跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀茂傑
研究生(外文):Jack Mao-chieh Chi
論文名稱:混凝土耐久性影響因素及評估方法之研究
論文名稱(外文):Study of Influence Factors and Evaluation Methods for Concrete Durability
指導教授:黃 然楊 仲 家
指導教授(外文):Ran HuangChung Chia Yang
學位類別:博士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:152
中文關鍵詞:耐久性材料因素環境因素評估指標中性化
外文關鍵詞:durabilitymaterial factorenvironment factorevaluation indexcarbonation
相關次數:
  • 被引用被引用:55
  • 點閱點閱:1837
  • 評分評分:
  • 下載下載:358
  • 收藏至我的研究室書目清單書目收藏:1
影響混凝土耐久性的因素可分為材料因素及環境因素。材料因素包括水灰比、水泥種類、骨材、礦物摻料(如飛灰、矽灰、爐石粉等)及添加劑等;而環境因素包括溼度、二氧化碳濃度、氯離子濃度及溫度。本研究利用多種試驗如混凝土抗壓強度試驗、吸水率試驗、快速氯離子滲透試驗、氯離子擴散試驗、氯離子溶液浸泡試驗、氣體滲透試驗、中性化深度試驗、混凝土電阻率試驗及電化學腐蝕試驗等來探討混凝土的耐久性及影響混凝土耐久性的材料因素及環境因素,研究結果可做為混凝土構造物耐久性設計或評估的依據。
研究結果顯示水灰比仍然是影響混凝土強度及耐久性的關鍵因素。使用卜作嵐材料取代部分水泥之混凝土除具有較佳力學性質外,並有較低滲透性。其中矽灰比飛灰較為顯著;在相同取代量下,飛灰與爐石粉混合取代水泥之混凝土不管是抗壓強度、電荷通過量、擴散係數、電阻率及吸水率等均優於單以飛灰取代水泥之混凝土。水灰比相同而水泥用量不同時,混凝土之孔隙隨水泥用量降低而增加;當粗骨材粒徑較大時,混凝土之氣體滲透係數與氯離子擴散係數也相對增加。試驗結果亦顯示不能單以抗壓強度做為混凝土耐久性評估指標。
研究結果顯示水灰比高者中性化(碳化)速率較快,且中性化速率隨著二氧化碳濃度提高而上升;在相同二氧化碳濃度加速作用下,相對濕度為55%時,混凝土中性化速率較快且飛灰取代水泥量20%之試體中性化深度較其他試體深。此外,中性化混凝土試體的抗壓強度、劈裂強度、氧氣滲透係數及電阻係數皆提高,而吸水率、電荷通過量皆降低並隨著飛灰取代水泥量的增加而減少;另腐蝕速率隨著中性化時間的增加而增加。
Durability is a major concern for concrete structures exposed to aggressive environments. Factors to be considered in concrete durability include constituent materials, construction processes, and the environment to which the concrete structure is exposed. This study includes two parts: one is focused on the influence of constituent materials on concrete durability, the other is focused on carbonation, chloride ion penetration, and gas permeation in concrete. Compressive strength test, tensile splitting strength test, absorption test, rapid chloride penetration test(RCPT), chloride ion diffusion test, salt ponding test, resistivity test, gas permeability test, and electrochemical test were performed in sequence to estimate concrete durability.
Test results show that the water/binder ratio is still a key factor affecting the strength and durability of concrete. The application of pozzolanic materials can reduce ion and gas permeability and improve the mechanical properties of concrete, and silica fume is more beneficial than fly ash. The amount of charge-passed and diffusion coefficient of concrete decrease by increasing fly ash replacement for cement. Absorption and resistivity increase with an increase in fly ash addition. Concretes using fly ash and slag are more beneficial than those only with fly ash for a given water/binder ratio. Moreover, the cement content and the maximum aggregate size are also significant factors affecting concrete durability. Carbonation at early age may compensate several concrete properties such as compressive strength, tensile splitting strength, electrical resistance and chloride ions penetration. The carbonation depth of concrete is also controlled by the water/binder ratio. The carbonation depth increases with increasing exposure time and the carbon dioxide concentration increases the carbonation depth for all mixtures. For a given carbon dioxide concentration, the carbonation depth increases with increasing fly ash addition and rate. In addition, concrete carbonation enhances the corrosion rate of reinforcement according to the electrochemical test results. And corrosion rate of reinforcing steel decreases as the fly ash replacement for cement increases.
