跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王妙鐶
研究生(外文):Miao-Huan Wang
論文名稱:由TrichodermaparceramosumBissettNo.017所產真菌抑制劑之分離純化及其特性探討
論文名稱(外文):Purification and Characterization of an Antifungal Compound Produced by Trichoderma parceramosum Bissett No. 017
指導教授:蔡國珍
指導教授(外文):Guo-Jane Tsai
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:真菌抑制劑致病性酵母菌TrichodermaCandida albicans
外文關鍵詞:Antifungal agentPathogenic yeastTrichodermaCandida albicans
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
Candida albicans 為人體之機緣性致病酵母菌,本研究以C. albicans為作用目標菌,從附著在海洋固體表面及土壤中,篩選得最具潛力之真菌抑制劑生產菌株,經鑑定為 Trichoderma parceramosum Bissett No. 017,分別探討碳源、氮源、鹽類及培養溫度與時間對其生產真菌抑制劑之影響,並以此最適條件來生產真菌抑制劑。當培養液以 glucose 為碳源、以 beef extract 為氮源時最有利於此菌生產真菌抑制劑。添加 0.2﹪NaCl 可增加真菌抑制劑之產生。在 1﹪glucose,1.1﹪beef extract 及 0.2﹪NaCl 之培養液中,此菌之最適生長溫度為25-30℃,125 rpm 培養7天後,培養液中真菌抑制劑活性達最高。此粗真菌抑制劑對高溫之耐受性高,在 100℃ 加熱10分鐘仍保有67﹪活性。此外,此真菌抑制劑不受 trypsin、pronase、protease K、carboxypeptidase A 等蛋白分解酵素及 α-amylase、lysozyme、pectinase 等醣類分解酵素之影響,但對 α-glucosidase、dextranase 及 papain 敏感,推測此真菌抑制劑可能為一帶有醣基及胜肽鍵結的化合物。於 pH 2∼10 時,此粗真菌抑制劑的抗菌效果不受外在 pH 值改變所影響。此真菌抑制劑之分子量介於 3000 ~ 10000 Da;冷藏或冷凍六週活性不變。除了 C. albicans 外,此真菌抑制劑對 Candida albicans CCRC 21538、Filobasidiella neoformans var. neoformans CCRC 20533及 Trichosporon beigelii CCRC 21675 等三株病原酵母菌及 Aspergillus niger CCRC 30201、Aspergillus parasiticus CCRC 30117、Penicillium minioluteum CCRC 32639及 Penicillium minioluteum CCRC 32645 等四株病原黴菌均具極強的抗菌活性。經超過濾濃縮及 G-25 膠體過濾管柱層析處理後,可得到部分純化之真菌抑制劑,其耐熱性略低於未純化狀態,對環境中酸鹼變化的耐性更高,對 Candida albicans CCRC 20513、Candida albicans CCRC 21538、Candida glabrata CCRC 20586、Candida guilliermondii CCRC 20862、Candida krusei CCRC 21543、Candida lusitaniae CCRC 21740、Cryptococcus neoformans var. neoformans CCRC 22241 等七株酵母菌及Penicillium minioluteum CCRC 31698 及 Penicillium minioluteum CCRC 32639 等兩株黴菌亦有極強之抗菌活性。動物感染試驗顯示口服此真菌抑制劑可有效提高小白鼠及大白鼠對抗 C. albicans 感染之能力。

Candida albicans is an opportunistic pathogenic yeast of humans. Among thousands of fungal isolates from various substrate exposed to seawater and from soil, an isolate identified as Trichoderma parceramosum Bissett No. 017 was screened out for the production of anti- C. albicans agent. The effects of carbon and nitrigen source, salts and cultivation temperature on the production of this antifungal agent were investigated. Glucose and beef extract were the best carbon source and nitrogen source in the medium for production of antifungal agent. The addition of 0.2﹪NaCl stimulated the production of this antifungal agent. The optimal production temperature was 25℃ in the medium composed by 1﹪glucose,1.1﹪beef extract and 0.2﹪NaCl. The crude