跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭仁信
研究生(外文):Jen-Hsin. Peng
論文名稱:醋酸酐乙醯化反應之幾丁聚醣特性及幾丁聚醣酵素水解產物對微生物生長之影響
論文名稱(外文):Characteristics of Chitosans Obtained from the Acetylation Reaction by Acetic Anhydride and the Effects of the Enzymatic Hydrolysate of these Chitosans on the Growth of Microorganisms
指導教授:蔡國珍江善宗
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:醋酸酐乙醯化抗微生物活性纖維素幾丁聚醣去乙醯度
外文關鍵詞:acetic anhydrideacetylationantimicrobial activitycellulasechitosandecaetylation degree
相關次數:
  • 被引用被引用:14
  • 點閱點閱:1140
  • 評分評分:
  • 下載下載:262
  • 收藏至我的研究室書目清單書目收藏:0
摘要
幾丁聚醣生產可由蝦殼幾丁質經NaOH處理獲得,去乙醯度分別為54、67、78及91﹪之幾丁聚醣(標示為ADC54、ADC67、ADC78及ADC91);由ADC91進行醋酸酐乙醯化,可得到去乙醯度52、65及75﹪幾丁聚醣(標示為PAC52、PAC65及PAC75)。測試這些幾丁聚醣的溶解性、抗菌活性與纖維素(Cellulase)對幾丁聚醣水解力。接著探討纖維素作用幾丁聚醣所得水解液,以酒精區分分離寡醣,測試所得寡醣之抗菌活性。一般在抗菌活性方面,幾丁聚醣抗菌活性隨著去乙醯度增加而增大;在相同去乙醯度下,PAC(chitosan obtained from partially acetic anhydride acetylation)之抗菌活性低於ADC(chitosan prepared from alkaline deacetylation of chitin)。在75-100 ppm濃度下ADC91能有效的完全抑制Escherichia coli ATCC 11229、Listeria monocytogenes LM-LM、Pseudomonas aeruginosa CCRC 10944、Salmonella typhi CCRC 10746、Staphylococcus aureus CCRC 12652與 Vibrio parahaemolyticus CCRC 10806生長。在溶解性方面PAC較ADC佳,PAC在2.5 % 醋酸環境下100 % 溶解,在二次水中的溶解度為2.37 ~ 3.48 %。纖維素對ADC比PAC具有較高水解能力,依序為ADC91 > ADC78 > ADC67 > PAC75 > PAC65 > PAC52 ≈ ADC54。幾丁聚醣水解產物經95﹪酒精及70﹪的酒精區分,可去除大量的鹽類及聚合度(degree of polymerization, DP)約為1∼3的寡醣,以提高DP為4∼6的幾丁寡醣相對量。經由四次的抗菌實驗結果,我們觀察到DP為1∼6的幾丁寡醣在5,000 ppm濃度下,對 Listeria monocytogenes LM-LM 能減少1.02 log CFU/mL,對Aeromonas hydrophila CCRC 13881、Escherichia coli ATCC 11229、Candida albicans、Candida magnoliae CCRC 21703及Saccharomyces cerevisiae CCRC 22223於5,000 ppm濃度下則只有些許抗菌效果。70 % 酒精處理所得之幾丁寡醣沈澱物,在5,000 ppm濃度下,對S. cerevisiae 可降低4.80 log CFU/mL。
Abstract
Shrimp chitin was treated with NaOH to obtain the chitosan products, with deacetylation degrees of 54%, 67%, 78% and 91% (designated as ADC54, ADC67, ADC78 and ADC91). ADC91 was then acetylated with acetic anhydride to obtain the chitosan products with deacetylation degrees of 52%, 65% and 75% (designated as PAC52, PAC65 and PAC75). The solubility, antimicrobial activity and the susceptibility to cellulase digestion of these chitosan products were investigated. Then, the antimicrobial activity of the hydrolysate of these chitosans by cellulase digestion was further evaluated. In general, the antimicrobial activity of the chitosan was increased with the increasing of decaetylation degree (DD). ADC (chitosan