跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張正昇
論文名稱:幾丁聚醣液晶性質之探討及其於輸藥系統上之應用
論文名稱(外文):Liquid Crystal Behavior of Chitosan and its Application on Drug Delivery System
指導教授:張克亮
指導教授(外文):Ke Liang B. Chang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:113
中文關鍵詞:幾丁聚醣液晶去乙醯程度紅外線光譜法臨界濃度持續長度膽固醇型液致形液晶
外文關鍵詞:chitosanliquid crystaldegree of deacetylationinfrared spectroscopycritical concentrationpersistence lengthcholesterol lyotropic liquid crystal
相關次數:
  • 被引用被引用:7
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:2
本研究之目的在探討不同鏈柔軟度的幾丁聚醣對其液晶特性的影響。先自魷魚軟骨純化β-幾丁質,再以熱鹼處理法製備成不同去乙醯程度(degree of deacetylation, DD)的幾丁聚醣,以紅外線光譜法(infrared spectroscopy, IR)測定幾丁質及幾丁聚醣製品的DD,再以超音波降解得到不同去乙醯程度、不同分子量的幾丁聚醣,利用不同濃度、不同鏈柔軟度的幾丁聚醣製備液晶,利用偏光顯微鏡得其液晶組織紋路照片,進一步探討鏈柔軟度指標(持續長度)、分子量與液晶性質的關係。結果如下:幾丁質的DD為20.67%,以95℃處理1、2、3小時所製得之幾丁聚醣其DD分別為67.20%、73.34%、76.20%,以110℃處理3小時所製得之幾丁聚醣其DD為83.60%。其DD皆會隨反應時間及溫度的增長而增加,在反應的初期,DD增加十分快速,但反應時間愈長,其DD增加愈慢。而將幾丁聚醣經超音波作用降解,可發現幾丁聚醣分子量隨著超音波作用時間的增長而降低,在作用的初期,分子量降低十分快速,但作用時間愈長,其分子量降低愈慢。不同分子量、不同去乙醯程度(67%、73%、76%、84%)的幾丁聚醣醋酸/醋酸鈉緩衝溶液的比黏度會隨幾丁聚醣醋酸/醋酸鈉緩衝溶液濃度、隨幾丁聚醣去乙醯程度及分子量的增加而增高,隨醋酸/醋酸鈉緩衝溶液的離子強度、pH值的增加而降低。而其內生性黏度亦有類似之表現。另外在Mark-Houwink指數方面,a值會隨溶液中離子強度的增加而變小。而在持續長度方面,幾丁聚醣的持續長度隨去乙醯程度的增加而降低,隨分子量的降低而減小,隨離子強度的增加而降低。在幾丁聚醣液晶方面,四種不同DD及分子量的幾丁聚醣在蘋果酸溶液(1.85M)中皆可呈現膽固醇型液致形液晶,而幾丁聚醣臨界濃度隨著DD的增加而增加,隨著分子量的增加而降低;當添加不同濃度的NaCl及調整不同濃度的蘋果酸時,也可發現幾丁聚醣臨界濃度隨著NaCl及蘋果酸濃度的增加而降低。將之包覆100 mg紅黴素放置於乙醇中的釋放能力經過釋放4 hr之後,其釋放紅黴素之速率趨於平緩,總釋出量大約25 mg左右。透過Polycarbonate膜之紅黴素釋放量明顯降低許多,約為80μg左右,並且紅黴素的釋放量會隨幾丁聚醣濃度、NaCl濃度的增加而降低。
The objectives of this study are to explore the effect of degree of deacetylation (DD), molecular weight (MW) of chitosan, concentration of NaCl on their liquid crystal properties. The study includes the preparation of chitosan samples with various degrees of deacetylation from β-chitin that was purified from squid pens. Those chitosan samples will then be degraded with ultrasonic radiation to different molecular weights. The degree of deacetylation and molecular weight of chitosan samples were determined by IR and size-exclusion high performance liquid chromatography, respectively. The critical concentrations of chitosan to form liquid crystal were observed by polarized microscope. The concentration at which liquid crystal phase occurred was defined as the critical concentration. The results are as follows: The DD of chitin was 20.67%. After deacetylation, the DD of chitosan were 