antifungal agent was thermal stable, with residual activity being 67% after heating at 100℃ for 10 min. It was stable over a pH range of 2 to 10. It was resistant to trypsin, pronase, protease K, carboxypeptidase A, α-amylase, lysozyme, and pectinase, but susceptible toα-amylase、lysozyme and pectinase. Its molecular weight was about 3000 ~ 10000 Da.This antifungal agent showed strong activity against various pathogenic fungi including Candida albicans CCRC 21538, Filobasidiella neoformans var. neoformans CCRC 20533, Trichosporon beigelii CCRC 21675, Aspergillus niger CCRC 30201, Aspergillus parasiticus CCRC 30117, Penicillium minioluteum CCRC 32639, and Penicillium minioluteum CCRC 32645. After ultrafiltration and Sephadex G-25 gel filtration chromatography, the partial purified antifungal agent was obtained. It was less thermal stable but more pH stable than the crude agent. It also showed strong activity against Candida albicans CCRC 20513, Candida albicans CCRC 21538, Candida glabrata CCRC 20586, Candida guilliermondii CCRC 20862, Candida krusei CCRC 21543, Candida lusitaniae CCRC 21740, Cryptococcus neoformans var. neoformans CCRC 22241, Penicillium minioluteum CCRC 31698, Penicillium minioluteum CCRC 32639. The oral ingestion of this antifungal agent can increase the resistance of mice and rats against the infection of C. albicans.

壹、前言
貳、文獻整理
一、真菌
1.真菌的重要性
2.真菌感染疾病
二、抗生素
1.抗生素之定義與分類
2.真菌抑制劑
三、菌株抗藥性
1.抗藥性
2.機制
四、新抗真菌藥物之純化與特性
1. 人工合成真菌抑制劑
2. 天然動植物之萃取、分泌物
3. 利用微生物生長分泌
參、材料設備與實驗方法
一、材料設備
二、實驗方法
(一)真菌抑制劑生產菌株之培養與鑑定
(二)培養液組成及培養條件對抑制劑產量之影響
(三)利用 No. 017 菌株生產真菌抑制劑及活性鑑定
(四)粗真菌抑制劑之基本特性測定
1.熱安定性之測試
2. pH安定性之測試
3.酵素對粗真菌抑制劑活性的影響
4.粗真菌抑制劑之分子量預估
5.真菌抑制劑儲藏溫度與時間之影響
6.真菌抑制劑之拮抗菌譜 (antimicrobial spectrum)
(五)真菌抑制劑之純化與分離
1.粗真菌抑制劑之濃縮
2. Sephadex G-25膠體過濾 (gel filtration) 管柱層析
3.冷凍乾燥及其殘存活性評估
4.蛋白質定量分析
5.總醣量分析
(六)純化後真菌抑制劑之基本特性
1.溫度安定性之測試
2. pH安定性之測試
3.純化後真菌抑制劑之拮抗菌譜 (antimicrobial spectrum)
(七)動物實驗
肆、結果與討論
(一)真菌抑制劑生產菌株之培養與鑑定
(二)粗真菌抑制劑之生產條件
(三)粗真菌抑制劑之基本特性測定
(四)、粗真菌抑制劑對數種致病性真菌之抗菌效果
(五)真菌抑制劑之純化與分離
(六)純化後真菌抑制劑之基本特性
(七)動物實驗
伍、結論
陸、參考文獻

Albertson, G. D., Niimi,M., Cannon, R. D., Jenkinson, H. F. (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob. Agents Chemother., 40, 2835-2841.
Aoki, Y., Yamazaki, T., Kondoh, M., Sudoh, Y., Nakayama, N., Sekine, Y., Shimada, H., Arisawa,. (1992) A new series of natural antifungals that inhibit P450 lanosterol C-14 demethylase. Ⅱ Mode of action. J. Antibiot., 45, 160-170.
Aoki, Y., Yamamoto, M., Hos-seini-mazinani, S. M., Koshikawa, N., Sugimoto, K., Arisawa, M. (1996) A-ntifungal azoxybacilin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob. Agents Chemother., 40, 127-132.