prepared from alkaline deacetylation of chitin) showed much higher antimicrobial activity than PAC (chitosan obtained from partially acetic anhydride acetylation). No survival cell was detected for Escherichia coli ATCC 11229, Listeria monocytogenes LM-LM, Pseudomonas aeruginosa CCRC 10944, Salmonella typhi CCRC 10746, Staphylococcus aureus CCRC 12652 and Vibrio parahaemolyticus CCRC 10806 at 75 ~ 100 ppm of ADC91. The solubility of PAC was much higher than ADC, with 100 % solubility in 2.5 % acetic acid and 2.37 ~ 3.48 % in double deionized water for the PAC. Higher hydrolytic activity was obtained by cellulase digestion of ADC than PAC, which was in the order of ADC91 > ADC78 > ADC67 > PAC75 > PAC65 > PAC52 ≈ ADC54. The treatments of the chitosan hydrolysate with 95 % ethanol, followed by 70 % ethanol can remove the salt and some chitooligomers with degree of polymerization (DP) 1 ~ 3, and accordingly increase the percentages of chitooligomers with DP 4 ~ 6. Except for Listeria monocytogenes LM-LM by reduction of 1.02 log CFU/mL, little antimicrobial activity against Aeromonas hydrophila CCRC 13881, Escherichia coli ATCC 11229, Candida albicans, Candida magnoliae CCRC 21703 and Saccharomyces cerevisiae CCRC 22223 for chitooligomers with DP 1 ~ 6 at 5,000 ppm. The cell was reduced by 4.80 log CFU/mL for S. cerevisiae in the presence of chitooligomers obtained from 70 % ethanol precipitate at 5,000 ppm whereas little antimicrobial activity was observed for the rest of 4 species tested.
目 錄
中文摘要………………………………………………………………………………1
英文摘要………………………………………………………………………………3
壹、前言………………………………………………………………………………5
貳、文獻整理…………………………………………………………………………7
一、幾丁質與幾丁聚醣………………………………………………………………7
1、結構……………………..……………………………………………………7
1.1、幾丁質結構……………………………………………………………7
1.2、幾丁聚醣結構…………………………………………………………7
2、影響幾丁聚醣溶解性質因子…..……………………………………………8
2.1、氫鍵……………………………………………………………………8
2.2、分子量…………………………………………………………………8
2.3、乙醯基含量與分佈……………………………………………………9
二、N-乙醯幾丁寡醣與幾丁寡醣……………………………………………………11
1、結構………….……………..…………………………………………….…11
2、N-乙醯幾丁寡醣與幾丁寡醣之製備………..…………………………….11
2.1、化學法……………………………………………………………….11
2.2、酵素法……………………………………………………………….11
2.2.1、幾丁質……………………………………………………..…12
2.2.2、幾丁聚醣…………………………………………………..…12
2.2.3、纖維素………………………..………………………………12
2.2.4、溶菌…………………………………………………………..14
2.2.5、醣…..………………………………………………………14
3、N-乙醯幾丁寡醣與幾丁寡醣之生理活性…………………………………14
三、幾丁質與幾丁聚醣之應用………………………………………………………15
1、食品方面……………………………………………………………………15
2、化工方面……………………………………………………………………15
3、醫藥方面……………………………………………………………………16