67.2%, 73.34%, 76.20% and 83.60%, for samples treated with 95℃ alkaline solution for 1hr, 2hr, 3hr and 110℃ for 3hr, respectively. The DDs of chitosan increased with increasing reaction time. The DDs of chitosan increased rapidly at the beginning of deacetylation reaction then the deacetylation rate slowed down. Chitosan was degraded by ultrasonic radiation to different molecular weights. The MW of chitosan decreased with increasing ultrasonic time The MW of chitosans decreased rapidly at the beginning of ultrasonication then the degradation rate slowed down. The specific viscosity of chitosan solution increased with increasing chitosan concentration, the DD of chitosan, and the MW of chitosan. On the contrary it increased with decreasing pH and ionic strength of chitosan solution.The intrinsic viscosity of chitosan showed similar dependence on these variables. The Mark-Houwink exponents decreased with increasing ionic strength of chitosan solution. Persistence length decreased with increasing DD and ionic strength, but it decreased with decreasing MW. All of the chitosan samples formed cholesterol lyotropic liquid crystal when they were dissolved in 1.85M malic acid. The critical concentrations of chitosan increased with increasing DD, but it decreased with increasing MW and increasing concentration of NaCl or malic acid. Chitosan liquid crystal samples were loaded with 100 mg erythromycin. The chitosan liquid crystal released 25 mg erythromycin after 4 hr in alcohol. Only 80 μg of erythromycin released from the liquid crystal sample through a polycarbonate membrane mounted in a diffusion cell. The amount of erythromycin released decreased with increasing chitosan concentration and increasing ionic strength of chitosan solution.
中文摘要……………………………………………………………vi
英文摘要……………………………………………………………viii
一、前言 ……………………………………………………………1
二、文獻整理 ………………………………………………………4
1. 幾丁質與幾丁聚醣……………………………………………4
1.1. 幾丁質與幾丁聚醣之命名…………………………………4
1.2. 幾丁質及幾丁聚醣之分佈…………………………………4
1.3. 幾丁質與幾丁聚醣構造……………………………………4
1.4. 幾丁質之種類………………………………………………5
1.5. 幾丁質與幾丁聚醣之溶解性質……………………………6
1.5.1. 幾丁質的溶劑系統……………………………………6
1.5.2. 幾丁聚醣的溶劑系統…………………………………6
1.6. 影響幾丁質類物質水溶性的因子…………………………6
1.6.1 氫鍵 ……………………………………………………7
1.6.2 去乙醯程度與分子組合 ………………………………7
1.6.3 分子量 …………………………………………………7
1.7. 超音波的作用 ………………………………………………8
2. 液晶……………………………………………………………9
2.1. 液晶的由來…………………………………………………9
2.2. 液晶的種類…………………………………………………10
