跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林筱玫
研究生(外文):Hsiao-Mei, Lin
論文名稱:吳郭魚稚魚與石斑魚稚魚對維生素B1最適需求量之探討
論文名稱(外文):Vitamin B1 requirements of juvenile hybrid tilapia (Oreochromis niloticus × O. aureus) and grouper (Epinephelus malabaricus)
指導教授:蕭錫延蕭錫延引用關係
指導教授(外文):Shi-Yen, Shiau
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:91
中文關鍵詞:維生素 B 1吳郭魚石斑魚需求
外文關鍵詞:vitamin B 1tilapiagrouperrequirement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:3
本研究為探討吳郭魚稚魚(Oreochromis niloticus × O. aureus)與石斑魚稚魚(Epinephilus marabaricus)之維生素B1最適需求量。吳郭魚稚魚(平均初重0.63  0.01 g)給予八組不同維生素B1含量(0, 0.5, 1.0, 2.0, 3.0, 4.0, 8.0, 16.0 mg/kg diet)之飼料,每組三重複,共飼養八週。結果顯示餵食未添加維生素B1組之吳郭魚稚魚其魚體增重百分率、飼料效率及蛋白質利用率皆顯著(P<0.05)低於其他餵食含有維生素B1之各組。吳郭魚血液、肝臟及肌肉中維生素B1含量與血液及肝臟transketolase(TK)活性皆以餵食未添加維生素B1組為最低;而thiamin pyrophosphate(TPP) effect值則以此組為最高。魚體增重百分率、血液中維生素B1含量及血液中TK活性以broken-line迴歸分析求得吳郭魚稚魚對維生素B1之最適需求量為1.4-2.1 mg/kg diet (研究一)。石斑魚稚魚(平均初重4.09  0.08 g)給予八組不同維生素B1含量(0, 0.5, 1.0, 2.0, 3.0, 6.0, 10.0, 20.0 mg/kg diet)之飼料,每組三重複,共飼養八週。結果顯示餵食維生素B1缺乏組之存活率、魚體增重率、飼料效率及蛋白質利用率等均較其他餵食添加維生素B1組為差。餵食未添加維生素B1組之血液、肝臟及肌肉中之維生素B1含量以及血液和肝臟中TK活性皆較餵食B1組為低;而其TPP-effect值則較高。當魚體增重百分率、血液中維生素B1含量及血液中TK活性以broken-line迴歸分析獲得石斑魚稚魚之維生素B1最適需求量為0.7-1.0 mg/kg diet (研究二)。

The study was aimed at quantifying the optimal vitamin B1 (B1) requirements of juvenile hybrid tilapia (Oreochromis niloticus  O. aureus) and grouper (Epinephilus malabaricus). In Experiment I, purified diets with 8 levels (0, 0.5, 1.0, 2.0, 3.0, 4.0, 8.0, 16.0 mg/kg diet) of supplemental vitamin B1 were each fed to triplicate groups of tilapia (mean initial body weight 0.63  0.01 g) for 8 weeks. Results indicated that fish fed the unsupplemented vitamin B1 control diet had lower (P<0.05) weight gain (WG), feed efficiency (FE), protein efficiency ratio (PER) and vitamin B1 concentration in tissues than fish fed diets supplemented with B1. Hepatic and blood transketolase (TK) activity increased, while thiamin pyrophosphate (TPP) effect decreased in fish as the dietary B1 supplementation level increased. Analysis of the WG, blood B1 concentration and TK activity of the fish by broken-line regression indicate that the optimal dietary vitamin B1 requirement for tilapia is approximately 1.4-2.1 mg/kg diet. In Experiment II, purified diets with 8 levels (0, 0.5, 1.0, 2.0, 3.0, 6.0, 10.0, 20.0 mg/kg diet) of supplemental B1 were each fed to triplicate groups of grouper (mean initial body weight 4.09  0.08 g) for 8 weeks. Results indicated that fish fed the B1 unsupplemented control diet had lower WG, FE, PER and tissue vitamin B1 concentration than fish fed diets supplemented with B1. Analysis of the WG, blood B1 concentration and TK activity of the fish by broken-line regression indicate that the optimal dietary vitamin B1 requirement for grouper is approximately 0.7-1.0 mg/kg diet.