4、生物技術方面………………………………………………………………16
四、幾丁聚醣之抑菌作用……………………………………………………………16
1、對細菌之抑菌效果…………………………………………………………16
2、對酵母菌之抑菌效果………………………………………………………17
3、對黴菌之抑菌效果…………………………………………………………18
4、抗菌作用之機制……………………………………………………………19
參、材料設備與方法…………………………………………………………………22
一、研究目的與實驗設計……………………………………………………………22
二、材料………………………………………………………………………………22
(一) 原料………………………………………………………………………22
(二) 化學藥品…………………………………………………………………22
三、儀器設備…………………………………………………………………………23
四、方法………………………………………………………………………………23
(一)、製備不同去乙醯度之幾丁聚醣…………………………………………23
1、幾丁聚醣製備…………………………………………………………23
1.1、高去乙醯度幾丁聚醣製備……………………………………23
1.2、中度去乙醯度幾丁聚醣製備…………………………………24
1.3、乙醯化反應製備不同去乙醯度幾丁聚醣製備………………24
2、幾丁聚醣去乙醯度之測定……………………………………………24
2.1、滴定法…………………………………………………………24
2.2、Fourier轉換紅外線光譜測儀…………………………………25
3、不同去乙醯度幾丁聚醣物化性質之測定……………………………25
3.1、溶解度測定……………………………………………………25
3.2、黏度測定(內生性黏度) ………………………………………26
4、不同去乙醯度幾丁聚醣分子量分析…………………………………26
(二)、幾丁寡醣之製備與分離純化……………………………………………27
1、利用工業級纖維素水解幾丁聚醣…………………………………27
2、還原醣分析……………………………………………………………27
2.1、Somogyi reagent製備…………………………………………27
2.2、Somogyi reagent製備…………………………………………27
2.3、Nelson reagent製備...…………………………………………28
3、幾丁寡醣分離與純化…………………………………………………28
4、幾丁寡醣組成分析……………………………………………………29
(三)、抗菌活性分析……………………………………………………………30
1、測試菌株及其培養基…………………………………………………30
1.1、來源……………………………………………………………30
1.2、培養基…………………………………………………………31
2、菌株活化………………………………………………………………31
3、幾丁聚醣及幾丁寡醣對測試菌株生長影響之測試…………………31
3.1、細菌……………………………………………………………31
3.2、酵母……………………………………………………………32
肆、結果與討論………………………………………………………………………33
1、不同去乙醯度幾丁聚醣的製備及其物化特性………………………………33
2、不同去乙醯度幾丁聚醣對測試菌株生長之影響……………………………35
3、利用工業級纖維素生產幾丁寡醣…………………………………………37
4、ADC78 與PAC75酵素水解產物比較………………………………………38
5、幾丁寡醣物質對測試菌株生長之影響………………………………………39
伍、結論………………………………………………………………………………41
陸、參考文獻…………………………………………………………………………42
表目錄
表一、較常見之幾丁質類物質分解酵素……………………………………………13
表二、膠體滴定及FT-IR測定幾丁聚醣之去乙醯度………….……………………51
表三、幾丁聚醣於2.5 % 醋酸與水中的溶解度…..…………..……………………51
表四、在2.5﹪醋酸溶液中不同去乙醯度幾丁聚醣測得之內生性黏度[η]……...52
表五、以高壓液相分子篩層析法測得之不同去乙醯度幾丁聚醣平均分子量……52
表六、幾丁聚醣水解產物經不同濃度酒精處理醣類組成變化……………………53
表七、ADC91、ADC78及PAC75水解液之平均分子量……….…………………54
表八、幾丁聚醣經酵素水解之產物醣類組成變化…………………………………54
圖目錄
圖一、傳統去乙醯及醋酐乙醯化之幾丁聚醣乙醯基分佈狀態示意圖.…………55
圖二、傳統去乙醯(ADC)與醋酐乙醯化法(PAC)幾丁聚醣經酵素水解(10U/ml Cellulase)還原醣量變化情形(A)還原醣標準曲線;(B)ADC78與PAC75之比較;(C)ADC67與PAC65之比較;(D)ADC54與PAC52之比較。……56
圖三、不同去乙醯度幾丁聚醣對Bacillus cereus CCRC 10250生長之影響(300 ppm)……………………………………………………………………………57
圖四、不同去乙醯度幾丁聚醣對Listeria monocytogenes LM-LM生長之影響(75 ppm)…………………………………………………………..………………58
圖五、不同去乙醯度幾丁聚醣對Staphylococcus aureus CCRC 12652生長之影響(75 ppm)……………………………………………………….……………59