Baillie, G. S. and Douglas, L. J. (1998) Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob. Agents Chemother., 42, 1900-1905.
Banerjee, S. N., Emori, T. G., Culver, D. H., Gaynes, R. P., Jarvis, W. R., Horan, T. Edwards, J. R., Tolson, J., Henderson, T. (1991) Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. Am. J. Med., 91, 86S-89S.
Barker, R. D. and Haugen, R. R. (1955) Tissue changes and tissue diagnosis in cryptococcosis. Am. J. Clin. Pathol., 24, 14-20.
Ben-Josef, A. M., Manavathu, E. K., Platt, D., Sobel, J. D. (1997) In vitro antifungal activity of CAN-296: a naturally occurring complex carbohydrate. J. Antibiot., 50, 937-943.
Bennett, J. E. (1990) Antimicrobial agents: antifungal agents. In: Gilman, A. G., Rall, T. W., Nies, A. S., Taylor, P. (ed). In Goodman and Gilman,s The Pharmacological Basis of Therapeutics. 8th ed. Pergamon Press, Inc., Elmsford, N. Y.
Bodey, G. P. (1988) Fungal infection in cancer patients. Annals N. Y. Acad. Sci., 544, 431-442.
Bormann, C., Lauer, B., Kalmanczhelyi, A. (1999) Novel nikkomycins Lx and Lz produced by genetically engineered Streptomyces tendae Tü 901. J. Antibiot., 52, 582-585.
Bossche, H. V., Marichal, P., Gorrens, J., Bellens, D., Moereels, H., Janssen, P. A. J. (1990) Mutation in cytochrome P-450-dependent 14α-sterol demethylase results in decreased affinity for azole antifungals. Biochem. Soc. Trans., 18, 56-59.
Bossche, H. V., Marichal, P., Odds, F. C., Jeune, L. L., Coene, M. (1992) Characterization of an azole-resistant Candida glabrata isolate. Antimicrob. Agents Chemother., 36, 2602-2610.
Burgess, D. S., Hastings, R. W. (2000) A comparison of dynamic characteristics of fluconazole, itraconazole, and amphotericin B against Cryptococcus neoformans using time-kill methodology. Diag. Microbiol. Infect. Dis., 38, 87-93.
Butler, W. H. (1974) Aflatoxin. In: Purchase I. F. H. (ed). Mycotoxins. 1-36. Cheng-Chung Book Company.
Campbell, G. D. (1966) Primary pulmonary cryptococcosis. Am. Rev. Resp. Dis., 94, 136-252.
Carlson, M. A. and Condon, R. E. (1994) Nephrotoxicity of amphotericin B. J. .Am. College Surgeons., 179, 361-381.
Chan, J. H., Hong, J. S., Kuyper, L. F., Baccanari, D. P., Joyner, S. S., Tansik, R. L., Boytos, C. M., Rudolph, S. K. (1995) Selective inhibitors of Candida albicans dihydrofolate reductase: activity and selectivity of 5-(arylthio)-2, 4 diaminoquinazolines. J. Med. Chem., 38, 3608-3616.
Chung, Y. R., Sung, K. C., Mo, H. K., Son, D. Y., Nam, J. S., Chun, J., Bae, K. S. (1999) Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int. J. of Syst. Bacteriol., 49, 753-758.
Clancy, C. J., Yu, Y. C., Lewin, A., Nguyen, M. H. (1998) Inhibition of RNA synthesis as a therapeutic strategy against Aspergillus and Fusarium: demonstration of in vitro synergy between rifabutin and amphotericin B. Antimicrob. Agents Chemother., 42, 509-513.
Coleman, D. C., Bennett, E. D., Sullivon, D. J., Gallagher, P. J., Henman, M. C., Shanley, D. B., Russell, R. J. (1993) Oral Candida in HIV infection and AIDS: new perspectives/ new approaches. Crit. Rev. Microbiol., 19, 61-82.
Crupper, S. S. and Iandolo, J. J. (1996) Purification and partial characterization of a novel antibacterial agent (Bac 1829) produced by Staphylococcus aureus KSI1829. Appl. Environ. Microbiol., 62, 3171-3175.
