and continuously fed with phenol dissolved in solution containing 3.6% salinity (bacteria obtained from this reactor was called HP oxidizers , HPOxidizers). The aim of this study is to clarity the biodegradation characteristics of trichloroethylene (TCE) by these two kinds of bacteria in saline environments. The experiment consists of four phases. The first phase is to estimate the specific oxygen uptake rate (SOUR) of these two bacteria degrading phenol, betaine, toluene, TCE, and sucrose, respectively. The second phase is to study the effect of supplement of betaine, toluene, or sucrose to TCE on biodegradation of TCE. The third phase is to study the competitive inhibition between toluene and TCE in solutions with salinity. The forth phase is to study the effect of chloride on biodegradation of TCE in saline solutions.
From the result of experiment, it is found that SOUR could be an indication to reflect the biodegradability of substrates. The SOURs of SFP Oxidizer-degrading phenol, toluene, sucrose and betaine (all in 2 mg/L) are 124, 31.3, 7.0, and 7.0 mg-O2/hr-gVSS, respectively. In addition, the SOURs of HP oxidizers are larger than that of SFP oxidizers in resting cells condition.
To try to enhance TCE biodegradation, toluene, betaine, or sucrose was separately supplemented to TCE solutions containing 3.6 % salinity. Result shows these compounds failed to enhance the biodegradation of TCE. Toluene can be used a growth-substrate to SFP oxidizer in fresh water environment, but toluene cannot be utilized by HP oxidizer in 3.6 % saline solutions.
The result of the third phase clarifies the competitive inhibition between toluene and TCE in solution with various salinity. The supplementation of toluene decreases the biodegradation rate but increases the mass of TCE removed when the salinity is below 1%. When the salinity is above 2.5%, the biodegradation rate of toluene will decrease with increasing salinity, and the enhancement of biodegradation of TCE become limited. In the forth phase, NaCl and Na2SO4 were used to prepare salinity solutions to test the effect of chloride on biodegradation of TCE. Result shows similar inhibition for TCE biodegradation occurred in these two saline solutions, so chloride was not the critical factor in inhibiting TCE biodegradation .
第一章 前言 1
1.1研究動機 1
1.2研究目的 1
1.3研究內容 2
第二章 文獻回顧 3
2.1 甲苯和TCE介紹 3
2.1.1 TCE汙染的嚴重性 3
2.1.2 TCE的製造方法與應用 3
2.1.3 TCE的物理化學特性 3
2.1.4 甲苯的簡介 4
2.2 酚氧化菌概論 4
2.2.1 三種共代謝TCE的菌種 4
2.2.2 酚的好氧代謝 7
2.2.3酚氧化菌分解酚之動力模式 8
2.3攝氧率概論 9