2.3. 液晶的分子排列……………………………………………11
2.4. 液晶在製藥上之應用………………………………………11
3. 幾丁質類物質在液晶方面的研究 ……………………………12
三、 材料與方法 ……………………………………………………15
1.材料 ……………………………………………………………15
1.1.魷魚軟骨原料 ……………………………………………15
1.2.化學藥品 …………………………………………………15
1.3.儀器 ………………………………………………………15
2.方法 ……………………………………………………………16
2.1.β-幾丁質之純化…………………………………………16
2.2.製備不同去乙醯程度之幾丁聚醣 ………………………16
2.3.以超音波處理製備不同分子量幾丁聚醣 ………………17
2.4.去乙醯程度之測定 ………………………………………17
2.5.幾丁聚醣分子量及其分佈的測定 ………………………18
2.6.內生性黏度之測定 ………………………………………18
2.6.1.相同pH值,不同離子強度溶劑的配製………………19
2.7.臨界濃度之測定及液晶組織之觀察 ……………………19
2.8.液晶包覆藥物方法 ………………………………………20
2.9.幾丁聚醣液晶釋放紅黴素之測定 ………………………20
2.9.1.在乙醇之釋放能力……………………………………20
2.9.2.經人工膜穿透後的釋放能力…………………………20
四、 結果 ……………………………………………………………22
1.幾丁聚醣之去乙醯程度及分子量之探討 ……………………22
1.1. 幾丁聚醣去乙醯程度的變化……………………………22
1.2. 幾丁聚醣分子量變化……………………………………23
2. 幾丁聚醣溶液流變性質之探討………………………………24
2.1. 濃度對幾丁聚醣比黏度的影響…………………………24
2.2. pH值對幾丁聚醣比黏度的影響…………………………25
2.3. 離子強度對幾丁聚醣比黏度的影響……………………25
2.4. 去乙醯程度對幾丁聚醣比黏度的影響…………………26
2.5. 分子量對幾丁聚醣比黏度的影響………………………26
3. 影響幾丁聚醣內生性黏度的因子 ……………………………27
3.1. pH值的影響………………………………………………27
3.2. 離子強度的影響…………………………………………28
3.3. 分子量的影響……………………………………………28
3.4. 去乙醯程度的影響………………………………………29
4. 幾丁聚醣Mark-Houwink指數…………………………………29
5. 幾丁聚醣持續長度(persistence length)之探討 …………….30
6. 幾丁聚醣臨界濃度性質之探討………………………………31
6.1.蘋果酸濃度對幾丁聚醣臨界濃度的影響 ………………31
6.2.分子量對幾丁聚醣臨界濃度的影響 ……………………33
6.3. NaCl的濃度對幾丁聚醣臨界濃度的影響 ……………..34
6.4. 去乙醯程度對幾丁聚醣臨界濃度的影響………………34
7.幾丁聚醣液晶的應用 …………………………………………35
五、 結論 ……………………………………………………………37
六、 參考文獻 ………………………………………………………39
七、 圖 ………………………………………………………………50
八、 表 ………………………………………………………………71
九、 附圖 ……………………………………………………………96
王偉、秦汶、李素清、薄淑琴,1991,甲殼素的分子量,應用化學,8(6):85-87。
李中強,1997a。水溶性幾丁聚醣之物化與流變性質。國立台灣海洋大學水產科學研究所博士論文。
李宗洋,1997b。以化學法製備幾丁寡醣之探討:幾丁聚醣之物性與其生物分解性。國立台灣海洋大學水產科學研究所博士論文。
汪劍煒、李旭生和董炎明,1999a,水溶性殼聚醣的溶致液晶性研究,在:第二屆甲殼素化學與應用研討會論文級,武漢大學,p:163-167.
汪劍煒、董炎明、劉晃南、袁清和梅雪峰,1999b,分子量對殼聚醣溶致液晶性的影響,高等學校化學學報,20(3):474-477。
林宜賢,2000。以氧化還原降解法製備水溶性幾丁聚醣及幾丁寡醣之探討。國立台灣海洋大學水產科學研究所博士論文。
林俊煌,1992,不同去乙醯程度之幾丁聚醣的流變性質與鏈柔軟度、膜之物理特性的關係,國立台灣海洋大學水產科學研究所碩士論文。
柏榮生,1999。幾丁聚醣醋酸水溶液之光散射研究。元智大學化學工程學系碩士論文。
徐珠璽,1995。水溶性幾丁聚醣的製備與其物化特性。國立台灣海洋大學水產科學研究所博士論文。
張展榮,1996。剪力、超音波或兩者合併作用對幾丁聚醣物化性質之影響及其在水溶性幾丁聚醣製備上之應用。國立台灣海洋大學水產科學研究所博士論文。
陳欽堅與姜必寧,1982,超音波心電圖基本原理、儀器設備及檢查,臨床醫學,10(3):227-243。
曾厚,1997。Chtin與Chtosan之應用與現況發展。生物產業。8(2):102-108。
曾蘭嵐,2000。不同機械能量對幾丁聚醣極限分子量與分子量分佈的影響。國立台灣海洋大學食品科學系碩士論文。
華宏達,1994。分子量、鏈柔軟度、化學修飾對幾丁聚醣超過濾膜特性的影響。國立台灣海洋大學水產科學研究所博士論文。
董炎明、吳玉松、袁清、汪劍煒、王勉和關德凱,1999a,甲殼素液晶,在:第二屆甲殼素化學與應用研討會論文級,武漢大學,p:24-31.