中文摘要 i
英文摘要 ii
謝誌 iv
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究範圍 2
1.4研究方法與流程 4
第二章 文獻回顧 6
2.1混凝土耐久性 6
2.2組成材料對混凝土耐久性之影響 8
2.3配比設計對混凝土耐久性之影響 11
2.4環境因素對混凝土耐久性之影響 12
2.5中性化對混凝土耐久性之影響 15
2.6鋼筋混凝土腐蝕行為 16
2.6.1鋼筋混凝土的劣化機理 16
2.6.2混凝土中鋼筋的腐蝕機理 17
2.6.3 腐蝕電化學 18
第三章 基本理論 23
3.1前言 23
3.2混凝土傳輸機理與定義 24
3.2.1 擴散 24
3.2.2 滲透 26
3.2.3 毛細吸附 28
3.2.4 遷移 29
3.3混凝土中不同傳輸參數之關係 30
3.4影響混凝土傳輸特性之參數 32
3.4.1 影響水及氣體滲透之參數 32
3.4.2 影響吸水率之參數 34
3.5 混凝土中性化速率 35
3.6混凝土的微觀結構與性質 37
3.6.1 孔隙尺寸對傳輸性質之影響 38
3.6.2 孔隙連通性對傳輸性質之影響 40
3.6.3 混凝土孔隙結構 41
第四章 試驗計畫 43
4.1試驗變數 43
4.2試驗材料與配比 45
4.3試驗設備 54
4.4試驗方法 65
4.5試體準備 74
第五章 試驗結果與討論 75
5.1 前言 75
5.2 不同配比混凝土強度及耐久性 75
5.2.1 抗壓強度 75
5.2.2 吸水率 79
5.2.3 氯離子滲透 81
5.2.4 氯離子擴散 87
5.2.5 氯離子溶液浸泡 89
5.2.6 氣體滲透 92
5.2.7 電阻率 94
5.3組成材料因子與混凝土耐久性之關係 95
5.3.1 水灰比與耐久性之關係 96
5.3.2 水泥量與耐久性之關係 96
5.3.3 骨材粒徑與耐久性之關係 98
5.3.4 添加卜作嵐材料與耐久性之關係 99
5.4不同試驗法之相關性及混凝土耐久性評估 102
5.4.1氯離子快速滲透試驗與導電度及初始電流之關係 102
5.4.2氯離子快速滲透試驗與氯離子溶液浸泡試驗之關係 104
5.5環境因素對混凝土中性化之影響 105
5.5.1 二氧化碳濃度與中性化深度之關係 106
5.5.2相對溼度與中性化深度之關係 109
5.6中性化對混凝土力學性質之影響 113
5.6.1壓力強度 113
5.6.2劈裂強度 116
5.7 中性化對混凝土傳輸特性之影響 118
5.7.1中性化與氯離子滲透之關係 118
5.7.2中性化與混凝土電阻係數之關係 124
5.7.3中性化與混凝土吸水率之關係 126
5.7.4中性化對混凝土氣體滲透之影響 127
5.8中性化對混凝土中鋼筋腐蝕之影響 129
第六章 結論與建議 138
6.1 結論 138
6.2 建議 140
參 考 文 獻 141
參考文獻
1. Verbeck, G.J., “ Mechanism of Corrosion of Steel in Concrete,” Concrete of Metals in Concrete, ACI, SP-49, pp.21-38, 1975.