圖六、不同去乙醯度幾丁聚醣對Aeromonas hydrophila CCRC 13881生長之影響(200 ppm)……………………………………………………………………60
圖七、不同去乙醯度幾丁聚醣對Escherichia coli ATCC 11229生長之影響(75 ppm)……………………………………………………………………………61
圖八、不同去乙醯度幾丁聚醣對Pseudomonas aeruginosa CCRC 10944生長之影響(100 ppm)…………………………………………………………………62
圖九、不同去乙醯度幾丁聚醣對Salmonella typhi CCRC 10746生長之影響(100 ppm)……………………………………………………………………………63
圖十、不同去乙醯度幾丁聚醣對Shigella dysenteriae CCRC 13983生長之影響(200 ppm)……………………………………………………………………………64
圖十一、不同去乙醯度幾丁聚醣對Vibrio cholerae CCRC 13860生長之影響(500 ppm)……………………………………………………………………………65
圖十二、不同去乙醯度幾丁聚醣對Vibrio parahaemolyticus CCRC 10806生長之影響(100 ppm)…………………………………………………………………66
圖十三、不同去乙醯度幾丁聚醣對Candida albicans 生長之影響(300 ppm)……………………………………………………………………………67
圖十四、不同去乙醯度幾丁聚醣對Candida magnoliae CCRC 21703生長之影響(300 ppm)……………………………………………………………………68
圖十五、不同去乙醯度幾丁聚醣對Saccharomyces cerevisiae CCRC 22223生長之影響(300 ppm)………………………………………………………………69
圖十六、不同濃度之ADC91、ADC78及PAC65酵素水解產物對Escherichia coli ATCC 11229生長之影響………………………………………………...……70
圖十七、ADC91、ADC78及PAC75水解液之高效液相分子篩層析圖譜………..71
圖十八、不同濃度之小分子幾丁寡醣對Listeria monocytogenes LM-LM, Aeromonas hydrophila CCRC 13881 與 Escherichia coli ATCC 11229生長之影響……………………………………………………….……………………72
圖十九、不同濃度之大分子幾丁寡醣對Listeria monocytogenes LM-LM, Aeromonas hydrophila CCRC 13881 與 Escherichia coli ATCC 11229生長之影響……………………………………………………………………….……73
圖二十、不同濃度之小分子幾丁寡醣對Candida albicans, Candida magnoliae CCRC 21703 及 Saccharomyces cerevisiae CCRC 22223生長之影響…...74
圖二十一、不同濃度之大分子幾丁寡醣對Candida albicans, Candida magnoliae CCRC 21703 及 Saccharomyces cerevisiae CCRC 22223生長之影響…...75
附圖目錄
附圖一、醋酸酐量對幾丁聚醣去乙醯度之影響……………………………………76
附圖二、不同去乙醯度幾丁聚醣高效液相分子篩層析圖譜………………………77
附圖三、高壓液相層析(HPLC)圖:(A)幾丁寡醣標準品(DP:1-6);(B)ADC91酵素水解液凍乾粉末…………………………..……….…….………78
附圖四、高壓液相層析(HPLC)圖:(A)經95﹪酒精處理寡醣凍乾粉末上澄液;(B)95﹪-80﹪酒精處理寡醣上澄液……………………………………79
附圖五、高壓液相層析(HPLC)圖:(A)95﹪-70﹪酒精處理寡醣上呈液;(B)70﹪酒精處理寡醣沈澱物………………………………………….…………80
附圖六、高壓液相層析(HPLC)圖:(A)幾丁寡醣標準品(DP:1-6);(B)經95﹪-70﹪酒精處理寡醣凍乾粉末(5,000 ppm)…………………….……81
附圖七、高壓液相層析(HPLC)圖:(A)幾丁寡醣標準品(DP:1-6);(B)ADC91酵素水解液...……………………………………………….…………82
附圖八、高壓液相層析(HPLC)圖:(A)ADC78酵素水解液;(B)PAC75酵素水解液.………………………………………………………………………83
附表目錄
附表一、不同去乙醯度幾丁聚醣對測試菌株生長之影響…………………………84
附表二、幾丁寡醣對測試菌株生長之影響…………………………………………85
陸、參考文獻
王偉,秦汶,李素清,傅淑琴。1991。甲殼素的分子量。應用化學,8:85-87。(大陸)
方紹威。1990。幾丁質與幾丁聚醣在廢水處理、生化、食品和醫藥上之研究發展現況。藥物食品檢驗局調查研究年報,8︰20-30。
江晃榮。1998。生體高分子 (幾丁質、膠原蛋白) 在食品工業上的應用,原料應用,150(6)︰19-25。
徐珠璽。1995。水溶性幾丁聚醣的製備與其物化特性。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
阮進蕙,林翰良,羅淑珍。1997。幾丁聚醣水解物之連續式生產及其抑菌作用。中國農業化學會誌,35:596-611。