2.3.1傳統的攝氧率檢驗方法 9
2.3.2 HBOD試驗 10
2.3.3液相和氣相間的氧氣傳輸 10
2.4共代謝現象 11
2.4.1共代謝起源 11
2.4.2 添加基質的方式 11
2.4.3共代謝路徑 12
2.5 鹽度影響 12
2.5.1鹽度變化下的細胞質內物質變化 12
2.5.2 鹽度對生物處理程序的影響 13
2.5.3 鹽度對有機物在水中溶解度的影響 14
第三章 實驗器材、設備、檢量線與方法 19
3.1 實驗方法 19
3.1.1菌種 19
3.1.2 鹽度對細菌於休止狀態時攝氧率影響實驗 19
3.1.3 酚氧化菌對不同2 mg/L化合物的比攝氧率 20
3.1.4 淡水酚氧化菌在不同鹽度下添加betaine的比攝氧率 20
3.1.5 促進淡水酚氧化菌在3.6%鹽度下分解TCE 21
3.1.6 以甲苯為基質的生長情況 21
3.1.7 鹽度變化對淡水酚氧化菌分解甲苯的影響 22
3.1.8 甲苯和TCE的競爭抑制 22
3.1.9 探討不同鹽度來源時TCE分解之差異 23
3.2 菌源培養及設備 23
3.3 實驗藥品 28
3.3.1 碳源 28
3.3.2 無機營養源 28
3.3.3 有機物 28
3.3.4 鹽 30
3.4 檢量線 30
3.4.1 TCE和甲苯檢量線之製作 30
3.4.2 以分光光度計製作酚檢量線 30
3.4.3 以分光光度計製作揮發性懸浮固體物檢量線 30
3.5 分析儀器 30
第四章 結果與討論 37
4.1 生物反應器操作結果 37
4.2 酚氧化菌的特性 37
4.2.1鹽度對內呼吸的影響 37
4.2.2 以攝氧率來分析酚氧化菌對5種2 mg/L化合物的分解 39
4.2.3 淡水酚氧化菌在不同鹽度時添加betaine的比攝氧率 40
4.3 外加有機物作為滲透質促進TCE之分解效能 40
4.3.1 對耐鹽性酚氧化菌分解TCE之影響 40
4.3.2 對淡水酚氧化菌分解TCE之影響 42
4.3.3 以甲苯為生長基質的生長情況 43
4.4 鹽度對淡水酚氧化菌分解甲苯、TCE之影響 44
4.4.1 淡水酚氧化菌在不同鹽度下分解甲苯的情形 44
4.4.2 TCE和甲苯在不同鹽度下之競爭抑制 44
4.5 Cl-濃度對TCE分解之影響 45
第五章 結論與建議 74
第六章 參考文獻 76
附錄A Ka值實驗 82
附錄B 檢量線 91
行政院環保署資訊站 (http://www.epa.gov.tw)。
國立台灣師範大學化學系網站(http://www.chem.ntnu.edu.tw)。
阮國棟(1985). “廢水中各種酚類去除之理論與實務.”工業汙染防治,第三卷,第三期,85-103。
遊惠宋(1985). “旋轉生物盤法處理酚類廢水之研究.”國立成功大學環境工程研究所碩士論文。
羅志騰(1988) . “水污染控制工程微生物學.”北京科學技巧出版社。
江美幸(1995). “甲烷分解菌及苯環分解菌共代謝三氯乙烯之比較.”國立中興大學環境工程研究所碩士論文。
鄭舜仁(1997). “以酚氧化菌共代謝轉換氯化有機物.”國立屏東技術學院環境工程技術研究所碩士論文。
張峻嘉(1998). “酚分解菌共代謝三氯乙烯之研究(砂管柱連續流試驗).”國立中興大學環境工程研究所碩士論文。
李公哲(1999) . “環境工程.”P.42 ,茂昌圖書有限公司,中華民國88年7月第3版。
雷世恩(1999). “以生物處理法整治三氯乙烯及四氯乙烯污染之場址.”國立中山大學環境工程研究所碩士論文。
陸德源(2000). “利用甲苯分解菌處理含三氯乙烯廢氣效率之研究.”國立清華大學化學工程系碩士論文。
詹祐嘉(2000). “鹽度對酚氧化菌共代謝三氯乙稀之影響.”國立台灣大學河海工程學系碩士論文。
詹修銘(2000). “利用攝氧率為指標評估酚氧化菌在不同鹽度下分解四種化合物之速率.”國立台灣大學河海工程學系碩士論文。
李志源(2000). “實驗室筆記.”。
Arthur, R. M.,(1984) . “Twenty years of respirometry , ”.proc.39th Ind.Waste Conf. Purdue, Univ.,West Lafayette , Ind.,861.
Bernard, T., Pocard, J. A., Perroud, B., and Le Rudulier, D. (1986) . “ Variation in the response of salt-stressed Rhizobium strains to betains,” Arch Microbiol,143,359-364.
Caldwell, D.H., and Langlier, W. F.,(1948) . “ Manometric measurement of the biochemical oxygen demand sewage ,” Sew. Works J.,20, 202.
Dabrock, B., Riedel, J., Bertram, J., and Gottschalk, G. (1992) .“Isopropylbenzene (cumene)-a new substrate for isolation of trichloroethene-degrading bacteria,” Arch. Microbiol. 158:9-13.
Dewulf, J., Drijvers, D., and Langenhove, H. V. (1995) . “Measurement of Henry’s Law constant as function of temperature and salinity for the low temperature range,” Atmospheric Environment Vol.29(3),323-331.