2. Metha, P. K., and Paulo Monteiro, J. M., “ Concrete: Structure, Properties, and Materials “, 2nd Edition., Prentice Hall, New Jersey, 1993.
3. Metha, P. K., “Durability of Concrete in Marine Environment — A Review”, Performance of Concrete in Marine Environment ACI Publication SP-65, pp. 1-19,1980.
4. Skalny, J. P., “Concrete Durability- an Issue of National Importance,” Editor: J. M. Scanlon, ACI SP-100, pp.265-279, 1987.
5. Gjorv, O. E., “Durability of Concrete Structures in the Ocean Environment,” Proceeding of the FIP Symposum on Concrete Sea Structures, London, pp.141-145, Sept. 11972.
6. Seabrook, P., “ Discussion of Papers on Physical and Chemical Cause of Deterioration of Concrete in Seawater,” Proc. Ben Gerwick Sympoisum on International Experience with Durability of Concrete in Marine Environment, University of California at Berkeley, Editor: P.K. Mehta, pp.73-74, 1989.
7. Clifton James R., “ Predicting the Service Life of Concrete “, ACI Material Journal, Vol. 90, No.5, pp.611-617, Nov.-Dec., 1993.
8. Daksh Baweja, Harold Roper, Vute Sirivivatnanon, “ Relationships Between Anodic Polarization and Corrosion of Steel in Concrete”, Cement and Concrete Research, Vol.23, pp.1418-1430, USA, 1993.
9. Collepard, M., “ Ii degrado ed il restauro delle opere in cemento armato”, Presenza tecnica, 8,25,1986.
10. Mehta, P.K. and B.C. Gerwick, Journal of Concrete International Conference, Vol. 4, pp.45-51,1982.
11. Aitcin, P.C. and N. Adam, “ High Performance Concrete Demystified ”, ACI. Journal : Concrete International Vol. 15, No.1, 1993.
12. Glanville, J., and Neville, A., Prediction of Concrete Durability, RILEM Report 12, pp. 26-27, 1995.
13. Kropp, J. and Hilsdorf, H.K., Performance Criteria for Concrete Durability, 1995.
14. Dhir, R.K., Jones, M.R., and Ahmed, H.E.H., “Concrete Durability Estimation of Chloride Concentration During Design”, Magazine of Concrete Research, Vol. 43, No. 154, pp. 37-44. 1991.
15. ACI Committee 201.2R,”Guide to Durable Concrete,” ACI Manual of Concrete Practice, Proc., Vol. 74, pp.573-609, 1992.
16. Fookes, P.G., “Aggregate: a Review of Prediction and Performance,” ” Prediction of Concrete Durability,” Proceedings of Statea 21st Anniversary Conference E&FN SPON, London,1997.
17. Clear, K. C., and Hay, R.E., “Time-to-Corrosion of Reinforcing Steel Slabs, Vol.1: Effect of Mix Design and Construction Parameters,” Inter. Report No.FHWA-RA-73-32, Federal Highway Administration, Washington, D.C., pp.103-105,1973.
18. Page, C. L., Short, N. R., and Holden,W.R., “ Influence of Different Cements on Chloride-Induced Corrosion of Reinforcing Steel,” Cement and Concrete Research, Vol.16, No.1, pp.79-86, 1986.
19. Pressler, E.E., Brunauer, S., Kantro, D.L., and Weise, C. H., “ Determination of the Free Calcium Silicates,” Analutical Chemistry, V.ol. 33, No.7, pp.877-882, 1961.
20. Baalbaki, W., Benmokrane, B., Chaallal, O. and Aitcin, P.C., “Influence of Coarse Aggregate on Elastic Properties of High-Performance Concrete,” ACI Material Journal, Vol. 88, No.5, pp. 499-503, 1991.
21. Mehta, P.K. and Aitcin, P.C., “Effect of Coarse-Aggregate Characteristics on Mechanical Properties of High Strength Concrete,” ACI Material Journal, 1990.