李明遠。2000。醋酐乙醯化法製備水溶性幾丁聚醣之探討。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
莊榮輝,宋賢一,蘇仲卿。1988。以蝦殼幾丁質固定鏈黴蛋白,中國農業化學會誌,26(3)︰330-337。
吳仁永。1999。以酵素生產抑菌性幾丁寡醣及其在牛乳保鮮上的應用。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
林泓廷。2000。利用纖維素製備幾丁寡糖及其免疫功能評估。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
張展榮。1996。剪力、超音波或兩種合併作用對幾丁聚醣物化性質之影響及其在水溶性幾丁聚醣製備上的應用。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
黃怡雯。2001a。以纖維素水解幾丁聚醣所得之水溶性產物對腸內細菌組成之影響。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
黃珊萍。2001b。不同去乙醯度幾丁聚醣對腸內細菌之影響。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
蔡政芳、林文源、李錦楓,1993。不同去乙醯度幾丁聚醣的抑菌作用及其澀味。中華生質能源學會會誌,12(1,2):74-77。
蘇遠志,2001。幾丁質與幾丁聚醣之機能及其有效利用。2001年 幾丁質幾丁聚醣研討會論文專輯,S15-S36。
沈一慶,傅 鍔。2001。幾丁質與幾丁聚醣之機能及其有效利用。2001年 幾丁質幾丁聚醣研討會論文專輯,17。
阪井 和男。1989。幾丁寡醣之開發與現狀。New Food Industry 31: 17-22。
Aiba, S. 1991. Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int. J. Biol. Macromol. 13: 40-44.
Aiba, S. 1992. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromol. 14: 225 - 228.
Aiba, S. 1993. Studies on chitosan: 6. Relationship between N-acetyl group distribution pattern and chitinase digestibility of partially N-acetylated chitosans. Int. J. Biol. Macromol. 15: 241 - 245.
Aiba, S. 1994. Preparation of N-acetyl-chitooligosaccharides by hydrolysis of chitosan with chitinase follow by N-acetylation. Carbohydr. Res. 265: 323 - 328.
Allan, G. G. and Peyron, M. 1995. Molecular weight manipulation of chitosan. 1: Kinetics of depolymerization by nitrous acid. Carbohydr. Res. 277: 257 - 272.
Baxter, A., Dillon, M., Taylor, K. D. A. and Roberts, G. A. F. 1992. Improved method for I. R. determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 14: 166- 169.
Chen, S. W. and Chen, H. C. 1999. Effect of oral administration of Cellulomonas flavigena NTOU 1-degraded chitin hydrolysate on physiological changes in rates. Food Sci. Agric. Chem. 1: 186 - 189.
Chen, R. H., Chang, J. R. and Shyur, J. S. 1997. Effect of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr. Res. 299: 287 - 294.
Chui, V. W. D., Mok, K. W., Ng, C. Y., Luong, B. P. and Ma, K. K. 1996. Removal and recovery copper (Ⅱ), chromium (Ⅲ), and nickel (Ⅱ) from solutions using crude shrimp chitin packed in small columns. Environ. Int. 22: 463 - 468.
Darmadji, P. and Lzumimoto, M. 1994. Effect of chitosan in meat preservation. Meat Sci. 38: 243 - 254.
Domard, A. and. Carnier, N. 1989. Glucosamine oligomers: 1. Preparation and characterization. Int. J. Biol. Macromol. 11: 297 - 302.