Fendinger, N. J., Glotfelty, D.E.(1988) .“A laboratory method for the experimental determination of air-water Henry’s law constants for several pesticides ,”Environ. Toxicol. Chem. 22, 1289-1293.
Folsom, B. R., Chapman, P. J., and Pritchard, P. H. (1990) .“ Phenol and trichioroethylene degradation by Pseudomonas cepacia G4 : kinetics and interactions between substrates ,” Appl. Environ. Microbiol. 56,1279-1285.
Gellman, I., and Heukelekian, H.(1951) .“Studies of biochemical oxidation by direct methods I- Direct method for determining BOD ,”Sew. Ind. Wastes,. 23, 1267.
Grady , C.P.L ., Jr ., and Lim, H. C.(1980). Biological wastewater treatment, theory and applications, Marcel Dekker, Inc., NEW York.
Grady, C.P.L., Jr., Daigger, G.T., and Lim, H.C. (1999). Biological wastewater treatment , 2nd Ed., Marcel Dekker, Inc., New York.
Harker, A. R., and Young, M. (1990). “ TCE degradation by two in dependent aromatic depending pathways in Alcaligenes eutrophus JMP134,” Appl. Environ. Microbiol., 56, 1179-1181.
Incharoensakdi, A., and Waditee, R., (2000) . “ Degradation of
glycinebetaine by betain-homocystein methyltransferase in Aphanothece halophytica:Effect of salt downshock and starvation,” Current Microbiology, 41, 227-231.
Ingram, M. (1940) . “ The influence of sodium chloride and temperature on the endogenous repiration of Bacillus cereus ,” J. Gen. Physiol., 23, 773-778.
Kincannon, D. F. and Guady, A. F. (1966) .“Some effect of high salt concentration on activated sludge,” J. Water Pollution Control Fed., 38, 1148-1158.
Kincannon, D. F. and Guady, A. F. (1968). “Response of biological waste treatment system to changes in salt concentrations,” J. Biotechnol. Bioengrg.,10, 483-496.
Kinner, N. E. and Bishop, P. I. (1962) . “ Treatment of saline domestic wastewater using RBC''s,” J. Environ. Engineer., 108, 650-663.
Lai, M.C., Sowers, K. R., Robertson, D. E., Roberts, M. F. and Gunsalus, R. P.(1991) . “Distribution of compatible solutes in the halophilic methanogenic archaebacteria,” J. Bacteriol, 173, 5352-5358
Lai, M.C. and Gunsalus, R. P. (1992) . “ Glycine betaine and potassium iron are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus Strain Z7302,” J. Bacteriol, 174, 7474-7477.
Lai, M.-C., Yang, D.R. and Chuang, M.J. (1999) . “Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis,” Appl. Environ. Microbiol., 828-833.
Lawton, G. W. and Eggert, C. V. (1957) . “Effects of high sodium chloride concentration on trickling filter slimes,” J. Water pollution Control.Fed,29, 1228-1236.
Li , K. Y., and Zhang, Y. B. (1996) . “Oxygen transfer limitation in a respirometer ,” Water Environ. Res., 68, 36.
Little, D. C., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gilmer P. J. (1988).“Trichloroethylene biodegradation by a methane- oxidizing,” Appl. Environ. Microbiol., 54, 951-956.
Logan, B. E ., and Wagenseller, G. A.(1995) . “The HBOD test : anew method for determining biochemical oxygen demand ,” Water Environment Research,65(7),862-868.
Logna, B. E., and Kohler, D. (2001) . “Oxygen mass-transfer coefficients for different sample containers used in the headspace biochemical oxygen demand test ,” Water Environ. Res., 73( 1),58-62.
Ludzack, F. J. and Noran, D. K. (1965) . “Tolerance of high sanilities by conventional wastewater treatment processes,” J. Water Pollution Control Fed., 37, 1404-1416.
Mackay, D., Shiu, W. Y., Sutherland , R. P.(1979) . “ Determination of air-water Henry’s law constants for hydrophobic pollutants,” Environ. Sci. Technol. 1979, 13, 333-337.