總摘要(中文) ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ I
文獻整理 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 1
研究一:吳郭魚稚魚對維生素B1最適需求量之探討
摘要 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 19
前言 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 20
材料與方法 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 22
結果 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 37
討論 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 48
研究二:石斑魚稚魚對維生素B1最適需求量之探討
摘要 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 51
前言 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 52
材料與方法 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 53
結果 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 68
討論 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 78
總結論 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 81
參考文獻 ּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּּ 82

Amcoff, P., Åkerman, G., Börjeson, H., Tjärnlund, U., Norrgren, L., Balk, L., 2001. Hepatic activities of thiamine-dependent enzymes, glucose-6-phosphate dehydrogenase and cytochrome P4501A in Baltic salmon (Salmo salar) yolk-sac fry after thiamine treatment. Aquat. Toxicol. 48, 391-402.
Amcoff, P., Börjeson, L., Landergren, P., Vallin, L., Norrgren, L., 1999. Thiamine (vitamin B1) concentrations in salmon (Salmo salar), brown trout (Salmo trutta) and cod (Gadus morhua) from the Baltic sea. Ambio 28, 48-54.
Aoe, H., Masuda, I., Saito, T., Komo, A., 1967. Water-soluble vitamin requirement of carp-IV. Requirement of thiamine. Bull. Jpn. Soc. Sci. Fish. 33, 970-974.
Ariaey-Nejad, M.R., Balaghi, M., Baker, E.M., Sauberlich, H.E., 1970. Thiamin metabolism in man. Am. J. Clin. Nutr. 23, 764-778.
Association of Official Analytical Chemists (A.O.A.C), 1995. Official Methods of Analysis, 16th edn., Arlington, VA.
Barna, É., Dworschák, E., 1994. Determination of thiamine (vitamin B1) and riboflavin (vitamin ) in meat and liver by high-performance liquid chromatography. J. Chromatogr. 668A, 359-363.
Bender, D.A., 1992. Nutritional biochemistry of the vitamins. Cambridge University Press, New York, pp128-155.
Bender, D.A., 1999. Optimal nutrition: thiamin, biotin and pantothenate. Proc. Nutr. Soc. 58, 427-433.
Blair, P.V., Kobayashi, R., Edwards, III, H.M., Shay, N.F., Baker, D.H., 1999.Dietary thiamin level influences levels of its diphosphate form and thiamin-dependent enzymic activities of rat liver. J. Nutr. 129, 641-648.
Boonyaratpalin, M., 1997. Nutrient requirements of marine food fish cultured in Southeast Asia. Aquaculture 151, 283-313.
Brin, M., 1962a. Effects of thiamine deficiency and of oxythiamin on rat tissue transketolase. J. Nutr. 78, 179-183.
Brin, M., 1962b. Erythrocyte transketolase in early thiamin deficiency. Ann. N. Y. Acad. Sci. 98, 528-541.
Brin, M., 1964. Erythrocyte as a biopsy tissue for functional evaluation of thiamine adequacy. J. Am. Med. Assoc. 187, 762-766.
Brin, M., Tai, M., Ostashever, A.S., Kalinsky, H., 1960. The effect of thiamine deficiency on the activity of erythrocyte hemolysate transketolase. J. Nutr. 71, 273-281.
Buttendroff, L., Kolb, H., Schoffeniels, E., 1993a. Thiamine triphosphate activates an anion channel of large unit conductance in neuroblastoma cells. J. Memb. Biol. 136, 281-288.
Buttendroff, L., Kril, J., Harper, C., 1993b. Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol. Clin. Exp. Res. 16, 634-639.
Butterworth, R.F., Gaudreau, C., Vincelette, J., Bourgault, A.M., Lamothe, F., Nutini, A.M., 1991. Thiamine deficiency and Wernicke’s encephalopathy in AIDC. Metab. Brain Dis. 6, 207-212.
Carpenter, K.J., Harper, A.E., Olson, R.E., 1997. Experiments that changed nutritional thinking. J. Nutr. 127S, 1017-1053.
Chen, H.Y., Tsai, J.C., 1994. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semipurified diets. Aquaculture 119, 265-271.
Chen, H.Y., Wu, F.C., Tang, S.Y., 1991. Thiamin requirement of juvenile shrimp (Penaeus monodon). J. Nutr. 121, 1984-1989.