Debono, M., Abbott, B. J., Turner, J. R., Howard, L. C., Gordee, R. S. (1988) Synthesis and evaluation of LY121019, a member of a series of semi-synthetic analogues of the antifungal lipopeptide echinocandin B. Ann. N. Y. Acad. Sci., 544, 152-167.
DeNollin, S., Van Belle, H., Goossens, F., Thone, F., Borgers, M. (1977) Cyposure to miconazole. Antimicrob. Agents Chem., 11, 500-513.
Diasio R. B., Bennett J. E., Myers C. E. (1978) Mode of action of 5-fluorocytosine. Biochem. Pharmacol. 27, 703.
Drake, T. E. and Maibach, H. I. (1973) Candida and candidasis. Postgrade. Med., 53, 83-120.
Duschinsky R., Pleven E., Heidelberger C. (1957) The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc. 79, 4559-4560.
El-Banna, N., and Winkelmann, G. (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J. Appl. Microbiol., 85, 69-78.
Engler, M., Anke, T., Sterner, O., Brandt, U. (1997) Pterulinic acid and pterulone, two novel inhibitors of NADH: ubiquinone oxidoreductase (Complex Ⅰ) produced by a Pterula species Ⅰ production, isolation and biological activities. J. Antibiot., 50, 325-329.
Enomoto, M. and Ueno, I., (1974) Luteoskyrin islanditoxin and cyclochlorotine produced by Penicillium islandicum. In: Purchase I. F. H. (ed). Mycotoxins. 379-410. Cheng-Chung Book Company.
Fiedler, H. P., Kurth, R., Langharig, J., Delzer J., Zahner, H. (1982) Nikkomycins: microbial inhibitors of chitin synthetase. J. Chem. Biotech., 32, 271-280.
Fiedler, H. P., Nega, M., Pfefferle, C. (1996) Kanchanamycins, new polyol macrolide antibiotics produced by Streptomyces olivaceus Tü 4018Ⅰ taxonomy, fermentation, isolation, and biological properties. J. Antibiot., 49, 758-764.
Franklin, T. J., Snow, G. A., Barrett-Bee, K. J., Nolan, R. D. (1994) Antifungal, antiprotozoal and antiviral agents. Biochemistry of Antimicrobial Action. 4nd ed. 137-155. Chapman & Hall, 2-6 Boundary Row.
Gamard, P., Sauriol, F., Benhamou, N., Belanger, R. R., Paulitz, T. C. (1997) Novel butyrolactones with antifungal activity produced by Pseudomonas aureofaciens strain 63-28. J. Antibiot., 50, 742-749.
Glatt, A. E., Chirgwin, K., Landesmann, S. H. (1988) Treatment of infections associated with immunodeficiency virus. New Eng. J. Med., 318, 1439-1448.
Goodwin, R. A. and des Prez, R. M. (1973) Pathogenesis and clinical spectrum of histoplasmosis. South. Med. J., 66, 13-25.
Graupner, P. R., Thornburgh, S., Mathieson, J. T., Chapin, E. L., Kemmitt, G. M., Brown, J. M., Snipes, C. E. (1997) Dihydromaltophilin; a novel fungicidal tetramic acid containing metabolite from streptomyces sp. J. Antibiot., 50, 1014-1019.
Hammer, K. A., Carson, C. F., Riley, T. V. (1998) In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp. J. Antimicrob. Chem., 42, 591-595.
Harris, G. H., Shafiee, A., Cabello, M. A., Curotto, J. E., Genilloud, O., Goklen, K. E., Kurtz, M. B., Rosenbach, M., Salmon, P. M., Thornton, R. A., Zink, D. L., Mandala, S. M. (1998) Inhibition of fungal sphingolipid biosynthesis by rustmicin, galbonolide B and their new 21-hydroxy analogs. J. Antibiot., 51, 837-844.
Hartsel, S. and Bolard, J. (1996) Amphotericin B: new life for an old drug. Trends Pharm. Sci., 17, 445-449.