Major, D. W., Mayfield, C. I., and Barker, J. F. (1988). “Biotransformation of benzene by denitrification in aquifer send Ground Water,” Ground Water, 26, 8-14.
Metcalf and Eddy, Inc.(1991). “Wastewater Engineering-Treatment, Disposal and Reuse ,” McGraw-Hill, New York .
Nelson, M. J. K., Montgomery, S. O., Mahafley, W. R., and Pritchard, P. H. (1987).“ Biodegradation of trichioroethylene and involvement of an aromatic biodegradative pathway ,” Appl. Environ. Microbiol. 53,949-954.
O’Brien , W. J., and Clark , J.W.(1962) . “The historical development of the biochemical oxygen test,” Bul . No. 20, Eng. Exp. Station, New Mexico State University, N.M .
Rice, C. P., Chernyak, S. M ., and McConnell, L . L ., (1997 ). “Henry’s law constants for pesticides measured as a function of temperature and salinity,” J. Agric. Food Chem.45,2291-2298
Robertson, D. E., Lai M.-C., Gunsalus, R. P., and Roberts, M. F. (1992) . “Composition, variation and dynamics of major osmotic solutes in Methano-halophilus strain FDF1,” J. Biol. Chem, 267, 2438-2443.
Robinson, P. M. and Roberts, M. F. (1997) . “Effects of osmolyte precursors on the distribution of compatible solutes in Methanohalophilus portucalensis,” Appl. Environ. Microbiol, 63, 4032-4038.
Rozich, A.F., and Gaudy , A.F., Jr. (1992) . Design and Operation of Activated Sludge Processes Using Respirometry , Lewis Publishers, Inc., Chelsea, Mich.
Rudulier, D. L., and Bouillard, L. (1983) . “ Glycine betaine, an osmotic effector in Klebsiella pseudomonas and other members of the Enterobacteriaceae,” Appl. Environ. Microbiol, 46, 152-159.
Sauvage, D., Hamelin, J., and Larher, F. (1983) . “ Glycine betaine and other structurally related compounds improve the salt tolerance of Rhizobium meliloti ,” Plant Sci Lett, 31, 291-302.
Schroeder , F.,(1977) ,Water and wastewater treatment, McGraw-Hill, New York .
Setshenow, J., (1889) .Uber die konstitution der salzlosungen auf grund ihres verhalten zu kohlensaure. Z. Physik. Chem. 4, 117.
Shih, C. C., Davey, M. E., Zhou, J., Tiedje, J. M., and Criddle, C. S.,(1996) . “ Effects of phenol feeding pattern on microbial community structure and cometabolism of trichloroethylene ,” Applied and Environmental Microbiology, Aug.2953-2960.
Shurtliff , M. M., Parkin , G.F., Weathers , L.J ., and Gibson , D.T . (1996) . “ Biotransformation of trichloroehtylene by a phenol-induced mixed culture ,” J.Environ. Engineer ., 122 , 581-589.
Sowers, K. R. and Gunsalus, R. P. (1995) .“Halotolerance in Methanosarcina spp.:role of N-acetyl- -lysine, -glutamine, glycine betains and K+ as compatible solutes for osmotic adaptation,” Appl. Environ. Microbiol, 61, 4382-4388.
Wackett, L. P., and D. T. Gibson. (1988).“Degradation of trichioroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1,” Appl. Environ. Microbiol. 54,1703-1708.
Wilson, J. T. and Wilson, B. H. (1985) .“ Mbiotransformation of TCE in soil,” Appl. Environ. Microbiol., 1, 242-243.
Woolard, C. R., and Irvine, R. L. (1994). “Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria,” Water Environ. Res., 66, 230-235.
Woolard, C. R., and Irvine, R. L. (1995). “Treatment of hypersaline wastewater in the sequencing batch reactor,” Water Res., 29, 1159-1168.
Xie, W.H., Shiu, W.Y., and Mackay, D., (1997) .“A review of the effect of salts on the solubility of oragnic compounds in seawater,”Marine Environmental Research , 44(4),429-444
Young , J.C., and Clark,J.W.(1965). “History of the Biochemical Oxygen Demand Test,” Wat. Sew. Works, 112, 3.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top