董炎明、汪劍煒、吳智福、梅雪峰、袁清和劉晃南,1999,甲殼素類液晶高分子的研究:1.側鏈長度對羧醯化甲殼素的液晶性的影響,高分子學報,5(10):576-579 。
董炎明、汪劍煒、劉晃南、李志強、袁清、梅雪峰和吳智福,1999,甲殼素溶致液晶的研究,高分子學報,4(8):431-435。
董炎明、袁清、肖資藍、汪劍煒、梅雪峰,1999,氰乙基羥丙基殼聚醣的溶致和熱致液晶性研究,高等學校化學學報,20(1):140-145。
董炎明和李志強,1998,丁酸殼聚醣液晶的臨界行為研究,高分子學報3(6):282-286。
董炎明和李志強,1998,新的液晶性殼聚醣衍生物---氰乙基殼聚醣的合成與表徵,高等學校化學學報,19(8):1343-1345。
廖萬裕,1997。幾丁聚醣及其衍生物之抑菌性研究。大葉工學院食品工程研究所碩士論文。
劉瑞祥(譯),1996,松本正一和角田市良(原著),液晶之基礎與應用,國立編譯館,台北市。
蔡政家,1996。以化學法由蝦殼製備幾丁質及幾丁聚醣之處理條件與反應動力之探討。國立台灣海洋大學水產科學研究所博士論文。
蔡敏郎,1993,不同子量、不同去乙醯程度的幾丁聚醣溶液的流變性質與膠囊物性的關係,國立台灣海洋大學水產科學研究所碩士論文。
蔡敏郎,1997,稀薄溶液中幾丁聚醣構形轉變之因子及其機制,國立台灣海洋大學水產科學研究所博士論文。
閻世翔,1995,液晶化妝品,化妝品科學(下),科學技術文獻出版社,中國大陸,P:318-321。
戴明志,1999。以氧化還原降解法從不同來源幾丁聚醣製備幾丁寡醣之探討。國立台灣海洋大學水產科學研究所博士論文。
Aiba, S., Izumi, M., Minoura, N. and Fujiwara, Y. 1985. Studies on chitin. 2. Preparation and properties of chitin membranes. Carbohydr. Polym. 5: 285-289.
Anthonsen, M. W., Varum, K. M. and Smidsrod, O. 1993. Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylation. Carbohydr. Polym. 22: 193-201.
Austin, P. R., Brine, C. J., Castle, J. E. and Zikakis, J. P. 1981. Chitin: New facets of research. Science, 212 ( 5 ) : 749-753.
Basedow, A. M. and Ebert, K. H. 1979. Effects of mechanical stress on the reactivity of polymers: activation of acid hydrolysis of dextran by ultrasound. Polym. Bull. 1: 299-306.
Baxter, A., Dillon, M., Taylor, K. D. A. and Roberts, G. A. F. 1992. Improved method for i. r. determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol., 14 ( 6 ) : 166-169.
Carr, M. G., Corish, J. and Corrigan, O. I. 1997. Drug delivery from a liquid crystalline base across Visking and human stratum cormeum. Int. J. Pharms. 157: 35-42.
Chang, C. M. and Bodmeier, R. 1997. Binding of drugs to monoglyceride based drug delivery systems. Int. J. Pharm. 147: 135-142.
Chen, R. H. and Lin, W. C. 1992. Effect of shear rate, temperature, ionic strength, and pH on the rheological properties of chitosan solution. J. Fisheries Soc. Taiwan, 19 ( 4 ) : 299-309.
Chen, R. H., Lin, J. H. and Yang, M. H. 1994a. Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr. Polym. 24: 41-46.
Chen, R. H., Lin, W.C. and Lin, J. H. 1994b. Effect of pH, ionic strength, and type of anion on the rheological properties of chitosan solution. Acta Polymer. 45: 41-46.
Chen, R. H., Lin, J. W. and Tsaih, M. L. 1994c. Effects of urea on the conformation and chain flexibility of chitosan molecules with various degree of deacetylation. J. Marine Sci. Technol., 2 ( 1 ) : 1-7.