Chen, H.Y., Wu, F.C., Tang, S.Y., 1994. Sensitivity of transketolase to the thiamin status of juvenile marine shrimp (Penaeus monodon). Comp. Biochem. Physiol. 109A, 655-659.
Chen, T.P., 1976. Tilapia culture. In: Chen, T.P. (Ed.), Aquaculture Practices in Taiwan. Fishing News Book Ltd, pp. 55-61.
Cowey, C.B., Aderon, J.W., Knox, D., 1975. Studies on the nutrition of marin flatfish. The thiamin requirement of torbot (Scopthalmus maximus). Br. J. Nutr. 34, 383-397.
Deshimaru, O., Kuroki, K., 1979. Requirement of prawn for dietary thiamine, pyridoxine and choline chloride. Bull. Jpn. Soc. Sci. Fish. 45, 363-367.
Eitenmiller, R.R., Landen, Jr., W.O., 1998. Vitamin Analysis for the Health and Food Sciences. CRC Press, USA, pp. 271-290.
El-Sayed, A.F.M., 1999. Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 179, 149-168.
Finglas, P.M., 1994. Thiamin. Int. J. Vitam. Nutr. Res. 63, 270-274.
Fisher, J.P., Brown, S.B., Wooster, G.W., Bowser, P.R., 1998. Maternal blood, egg and larval thiamin levels correlate with larval survival in landlocked Atlantic salmon (Salmo salar). J. Nutr. 128, 2456-2466.
Fisher, J.P., Fitzsimons, J.D., Combs, Jr., G. F., Spitsbergen, J.M., 1996. Naturally occurring thiamine deficiency causing reproductive failure in finger Lakes Atlantic salmon and Great Lakes trout. Trans. Am. Fish. Soc. 125, 167-178.
Fisher, J.P., Spitsbergen, J.M., Getchell, R., 1995. Reproductive failure of landlocked Atlantic salmon from New York’s Finger Lakes: Investigations into the etiology and epidemiology of the “Cayuga Syndrome”. J. Aquat. Anim. Health 7, 81-94.
Fitzsimons, J.D., Vandenbyllardt, L., Brown, S., 2001. The use of thiamine and thiamine antagonists to investigate the etiology of early mortality symdrome in lake trout (Salvelinus namaycush). Aquat. Toxicol. 52, 229-239.
Fitzsimons, J.D., Brown, S.B., Honeyfield, D.C., Hnath, J.G., 1999. A review of early mortality syndrome (EMS) in Great Lakes salmonids: relationship with thiamine deficiency. Ambio 28, 9-15.
Gnaedinger, R.H., 1964. Thiaminase activity in fish: an improved assay method. Fish. Ind. Res. 2, 55-59.
Goldsmith, G.A., 1971. The B vitamins. In: Beaton, G.H. (Ed.), Nutrition. Academic Press, New York, pp. 110-206.
Groff, J.L., Gropper, S.S.,1999. Advanced Nutrition and Human Metabolism. Wadsworth/Thomson Learnubg, USA. pp. 262-269.
Gubler, C., 1991. Thiamin. In: Machlin, L.J. (Ed.). Handbook of Vitamins. Marcel Dekker, INC., New York, NY, pp. 233-281.
Haas, R., 1988. Thiamine and the brain. Ann. Rev. Nutr. 8, 483-515.
Halver, J.E., 1957. Nutrition of salmonoid fishes III. Water-soluble vitamin requirements of chinook salmon. J. Nutr. 62, 225-243.
Halver, J.E.,1972. Fish Nutrition. Academic, NewYork, pp.30-103.
Hansson, S., Karlsson, L., Ikonen, E., Christensen, O., Mitans, A., Uzars, D., Petersson, E., Ragnarsson, B., 2001. Stomach analysis of baltic salmon from 1959-1962 and 1994-1997: possible relations between diet and yolk-sac-fry mortality (M74). J. Fish Biol. 58, 1730-1745.
Hashimoto, Y., Arai, S., Nose, T., 1970. Thiamin deficiency symptoms experimentally induced in the eel. Bull. Jpn. Soc. Sci. Fish. 36, 791-797.
Hilton, J.W., 1989. The interaction of vitamins, minerals and diet composition in the diet of fish. Aquaculture 79, 223-244.