22. ASTM, “1995 Annual Book of ASTM Standard”, Vol.04.0104.24, 1995.
23. Cook, J., “ Research and Application of High Strength Concrete Using Class C Fly Ash ,“ Concrete International, Design and Construction, Vol. 4, No.7, pp. 72-80, 1982.
24. Mangat, P. S. and Molloy, B.T., “ Influence of PFA, Slag and Microsilica on Chloride Induced Corrosion of Reinforced in Concrete,” Cement and Concrete Research, Vol.21, No.5, pp.819-834, 1991.
25. Tikalsky, P.J., et al., ”Strength and Durability Consideration Affect in Mix Proportioning of Concrete Containing Fly Ash,” ACI Material Journal, Title No.8-M49, 11-12, pp.505-511, 1985.
26. Maslehuddin, N. et al., “Effect of Sand Replacement on the Early Age Strength Gain and Long-Term Corrosion Resisting Characteristics of Fly Ash Concrete,” ACI Material Journal, Vol.1(2), pp58-62, 1989.
27. Michael D.A. Thomas, Phil B. Bamforth, “Modelling Chloride Diffusion in Concrete Effect of Fly ash and Slag,” Cement and Concrete Research, Vol.29, pp.487-495, 1999.
28. ELKEM Materials, “ELKEM Microsilica For Superior Concrete, ” 1989.
29. Erik, J. L.D. Sellev, and Terje Nilsen, “Condensed Silica Fume in Concrete”, A World Review,” 1986.
30. Zhao, T. J. Z.H. Zhou, N.Q. Feng , “An Alternating Test Method of Concrete Permeability,” Cement and Concrete Research, Vol.28, No.1, pp.77-12, 1998.
31. Alexander, M.G. B.J. Magee, “Durability Performance of Concrete Containing Condensed Silica Fume,” Cement and Concrete Research, Vol.29, pp.917-922, 1999.
32. Roy, D. M. and G. M. Idorn, “Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete,” ACI Journal, Vol.26, Mar., pp.444~457, 1982.
33. Sivasundaram, V. and V. M. Malhotra, “Properties of Concrete Incorporating Low Quantity of Cement and High Volumes of Ground Granulated Slag,” ACI Materials Journal, Vol.89, No.6, pp.554~563, 1992.
34. Osborne, G. J., “Durability of Portland Blast-Furnace Slag Cement Concrete,” Cement and Concrete Composites, Vol.21, pp.21-29, 1999.
35. Page, C. L., Short, N.R., and El Tarras, A.,“Diffusion of Chloride Ions in Hardened Cement Paste,” Cement and Concrete Research, Vol. 11(3), pp. 395-406, 1981.
36. Midgley, H. G., and Illston, M., “Penetration of Chlorides into Hardened Cement Pastes,” Cement and Concrete Research, Vol.14 (4), pp.546-558, 1984.
37. Nagataki, S. and Ujike, I. “Effect of Heating Condition on Air Permeability of Concrete at Elevated Temperature,” Transactions of the Japanese Concrete Institute, Vol.10, pp.147-154, 1980.
38. Thomas, M.D.A., Matthews, J.D. and Haynes, C.A., “ The Effect of Curing on the Strength and Permeability of PFA Concrete, in Fly ash, Silica fume, Slag and Natural Pozzolans in Concrete,” Proceedings 3rd International Conference, V.M. Malhotra (Ed), Trondheim, ACI SP-114, Vol. 1, pp.191-217, 1989.
39. Hurling, H. “ Oxygen permeability of Concrete,” in Proc. RILEM Seminar on Durability of Concrete Structures under Normal Outdoor Exposure, Hanover, March, pp.91-101, 1984.
40. Millard, S. “ Effects of Temperature and Moisture upon Concrete Permeability and Resistivity Measurements,” Workshop on in situ permeability Loughborough, Dec. 9, 1989.