El Ghaouth, A. Arul. J., Asselin. A., and Benhamou, N. 1992a. Antifungal activity of chitosan on post-harvest pathogens:Induction of morphological and cytological alterations in Rhizopus stolonifer. Myco. Res. 96: 769 - 779.
El Ghaouth., A.Arul. J., Grenier, J., and Asselin. A. 1992b. Antifungal activity of chitosan on two pothogens of strawberry fruits. Phytopathology 82: 398 - 402.
Ge, S. J., Bai, H. and Zhang, L. X. 1996. Trypsin immobilization on shrimp chitin with formaldehyde and its application to continuous hydrolysis of casein. Biotech. Appl. Biochem. 24: 1 - 5.
Hackman, R. H. 1965. Studies on chitin. VI. The nature of α-and β-chitin. Aust. J. Biol. Sci. 18: 935 - 938.
Hadwiger, L. A., Kendra. D. F. Frislensky. B. W. and Wagoner. W. 1986. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Chitin in Nature and Technology. pp. 209 - 214. Muzzarelli, R. A. A., Jeuniaux, C. and Gooday. C. W. (Eds). Plenum Press. New York. USA.
Hasegawa, M., Isogai, A. and Onabe, F. 1993. Preparation of low-molecular-weight chitosan using phosphric acid. Carbohydr. Polym. 20: 279 - 283.
Hirano, S. 1989. Production and application of chitin and chitosan in Janpan. In: Proceeding of the Forth International Conference on Chitin and Chitosan. pp. 37 - 43. Skjak-Braek, G., Anthonsen, T. and Sandford, P. (Eds.) Elsevier Applied Sci. Publishers, London.
Hirano, S. 1997. Application of chitin and chitosan in the ecological and enviromental fields. In: Application of Chitin and Chitosan. pp. 31 - 54. Goosen, M. F. A. (Eds.) Technomic Publishers. Tottori.
Ilyina, A. V., Varlamov, V. P., Tikhonov, V. E., Yamskov, I. A. and Davankov, V. A. 1994. One-step isolation of a chitinase by affinity chromatography of the chitinolytic enzyme complex produced by streptomyces kurssanovii. Biotech. Appl. Biochem. 19(2): 199-207.
Ilyina, A. V., Tikhonov, V. E., Albulov, A. I. and Varlamov V. P. 2000. Enzymic preparation of acid-free-soluble chitosan. Process Biochem. 35: 563-568.
Jha, I. N., Iyenganr, L. and Prabhakara Rao, A. V. S. 1988. Removal of cadmium using chitosan. J. Env. Eng. 11: 962-974.
Kendra, D. F. and Hadwiger, L.A. 1984. Characterization of the smallest chitosan oilgomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8:276-279.
Knorr, D. 1984. Use of chitinous polymers in food - A challenge for food research and development. Food Technol. 38: 85-87.
Knorr, D., Wampler, J. P. and Teutonico, R. A. 1985. Formation of pyrazine by chitin pyrolysis. J. Food Sci. 50: 1762-1763.
Kono, M., Matsuy, T., Shimizu, C. and Koga, D. 1990. Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus. Agric. Biol. Chem. 54: 2145-2147.
Kubota, K. and Eguchi, Y. 1997. Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility. Polym. J. 29: 123-127.
Kurita, K., Kamiya, M. and Nishimura, S. 1991. Solubilization of a rigid polysaccharide: controlled partial N-acetylation of chitosan to develop solubility. Carbohydr. Polym. 16: 83-92.
Kurita, K., Koyama, Y., Nishimura, S. and Kamiya, M. 1989. Facile preparation of water-soluble chitin from chitosan. Chem. Lett. 1597-1598.
Kurita, K., Sannan, T. and Iwakura, Y. 1977a. Studies on chitosan, 3: Preparation of pure chitin, poly(N-acetyl-D-glucosamine), from the water-soluble chitin. Makromol. Chem. 178: 2595-2602.