Chen, R. H. and Hwa, H. D. 1996. Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydr. Polym. 29: 353-358.
Chen, R. H., Tsaih, M. L. and Lin, W. C. 1996. Effect of chain flexibility of chitosan molecules on the preparation, physical, and release characteristic of the prepared capsule. Carbohydr. Polym. 31: 141-148.
Chen, R. H., Tsaih, M. L. and Wu, T. T. 1997. Effect of preparation method, characteristics of chitosan on the mechanical and release properties of the prepared capsule. J. Appl. Polym. Sci., 66: 161-169.
Chen, R. H. and Tsaih, M. L. 1998. Effect of temperture on the intrinsic
viscosity and conformation of chitosan in dilute HCl solution. Int. J. Biol. Macromol., 23: 135-141.
Chinadit U., Wanichpongpan, P., How, N. C., Stevens, W. F. and Chandrkrachang, S. 1998. In: Advances in Chitin Science Volume III. pp: 165-168, ed. by Chen, R. H. and Chen, H. C. Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC.
Dong, Y. M. and Li, Z. Q. 1998. Scattering studies on fingerprint texture of cyanoethyl chitosan. Polym. J. 30(3): 272-273
Dong, Y. M. and Li, Z. Q. 1999. Lyotropic liquid crystalline behavior of five chitosan derivatives. Chinese J. Polym. Sci., 17 ( 1 ) : 65-70.
Dong, Y. M., Yuan, Q., Wu, Y. S. and Wang, M. 2000. Studies on the effect of substitution degree on the liquid crystalline behavior of cyanoethyl chitosan. J. Appl. Polym. Sci. 76 ( 14 ) : 2057-2061.
Dyson, M., Pond, J. B., Joseph, J. J. and Warwick, R. 1970. Stimulation of tissue regeneration by pulsed plane-wave ultrasound. IEEE Trans Sonics Ultrasonics. SU 17 : 133-135.
Dyson, M., Pond, J. B., Barton, J. and Frank, C. 1974. Potential therapeutic use of ultrasound to stimulate wound healing and modify scar tissue.In Coloquium on Ultrasound Bioeffects and Dosimetry. Chelsea College. London. pp: 22-23.
Ensminger, D. 1973. Applications of ultrasonics based on chemical effects. In Ultrasonics, the Low- and High- instensity Applications. Marcel Dekker, Inc., New York.
Fennama, R. O. 1985. Carbohydrates. In: Fennama, R. O. ( Ed. ), Food Chemistry. Marcel Dekker, Inc. pp: 69-79.
Flory, P. J. 1956. Statistical thermodynamics of semi-flexible chain molecules. Proc R Soc London Ser A 1956; 234: 73.
Grant, S., Blair, H. S. and Mckay, G. 1988. Water soluble derivatives of chitosan. Polym. Comm., 29: 342-344.
Hasegawa, M., Isogai, A., Onabe, F., Usuda, M. and Atalla, R. H. 1992.
Characterization of cellulose-chitosan blend film. J. Appl. Polym. Sci.
45: 1873-1879.
Ikeda, I., Sugano, M., Yoshida, K., Sasaki, E., Iwamoto, Y. and Hatano, K. 1993. Effect of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentration in rats. J. Agric. Food Chem. 41: 431-435.
Kim, S. J. and Lee, Y. M. 1995. Properties of crystalline chitin derivative
. In: Chitin and Chitosan: The Versatile Environmentally Friendly Modern Materials . Ed. By Zakaria, M. B., Mnda, W. M. W. and Abdullah, M. P. University Kebangsaan Malaysia, Bangi, pp: 155-162.
Knorr, D. 1984. Use of chitinous polymers in food-a challenge for food
research ad development. Food Technol. 38 ( 1 ): 85~97.
Koda, S., Mori, H., Matsumoto, K. and Nomura, H. 1994. Ultrasonic degradation of water-soluble polymers. Polymer. 35: 30-33.
Kasaai, M. R., Malaekeh, M., Charlet, G. and Arul, J. 2001. In: Chitin and Chitosan-Chitin and Chitosan in Life Science, Ed. by Uragami, T., Kurita, K. and Fukamizo, T. Kodansha Scientific Ltd., pp: 28-35.