41. Loo, Y.H., M. S. Chin, C.T. Tam and K.C.G. Ong, “ A Carbonation Prediction Model for Accelerated Carbonation Testing of the Concrete,” Magazine of Concrete Research, Vo.46, No.168, pp.191-200, 1994.
42. Bier, T, “ Influence of Type of Cement and Curing on Carbonation Progress and Pore Structure of Hydrated Cement Paste,” in MRS Symp. Proc. Vol. 85, Microstructural Development during Hydration of Cement, pp.123-134, 1987.
43. Leber, I. and Blakey, F.A. “ Some Effects of Carbon Dioxide on Mortars and Concrete,” ACI, SP-53, pp.295-308, 1956.
44. Ngala, V.T. and Page, C.L., “ Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Portland Cement,” Cement and Concrete Research, Vol. 27, No.7, pp. 995-1007, 1997.
45. Ismail, N. et al., “Effects of Carbonation on Microbial Corrosion of Concretes,” Construction Management and Engineering, No.474, pp.133-138, 1993.
46. Bassat, M.B., Nixon, P.J. and Hardcastle, J., “ The Effect of Differences in the Composition of Portland Cement on the Properties of Harden Concrete,” Magazine of Concrete Research, Vol.42, No.151, pp.59-66, 1990.
47. Mattews, J.D., Detriche C.H. and Grandet, J., “ Effect of Curing upon Carbonation of Concrete,” Construction and Building Materials, Vol. 9, No.2, pp.91-95, 1995.
48. Sehgal, A., Li, D., Kho, Y.T., Osseo-Asare, K., and Pickering, H.W., “Reproducibility of Polarization Resistance Measurement in Steel-in-Concrete Systems, ” Corrosion, Vol. 48, No. 9, pp. 706-714. 1992.
49. Kouloumbi, N., Batis, G., and Pantazopoulou, P.,“Efficiency of Natu- ral Greek Pozzolan in Chloride-Induced Corrosion of Steel Reinforce-ment,” Cement, Concrete Aggregates, Vol. 17, No. 1, pp. 18-25. 1995.
50. Kouloumbi, N., and Batis, G., “Chloride Corrosion of Steel Rebars in Mortars With Fly Ash Admixtures,” Cement and Concrete Composites, Vol. 14, No. 3, pp. 199-207. 1992.
51. Hime, W., and Erlin, B., “ Some Chemical and Physical Aspects of Phenomena Associated With Chloride-Induced Corrosion,” Corrosion, Concrete, and Chlorides, Steel Corrosion in Concrete : Causes and Restraints, ACI SP 102-1, pp. 1-12, 1987.
52. Gonzalez, J.A., Otero, E., Feliu, S., Bautista, A., Ramirez, E., Rodriguez, E., and Rodriguez, P.,“Some Consideration on The Effect of Chloride Ions on The Corrosion of Steel Reinforcements Embedded in Concrete Structures,” Magazine of Concrete Research, Vol. 50, No. 3, pp. 189-199, 1998.
53. Fraczek,J .,“A Review of Electrochemical Principles as Applied to Corrosion Corrosion of Steel in a Concrete or Grout Environment,” Corrosion Concrete, and Chlorides, Steel Corrosion in Concrete : Causes and Restraints, ACI SP 102-2, pp. 13-24, 1987.
54. Uhlig, H.H., and Revie, R.W., Corrosion and Corrosion Control, Third Edition, pp. 90-122, 1991.
55. Seatta, A.V., Scotta R.V., and Vitaliani, R.V.,“Analysis of Chloride Diffusion Into Partially Saturated Concrete,” ACI Material, Vol. 90.No. 5, pp. 441-451, 1993.
56. Hussain, S. E., Al-Saadoun, S. S., “ Effects of Cement Composition on Chloride Binding and Corrosion of Reinforcing Steel in Concrete,” Cement and Concrete Research, Vol. 21, No.6, pp. 777-794, 1991.