Horwitt, M.K., Kreisler, O., 1949. The determination of early thiamine deficient states by estimation of blood latic acid and pyruvic acid after glucose administration and exercise. J. Nutr. 7, 411-427.
Ishihara, T., Kinari, H., Yasuda, M., 1973. Studies on thiaminase I in marine fish-II. Distribution of thiaminase in marine fish. Bull. Jpn. Soc. Sci. Fish. 39, 55-59.
Ishihara, T., Hara, K., Yagi, M., Nakayama, H., Yasuda, M., 1978a. Studies on thiaminase I in marine fish-VII. Effect of thiaminase on yellowtail fed with saury. Bull. Jpn. Soc. Sci. Fish. 44, 653-657.
Ishihara, T., Hara, K., Yagi, M., Nakayama, H., Yasuda, M., 1978b. Studies on thiaminase I in marine fish-VIII. Thiamin requirement of yellowtail fed with anchovy. Bull. Jpn. Soc. Sci. Fish. 44, 659-664.
Jones, J.H., De Angeli, E., 1960. Thiamine deficiency and the in vivo oxidation of lactate and pyruvate labeled with carbon. J. Nutr. 70, 537-576.
Karisson, L., Ikonen, E., Mitans, A., Hansson, S., 1999. The diet of salmon (Salmo salar) in the Baltic sea and connections with the M74 syndrome. Ambio 28, 37-42.
Leevy, C.M., 1982. Thiamin deficiency and alcoholism. Ann. N. Y. Acad. Sci. 378, 316-326.
Leong, D.K., Butterworth, R.F., 1996. Neuronal cell death in Wernicke’s Encephalopathy: Pathophysiologic mechanisms and implications for PET imaging. Metab. Brain Dis. 11, 71-79.
Lim, C., Leamaster, B., 1991. In: Program and Abstracts, World Aquaculture Society 22nd Annual Conference and Exposition, 16-20 June 1991, San Juan, Puerto Rico, p. 39.
Mackie, A.M., Mitchell, A.I., 1985. Identification of gustatory feeding stimulants for fish-applications in aquaculture. In: Cowey, C.B., Mackie, A.M., Bell, J.B. (Eds.), Nutrition and Feeding in Fish. Academic Press, London, pp. 177-189.
Masumoto, T., Hardy, R.W., Casillas, E., 1987. Comparison of transketolase activity and thiamin pyrophosphate levels in erythrocytes and liver of rainbow trout (Salmo gairdneri) as indicators of thiamin status. J. Nutr. 117, 1422-1426.
McAndrew, B.J., Majumdar, N.C., 1983. Tilapia stock identification using electrophoretic markers. Aquaculture 30, 249-261.
McDowell, L.R., 1989. Vitamins in Animal Nutrition. Academic Press, New York, pp. 155-182.
Morito, C.L., Conrad, D.H., Hilton, J.W., 1986. The thiamin deficiency signs and requirement of rainbow trout (Salmo gairdneri, Richardson). Fish Physiol. Biochem. 1, 93-104.
Murai, T., Andrews, J.W., 1978. Thiamin requirement of channel catfish fingerlings. J. Nutr. 108, 176-180.
Murata, K., 1982. Actions of two types of thiaminase on thiamin and its analogues. Ann. N. Y. Acad. Sci. 378, 146-156.
Phromkunthong, W., Boonyaratpalin, M., Verakunpiriya, W., 1993. Histopathology of the gills of ascorbic acids deficient grouper, Epinephelus malabaricus. Gyobyo Kenkyu 28, 151-159.
Remus J.C., Firman, J.D., 1990. Effect of thiamin deficiency on energy metabolites in the turkey. J. Nutr. Biochem. 1, 636-639.
Sato, M., Hayashi, S., Nishino, K., 1994. Subcellular localization of thiaminase I in the kidney and spleen of carp, Cyprinus carpio. Comp. Biochem. Physiol. 108A, 31-38.
Sauberlich, H.E., 1967. Biochemical alterations in thiamine deficiency-their interpretation. Am. J. Clin. Nutr. 20, 528-542.
Shiau, S.Y., Chin, Y.H., 1999. Estimation of dietary biotin requirement of juvenile hybrid tilapia, Oreochromis niloticus  O. aureus. Aquaculture 170, 71-78.