Kurita, K., Tomita, K., Ishii, S., Nishimura, S. I. and Shimoda, K. 1993a. β-Chitin as a convenient starting material for acetolysis for efficient preparation of N-acetylchitooligosaccharides. J. Polym. Sci. : Part A: Polym. Chem., 31: 2393-2395.
Kurita, K., Tomita, K., Tada, T., Ishii, S., Nishimura, S. I. and Shimoda, K. 1993b. Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic properties. J. Polym. Sci. : PartA: Polym. Chem., 31: 485-491.
Kurita, K. 1997a. Preparation of squid β-chitin. In: Chitin Handbook. ed
by Muzzarelli, R. A. A. and Peter, M. G. European Chitin Society, pp: 491-493.
Kurita, K. 1997b. β-Chitin and reactivity characterisics. In: Application
of Chitin and Chitosan. ed by Goosan, M. F. A. Technomic Pub. Co. Inc., U. S. A., pp: 79-87.
Kurita, K. 1998. Chemistry and application of chitin and chitosan. Polym. Degradation Stability, 59: 117-120.
Lang, E. R., Kienzle-Sterzer, C. A., Rodriiquez-Sanchez, D. and Rha, C. K. 1982. Rheological behavior of a typical random coil polyelectrolyte: Chitosan. In: Chitin and Chitosan. Eds. Hirano, S. and Tokura, S. The Japanese Society of Chitin and Chitosan. pp. 34-38.
Launay, B., Doublier, J. L. and Cuvelier, G. 1986. Flow properties of aqueous solutions and dispersions of polysaccharides. In: Functional Properties of Food Macromolecules. Ed. by Mitchell, J. R. and Ledward, D. A. Elsevier Appl. Sci., London, pp: 1-78.
Lee, J. and Kellaway, I. W. 2000. In vitro peptide release from liquid crystalline buccal delivery systems. Int. J. Pharm. 195: 29-33.
Lin, S. Y., Chen, K. S. and Lin, Y. Y. 1998. pH of preparations affecting the on-off drug penetration behavior through the thermo-responsive liquid crystal-embedded membrane. Journal of Controlled Release. 55: 13-20.
Lorimer, J. P., Mason, T. J. and Guthbert, T. 1991. The effect of ultracound on the degadation of aqueous native dextran. Ultrason. Int. 2: 649-654.
Lorimer, J. P., Mason, T. J., Guthbert, T. C. and Brookfield, E. A. 1995. Effect of ultrasound on the degradation of aqueous native dextran. Ultrason. Sonochem., 2: 55-57.
Maghami, G. G. and Roberts, G. A. F. 1988. Evaluation of the viscometric constants for chitosan. Makromol. Chem., 18: 195-200.
Mima, S., Yoshikawa, S. and Mima, M. 1975. Chitosan reinforced polyvinylalcohol membranes. Japan patent 130, 870.
Miyazaki ,S., Ishii, K. and Nadai, T. 1981. The use of chitin and chitosan as drug carriers. Chem. Pharm. Bull., 29 ( 10 ): 3067-3072.
Murray, S. B. and Neville, A. C. 1998. The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulites from chitin and chitosan. Int. J. Biol. Macromol., 22: 137-144.
Muzzarelli, R. A. A. 1977. Chitin. Pergramon Press, Oxford.
Muzzarelli, R. A. A. 1983. Chitin and its derivatives: New trends of applied research. Carbohydr. Polym. 3: 53-75.
Muzzarelli, R. A. A. and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym. 5: 461-472.
Muzzarelli, R. A. A. 1996. Chitosan-based dietary foods. Carbohydr. Polym. 29: 309-316
Nesseem, D. I. 2001. Formulation and evaluation of itraconazole via liquid crystal for topical delivery system. J. Pharm. Biomed. Anal. 26: 387-399.
Ogura, K., Kanamoto T., Sannan, T., Tanaka, K. and Iwakura, Y. 1982. Liquid crystalline phases based on chitosan and its derivative. In: Chitin and Chitosan, Proceedings of the Second International Conference on Chitin and Chitosan. ed. by Hirano, S. and Tokura, S. The Japanese Society of Chitin and Chitosan. pp: 39-44.