57. Hope, B.B., Page, J.A., and Ip, A.K.C., “Corrosion Rate of Steel in Concrete,” Cement Concrete Research, Vol. 16, No. 5, pp. 771-781, 1986.
58. ASTM C876-91 Standard Test Method for Half-Cell Potential of Uncoated Reinforceing Steel in Concrete.
59. ASTM G59-78(Reapproved) Standard Practice for Conduction Potentiaodynamic Polarization Resistance Measurement.
60. Gu, P., Elliott, S., Hristova, R., Beaudoin, J.J., Brousseau, R., and Baldock, B.,“A Study of Corrosion Inhibitor Performance in Chloride Contaminated Concrete by Electrochemical Impedance Spectroscopy,” ACI Material, Vol. 94, No. 5, pp. 385-395, 1997.
61. Enevoldsen, J.N., Hansson, C.M., and Hope, B.B.,“The Influence of Internal Relative Humidity on The Rate of Corrosion of Steel Embedded in Concrete and Mortar,” Cement and Concrete Research, Vol. 24, No. 7, pp. 1373-1382, 1994.
62. Huang, R., and Yang, C.C.,“Condition Assessment of Reinforced Concrete Beams Relative to Reinforcement Corrosion,” Cement and Concrete Composites, Vol. 19, No. 2, pp.131-137, 1997.
63. Andrade, C., and Alonso, C.,“Corrosion Rate Monitoring in The Laboratory and on-Site,” Construction and Building Materials, Vol. 10, No, 5, pp. 315-328, 1996.
64. McCarter, W.J.,“A Parametric Study of The Impedance Characteristics of Cement-Aggregate Systems During Early Hydration,” Cement and Concrete Research, Vol. 24, No.6, pp. 1097-1110, 1994.
65. Gu, P., Fu, Y., Xie, P., and Beaudoin, J.J.,“Characterization of Surface Corrosion of Reinforcing Steel in Cement Paste By Low Prequency Impedance Spectroscopy”, Cement and Concrete Research, Vol. 24, No. 2, pp. 231-242, 1994.
66. McCarter, W.J., and Brousseau, R.,“The A.C. Response of Hardened Cement Paste”, Cement and Concrete Research, Vol. 20, No. 6, pp. 891-900, 1990.
67. Gu, P., Fu, Y., Xie, P., and Beaudoin, J.J.,“Effect of Uneven Porosity Distribution in Cement Paste and Mortar on Reinforcing Steel Corrosion”, Cement and Concrete Research, Vol. 24, No. 6, pp.1055-1064, 1994.
68. Hilsdorf, H.K., “Durability of Concrete-a Measurable Quantity?” in Proceedings of IABSE Symposium, Lisbon, Vol. 1, pp. 111-123, 1989.
69. Parrott, L.J., “ Carbonation, Corrosion and Standardization, in Protection of Concrete,” Proceedings of International Conference, Dundee, Scotland, September, Eds R.K. Dhir and M.R. Jones, E & FN Spon, London, pp.1009-1023, 1990.
70. Vander Koi J., “Moisture Transport in Cellular Concrete Roof,” Thesis TH Eindhoven, 1971.
71. Carman, P.C. , “ Flow of Gases through Porous Media,” Butterworth Scientific Publications, London, 1956.
72. Hall, C., “ Water Sorptivity of Mortars and Concretes: A review,” Magazine of Concrete Research, Vol.41, No.147, pp.51-61, 1989.
73. Bockris, J.O. M. and A.K.N. Reddy, “ Modern Electrchemistry,” Plenum Press, New York, 1974.
74. Garboczi, E.J., “ Permeability, Diffusivity, and Microstructure Parameter: A critical Review,” Cement and Concrete Research, Vol.20, No.4, pp.591-601, 1990.
75. Gaber, K., “ Influence of Mix Proportions and Components on the Diffusion Coefficient and the Permeability of Concrete,” Darmstadt Concrete, pp.39-48, 1988.