Shiau, S.Y., Hsieh, H.L., 1997. Vitamin B6 requirement of juvenile hybrid tilapia, Oreochromis niloticus  O. aureus fed two dietary protein concentration. Fish. Sci. 63, 1002-1007.
Shiau, S.Y., Hsu, T.S., 1995. L-ascorbyl-2-sulfate has equal antiscobutic activity as L-ascorbyl-2-monophosphate for tilapia, Oreochromis niloticus  O. aureus. Aquaculture 133, 147-157.
Shiau, S.Y., Hsu, T.S., 1999. Quatification of vitamin C requirement for juvenile hybrid tilapia, Oreochromis niloticus  O. aureus, with L-ascorbyl-2-monophosphate-Na and L-ascorbyl-2-monophosphate-Mg. Aquaculture 175, 317-326.
Shiau, S.Y., Huang, S.Y., 2001. Dietary folic acid requirement for maximal growth of juvenile tilapia, Oreochromis niloticus  O. aureus. Fish. Sci. 67, 655-659.
Shiau, S.Y., Hwang, J.Y., 1993. Vitamin D requirement of juvenile hybrid tilapia, Oreochromis niloticus  O. aureus. Nippon Suisan Gakkaishi 59, 553-558.
Shiau, S.Y., Jan, F.L., 1992. Dietary ascorbic acid requirement of juvenile hybrid tilapia, Oreochromis niloticus  O. aureus. Nippon Suisan Gakkaishi 58, 671-675.
Shiau, S.Y., Lan, C.W., 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture 145, 245-266.
Shiau, S.Y., Lin, Y.H., 2002. Carbohydrate utilization and its protein-sparing effect in diets for grouper (Epinephelus malabaricus). Animal Sci. 73, 299-304.
Shiau, S.Y., Lo, P.S., 2000. Dietary choline requirement of juvenile hybrid tilapia, Oreochromis niloticus  O. aureus. J. Nutr. 130, 100-103.
Shiau, S.Y., Lung, C.Q., 1993. No dietary vitamin B12 requirement for juvenile hybrid tilapia, Oreochromis niloticus  O. aureus. Comp. Biochem. Physiol. 105A, 147-150.
Shiau, S.Y., Shiau, L.F., 2001. Reevaluation of the vitamin E requirements of juvenile hybrid tilapia, Oreochromis niloticus  O. aureus. Animal Sci. 72, 529-534.
Shiau, S.Y., Suen, G.S., 1992. Estimation of the niacin requirements for tilapia fed diets containing glucose or dextrin. J. Nutr. 122, 2030-2036.
Shimeno, S., 1991. Yellowtail, Seriola quinqueradiata. In: Handbook of Nutrition Requirement of Finfish, Wilson, R.P. (Ed.), Boco Raton, pp. 181-191.
Singleton, C.K., Pekovich, S.R., McCool, B.A., Martin, P.R., 1995. The thiamine-dependent hysteretic behavior of human transketolase: implications for thiamine deficiency. J. Nutr. 125, 189-194.
Spector, R., 1976. Thiamine transport in the central nervous system. Am. J. Physiol. 230, 1101-1107.
Tompson, A.D., Jeyasingham, M.D., Pratt, O.E., Shaw, G.K., 1987. Nutrition and alcoholic encephalopathies. Acta. Med. Scand. 717s, 55-65.
Walzem, R.L., Clifford, A.J., 1988. Determination of blood transketolase: An improved procedure with optimized conditions. J. Micronutr. Anal. 4, 17-32.
Warnock, L., Prudhonme, C., Wagner, C., 1978. The determination of thiamin pyrophosphate in blood and other tissues, and its correlation with erythrocyte transketolase activity. J. Nutr. 108, 421-427.
Williams, R.R., 1961. Toward the conquest of beriberi. Harvard Univ. Press, Cambridge, Massachusetts, pp. 36-42.
Wright, R.C., Scott, E.M., 1953. Pyruvate and α-ketoglutarate metabolism in thiamine deficiency. J. Biol. Chem. 206, 725-733.
Wu, F.C., Ting, Y.Y., Chen, H.Y., 2002. Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. J. Nutr. 132, 72-79.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