Kurita, K., Sannan, T. and Iwakura, Y. 1977b. Studies on chitosan, 4:Evidence for formation of block and D-glucosamine by hetero- and homogeneous hydrolyses. Makromol. Chem. 178: 3197-3202.
Lang, E. R., Kienzle-Sterzr, C. A., Rodriiquez-Sanchez, D. and Rha, C. K. 1982. Rheological behavior of a typical random coil polyelectrolyte: Chitosan. In: Chitin and Chitosan. pp. 34-38. Hirano, S. and Tokura, S. (Eds.) The Japanese Society, Tokyo. Japan.
Lepri, L. and Desideri, P. G. 1978. Separation and identification of water-soluble food dyes by ion-exchange and soap thin-layer chromatography. J. Chromatog. 161: 279-286.
Leuba, J. and Stossel, P. 1986. Chitosan and other polyamines: antifungal activity and with biological membranes. In: Chitin in Nature and Technology. pp. 215-222. Muzzarelli, R. A. A., Jeuniaux. C., and Gooday. C. W. (Eds), Plenum Press, New York. USA.
Mitani, T., Moriyama, A. and Ishii, H. 1992. Heavy metal uptake by swollen chitosan beads. Biosci. Biotech. Biochem. 56: 985-986.
Mitchell, P. 1959. Biochemical cytology of microorganisms annu. Rev. Microbiol. 13: 407-410.
Murao, S., Kawada, T., Itoh, H., Oyama, H. and Shin, T. 1992. Purification and characterization of a novel type of chitinase from Vibrio albinolyticus TK-22. Biosci. Biotech. Biochem. 56:368-369.
Murata, T. A., Usui, T. 1997. Preapration of oligosaccharides units library and its utilization. Biosci. Biotechol. Biochem. 61: 1059-1066.
Muzzarelli, R. A. A. 1977. Enzymic synthesis of chitin and chitosan. In: Chitin. pp. 5. Muzzarelli, R. A. A. (Eds.), Pergamon Press, Oxford.
Muzzarelli, R. A. A. and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym. 5:461 - 472.
Ottфy, M. H., Varum, K. M. and Smidsrod, O. 1996. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr. Polym. 29:17-24.
Pantaleone, D., M. Yaipani, and M. Scollar. 1992. Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr. Res. 237:235.
Papineau, A. M., Hoover, D. G., Knorr, D., and Farkas, D. F. 1991. Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. J. Food Biotechnol. 5: 45-57.
Rinaudo M., Milas M. and P. Le Dung, 1993. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int. J. Biol. Macromol. 15(5): 281-285.
Roberts, G. A. F. 1992. In: Chitin Chemistry. The Macmillan press Lth, Hong Kong.
Roberts, G. A. F. 1995. Structure-property relationships in chitin and chitosan. In: Chitin and Chitosan — The versatile environmentally friendly moder materials. pp. 95-108. Zakaria, M. D., Muda, W. M. W. and Abdullah, M. P. (Eds.). Penerbit Universiti Kebangsaan. Malaysia Bangi.
Ruiz-Herrera, J. 1978. The distribution and quantitative importance of chitin in fungi. In: Proceedings of the First International Conference on Chitin/Chitosan. pp.11. Muzzarelli, R. A. A. and Pariser, E. R. (Eds.), Elsevier Applied Science. New York. USA.
Sannan, T., Kurita, K. and Iwakura, Y. 1975. Studies on chitin 1: Solubility change by alkaline treatment and film casting. Makromol. Chem. 176: 1191-1195.
Sannan, T., Kurita, K. and Iwakura, Y. 1976. Studies on chitin 2: Effect of deacetylation on solubility. Makromol. Chem. 177: 3589-3600.
Sashiwa, H., Shigemasa, Y. 1999. Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr. Poly. 39: 127-138.
Shahidi, F., J. K. V. Arachchi, and Y. J. Jeon. 1999. Food applications of chitin and chitosans. Food Sci. Technol. 10: 37-51.
Shigemasa, Y., Matsuura, H., Sashiwa, H. and Saimoto, H. 1996. Evaluation of different absorbance rations from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int. J. Biol. Macromol. 18: 237 - 242.