76. Lawrence, C.D., “Water Permeability of Concretes,” Concrete Society Materials Research Seminar, Serviceability of Concrete, Slough, July, 1985.
77. Uchikawa, H., “ Effect of Blending Components on Hydration and Structure Formation,” in Proceedings 8th International Congress on the Chemistry of cements, Rio de Janeiro, September, Vol.1, pp.250-258, 1986.
78. Dhir, R.K., P.C. Hewlett, and Y.N. Chan, “ Near Surface Characteristics of Concrete: Instrinsic Permeability,” Magazine of Concrete Research, Vol.41, No.147, June, pp.87-97, 1987.
79. Goto, S. and D.M. Roy, “ The Effect of w/c and Curing Temperature on the Permeability of Hardened Cement Pasted,” Cement and Concrete Research, Vol.11, pp.575-579, 1981.
80. Hakkinen, T. “ Durability of Alkali-activated Slag concrete,” Concrete , Vol.15, September, pp.22-25, 1985.
81. Kassai, Y., Matsui, I. And Aoki, T., “ Long Term Changes of Air Permeability by rapid Test,” Trans. Japanese Concrete Institute, Vol.8, pp.145-152, 1986.
82. Marsh, B.K., Day, R.L., and Bonner, D.G., “ Pore Structure Characteristics Affecting the Permeability of Cement Paste Containing Fly Ash,” Cement and Concrete Research, Vol.15, No.6, pp.1027-1038, 1985.
83. Massazza, F., “ The Role of Additions to Cement in the Concrete Durability,” Il Cemento, No.4, pp.359-382, 1987.
84. Manmohan, D. and Metha, P.K., “ Influence of Pozzolanic, Slag, and Chemical Admixtures on Pore Size Distribution and Permeability of Hardened Cement Pastes,” Cement and Concrete Research, Vol.3, No.1, pp.63-67, 1981.
85. Pomeroy, D., “ Concrete Durability: from Basic Research to Practical Reality,” in Concrete Durability, Katherine and Bryant Mather International Conference, ACI-SP100, pp.111-130, 1987.
86. Parrot, L.J., “ Water Absorption in Cover Concrete,” Material and Structures, Vol.25, No.149, June, pp.284-292, 1992.
87. Kelham, S. “ A Water Absorption Test for Concrete,” Magazine of Concrete Research, Vol.40, No.143, June, pp.106-110, 1988.
88. Dhir, R.K. and Byers, E.A., “ PFA Concrete: near Surface Absorption Properties,” Magazine of Concrete Research, Vol.43, No.157, December, 1991.
89. Neville, A.M., “Properties of Concrete,” 4th Edition, Addison Wesley Longman, London,1997.
90. Papadakis, V.G., Fardis, N.M. and Vayenas, C.G., “ Hydration and Carbonation of Pozzolanic Cements,” ACI Material Journal, March/April, pp.119-130,1992.
91. Papadakis, V.G., Fardis, N.M. and Vayenas, C.G., “ Effect of Composition, Environmental Factors and Cement-lime Mortar Coating on Concrete Carbonation,” Materials and Structures, Vol.25, pp.293-304, 1992.
92. RILEM Committee CPC 18, “ Draft Recommendation, Measurement of Hardened Concrete Carbonation Depth,” Materials and Structures, No.102, 1985.
93. Powers, T.C., “ A Hypothesis on Carbonation Shrinkage,” Journal of the PCA Research and Development Laboratories, 1962.
94. Allen, A.J. et al., “ Development of the Fine Porosity and Gel Structure of Hydrating Cement System,” Philosophical Magazine B, Vol.56, No.3, pp.263-288, 1987.
95. Young, J.F., “ A Review of Pore Structure of Cement Paste and Concrete and its Influence on Permeability,” In Permeability of Concrete, ACI SP-108, American Concrete Institute, Detroit, 1988.