Ohta, K., Urano, S. and Kawahara, K. 1983. Ultrasonic degradation of dextrane in solution. Kobunshi Ronbunshyu. 40: 417-423.
Ohta, K., Urano, S. and Kawahara, K. 1984. Ultrasonic degradation of pullulan in solution. Kobunshi Ronbunshyu. 41:739-744.
Ottoy, M. H., Varum, K. M., and Smidsrd, O. 1996. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr. Polym. 29: 17-24.
Puskar, A. 1982. The Use of High Intensity Ultrasonics. Elsevier publishers, Amsterdam.
Rehakova, M., Bakos, D., Soldan, M. and Vizarova, K. 1994. Depolymer
-ization reaction of hyaluronic acid in solution. Int. J. Biol. Macromol.
16: 121-124.
Rinaudo, M., Milas, M. and Le Dung, P. 1993. Characterization of chitosan. Influence of ionic strengh and degree of acetylation on chain expansion. Int. J. Biol. Macromol. 15: 281-285.
Roberts, G. A. F. and Domszy, J. G. 1982. Determination of the viscometric constants for chitosan. Int. J. Biol. Macromol., 4: 374-377.
Roberts, G. A. F. 1992. Chitin Chemistry. pp: 65-83, The Macmillan Press LTD, London, pp: 1-53.
Rout, D.K., Pulapura, S. K. and Gross, R. A. 1993. Liquid crystalline characteristic of site-selectively-modified chitosan. Macromolecules., 26: 5999-6006.
Sandford, P. A. 1989. Chitosan: Commercial uses and potential applications. In: Chitin and Chitosan. Eds. Skjak-Braeek, G., Athonsen, T. and Sandford, P. Elsevier Applied Sci. Publishers, New York. pp: 52-69.
Sannan, T., Kurita, K., and Iwakura, Y. 1976. Effect of deacetylation on solubility. Makromol. Chem. 177: 3589-3600.
Shigemasa, Y., Saito, K., Sashiwa, H.and Saimoto, H. 1994. Enzymatic degradation of chitins and partially deacetylated chitins. Int. J. Biol. Macromol. 16: 43-49.
Skaife, J. J. and Abbott, N. L. 2000. Quantitative interpretation of the opti
-cal textures of liquid crystals caused by specific binding of immuno
-globulins to surface-bound antigens. Langmuir. 16: 3529-3536.
Sparr, E. and Wennerstrom, H. 2000. Diffusion through a responding lamellar liquid crystal: a model of molecular transport across stratum corneum. Colloids and Surfaces B: Biointerfaces. 19: 103-116.
Stanley, W. L., Watters, G. G., Chan, B. F. and Mercer, J. M. 1975. Lactose and other enzymes bound to chitin with glutaraldehyde. Biotech. Bioeng., ⅩⅦ: 315-326.
Tsaih, M. L., Chen, R. H. and Lin, J. W. 1995. Effect of various degree of deacetylation and molecular weight on polyelectrolyte and rheological properties of chitosan. In: Chitin and Chitosan: The Versatile Environmentally Friendly Modern Materials. ed. by Zakaria, M. B., Muda, W. M. W. and Abdullah, M. P. Universiti Kebangsaan Malaysia, Bangi, pp: 141-154.
Tsaih, M. L. and Chen, R. H. 1997. Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int. J. Biol. Macromol. 20: 233-240.
Terbojevich, M., Cosani, A., Focher, B. and Marsano, E. 1993. High-performancd gel-permeation chromatography of chitosan samples. Carbohydr. Res. 250: 301~314.
Wells, P. N. T. 1977. Biomedical Ultrasonics. Academic Press, London. pp: 539-550.
Wang, W., Bo, S., Li, S. and Qin, W. 1991. Determination of concentrated solutions of chitosan with different degrees of deacetylation. Int. J. Biol. Macromol., 13: 281-285.
Wang, W. and Xi, D. 1994. Viscosity and flow properties of concentrated solutions of chitosans with different degrees of deacetylation. Int. J. Biol. Macromol., 16: 149-152
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top