Shigemasa, Y., Usui, H., Morimoto, M., Saimoto, H., Okamoto, Y., Minami, S. and Sashiwa, H. 1999. Chemical modification of chitin and chitosan 1: Preparation of partially deacetylated chitin derivatives via a ring-opening reaction with cyclic acid anhydrides in lithium chloride / N,N — dimethylacetamide. Carbohydr. Polym. 39:237-243.
Simpson, B. K., Gagne, N., Ashie, I. N. A., and Noroozu, E. 1997. Utilization of chitosan for preservation of raw shrimp(Pandalus borealis). Food Biotechnol. 11:25-44.
Soto-Peralta, N. V., Muller, H. and Konner, D. 1989. Effect of chitosan treatments on the clarity and color of apple juice. J. Food Science. 54: 495-496.
Suzuki, K., Y. Okawa, S. Suzuki, and M. Suzuki. 1985. Enhancing effects of N-acetyl-chitooligosaccharides on the active oxygeneration and microbicidal activities of pertoneal exudate cell in mice. Chem. Pharm. Bull. 33: 886-892.
Suzuki, K., T. Midami, Y. Okawa, A. Tokoro, S. Suzuki, and M. Suzuki. 1986 a. Antitumer effects of hexa- N-acetylchitohexose and chitohexose. Carbohydr. Res. 151: 403-408.
Suzuki, K., A. Tokoro, Y. Okawa, S. Suzuki, and M. Suzuki. 1986 b. Effect of N-acetyl-chitooligosaccharides on activation of phagocytes. Microbiol. Immunol. 30: 777 - 785.
Tôei, K. and Kohora, Y. 1976. A conductometric method for colloid titrations. Analytica Chimica Acte. 83: 59-65.
Tsai, G. J., and W. H. Su, 1999. Antibacterial activity of chitosan against Escherichia coli. J. Food Prot. 62: 239-243.
Tsai, G. J., W. H. Su, and H. C. Chen. 2002. Antimicrobial activity of shrimp chitin and chitosan from different treatments and application to fish preservation. Fisheries Sci. 68: 170-177.
Uchida, Y., M. Izume, and A. Ohtakara. 1989. Preparation of chitosan oligomers with purified chitosanase and its application. In: Chitin and chitosan. pp: 373-382. G. Skjak-Broek, T. Anthonsen, and P. Sanfford. (eds.), Elsevier Applied Science. New York. USA.
Usui, T., Matsui, H. and Isobe, K. 1990. Enzyme synthesis of useful chito-oligosaccharides utilizing transglycosylation by chutinolytic enzymes in a buffer containing ammonium. Carbohydr. Res. 203: 65-77.
Usui, T., Hayashi, Y., Nanjo, F., Sakai, K. and Isobe, K. 1987. Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biosci. Biophys. 923: 302-309.
Varum, K. M., Ottoy, M. H. and Smidsrod, O. 1994. N-acetylated chitosans as a function of pH: effect water-solubility of partially chemical composition and depolymerisation. Carbohydr. Polym. 25: 65-70.
Wang, G. H. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J. Food Prot. 55(11): 916-919.
Wang, W., S. Bo, S. Li, and W. Qin. 1991. Determinartion of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int. J. Biol. Macromol. 13: 281-286.
Yalpani, M. and Hall, L. D. 1984. Some chemical and analytical aspects of polysaccharide modification, 3. Formation of branched chain, soluble chitosan derivatives. Macromolecules 17: 272 - 281.
Yomoto, C., Miyazaki, T. and Okada, S. 1993. Determination of the viscometric constants for chitosan and the application of universal calibration procedure in its gel permeation chromatography. Colloid. Polym. Sci. 271: 76 - 82.
Young, D. H., Kohle, H. and Kauss, H. 1982. Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells. Plant Physiol. 70:1449-1454.
Young, D. H. and Kauss, H. 1983. Relaease of calcium from suspension-cultured Glycine max and Phaseolus vulgaris cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiol. 73:698-702.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