96. Garboczi, E.J., “ Permeability, Diffusivity, and Microstructural Parameters: a Critical Review,” Cement and Concrete Research, Vol.20, pp.591-601, 1990.
97. Garboczi, E.J. et al., “ Universal Conductivity Curve for a Plane Containing Random Holes,” Physical Review A, Vol.43, pp.64-73, 1991.
98. Bentz, D.P. and Garboczi, E.J., “ Precolation of Phases in a Three Dimensional Cement Paste Microstructural Model,” Cement and Concrete Research, Vol.21, pp.325-344, 1991.
99. Powers, T.C. et al., “ Capillary Continuity or Discontinuity in Cement Paste,” Journal of the Portland Cement Association,” Research annd Development Laboratories, Vol.1, No.2, May, pp.38-48, 1959.
100. Brandt, A. M., “Cement-based Composites:Material, Mechanical Properties and Performance,” First edition, 1995.
101. Mindess, S., and Young, J. F., Concrete, Prentic-Hall, Englewoad Cliffs, N. J.,1981.
102. Power, T. C., “The Physical Structure of Portland Cement Paste,” in The Chemistry of Cements, Vol. 1, Acad. Press, London, pp.391-416.
103. Garboczi, E. J., “Permeability, Diffusivity and Microstructural Parameters: A Critical Review”, Cement and Concrete Research, Vol. 20,No. 5, pp.591-601 , 1990.
104. Kollek, J.J., “ The Determination of the Permeability of Concrete to Oxygen by the CEMBUREAU Method — a Recommendation ,“ Material Structure, Vol.22, 1989.
105. Papadakis,V.G., C.G. Vayenas and M.N. Fardis, “Fundamental Modeling and Experimental Investigation of Concrete Carbonation,” ACI Materials Journal, July-Aug, pp.363-373, 1991.
106. Dullian, F.A.L.,” Fluid Transport and Pore Structure, ” Academic Press New York, 1979.
107. Garboczi, E. J., “Permeability, Diffusivity and Microstructural Parameters: A Critical Review,” Cement and Concrete Research, V. 20,No. 5, pp.591-601, 1990.
108. Pfeifer, D.W., D.B. McDonald and P.D. Krauss, “ The Rapaid Chloride Permeability Test and Its Correlation to the 90-Day Chloride Ponding Testing,” Cement and Concrete Research, V. 39,No. 1, pp.38-47, 1994.
109. Francy, O., and Francois, R., “Measuring Chloride Diffusion Coefficient Form Non-Steady State Diffusion Tests”, Cement and Concrete Research, Vol. 28, No. 7, pp. 947-953, 1998.
110. Maso, J.C., “La liaison entre les granulats et la pate de ciment hydrate”, in Proc. 7th International Congress on Chemistry of Cement, Rapport Principal, Vol.1 ,Edition Septima, paris, 1980.
111. Shi, C., Stegemann, J. A., and Caldwell, R. J., “Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and Its Implications on the Rapid Chloride Permeability Test (AASTO T277 and ASTM C1202) Results”, ACI Matrials Jounal, V. 95, No. 4, July-August, 1998.
112. Ampadu, K. O., Torii, K., and Kawamura, M., “Beneficial Effect of Fly Ash on Chloride Diffusivity of Hardened Cement Paste”, Cement and Concrete Research, Vol. 29, pp.585-590, 1999.
113. Byfore, K., “Influence of Silica Fume and Flyash on Chloride Diffusion and PH Values in Cement Paste”, Cement and Concrete Research, Vol.17, No. 1, pp. 115-130, 1987.
114. Fattuhi N.J., “Carbonation of Concrete as Affected by Mix Constituents and Initial Water Curing Period,” Materials of Constructions, Vol.19, No.110, pp.131-136. 1986.
115. Wierig H.J., “Longtime studies on the Carbonation of Concrete Under Normal Outdoor Exposure,” in Proceedings of the RILEM, Hannover University, pp.239-249, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