Hata, K., Kimura, J., Miki, H., Toyosawa, T., Moriyama, M., Katsu, K. (1996) Efficacy of ER-30346, a novel oral triazole antifungal agent, in experimental models of aspergillosis, candidiasis, and cryptococcosis. Antimicrob. Agents Chemother., 40, 2243-2247.
Hawser, S., Borgonovi, M., Markus, A., Isert, D. (1999) Mulundocandin, an echinocandin-like lipopeptide antifungal agent: biological activities in vitro. J. Antibiot., 52, 305-310.
Hay, R. J. (1991) Overview of the treatment of disseminated fungal infections. J. Antimicrob. Chemother., 38 (Suppl. B).
Hegde, V. R., Patel, M. G., Gullo, V. P., Horan, A. C., King, A. H., Gentile, F., Wagman, G. H., Puar, M. S., Loebenberg, D. (1993) A novel macrolactam-disaccharide antifungal antibiotic taxonomy, fermentation, isolation, physico-chemical properties, structure elucidation and biological activity. J. Antibiot., 46, 1109-1115.
Hegde, V. R., Patel, M. G., Horan, A. C., King, A. H., Gentile, F., Puar, M. S., Loebenberg, D. (1998) A novel macrolactam-trisaccharide antifungal antibiotic taxonomy, fermentation, isolation, physico-chemical properties, structure elucidation and biological activity. J. Antibiot., 51, 464-470.
Helmerhorst, E. J., REijnders, I. M., Hof, W. V., Simoons-Smit, I., Veerman, E. C. I., Amerongen, A. V. N. (1999) Amphotericin B- and fluconazolresistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob. agents Chemother., 43, 702-704.
Hillery, A. M. (1997) Supramolecular lipidic drug delivery systerms: from laboratory to clinic. A review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B. Adv. Drug Del. Rev., 24, 345-363.
Hitchcock, C. A., Barrett-bee, K. J., Russell, N. J. (1987a) The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J. Med. Vet. Mycol., 25, 29-37.
Hitchcock, C. A., Russell, N. J., Barrett-bee, K. J. (1987b) Sterols in Candida albicans mutants resistant to polyene or azole antifungals, and of a double mutant C. albicans 6.4. Crit. Rev. Microbiol., 15, 111-115.
Hitchcock, C. A., Barrett-bee, K. J., Russell, N. J. (1989) The lipid composition and permeability to triazole antifungal antibiotic ICI 153066 of serum-grown mycelial cultures of Candida albicans. J. Gen. Microbiol., 135, 1949-1955.
Hitchcock, C. A., Dickinson, K., Brown, S. B., Evans, E. G. V., Adams, D. J. (1990) Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J., 266, 475-480.
Holtzel, A., Kempter, C., Metzger, J. W., Jung, G. (1998) Spirofungin, a new antifungal antibiotic from streptomyces violaceusniger Tü 4113. J. Antibiot., 51, 699-707.
Horsburgh, C. R. and Kirkpatrick, C. H. (1983) Long-term therapy of chronic mucocutaneous candidiasis with ketoconazole; experience with twenty-one patients. Am. J.Med., 74, 23-29.
Hosoe, T., Nozawa, K., Lumley, T. C., Currah, R. S., Fukushima, K., Takizawa, K., Miyaji, M., Kawai, K. (1999) Tetranorditerpene lactones, potent antifungal antibiotics for human pathogenic yeasts, from a unique species of Oidiodendron. Chem.Pharm. Bull., 47, 1591-1597.
Hu, F.-P. and Young, J. M. (1998) Biocidal activity in plant pathogenic Acidovorax, Burkholderia, Herbaspirillum, Ralstonia and Xanthomonas spp. J. Appl. Microbiol., 84, 263-271.
Humphrey, M. J., Jevons, S., Tarbit, M. H. (1985) Pharmocokinetic evaluation of UK-49,858, a metabolically stable triazole antifungal drug, in animals and humans. Antimicrob. Agents Chemother, 28, 648-653.
Igarashi, M., Kinoshita, N., Ikeda, T., Nakagawa, E., Hamada, M., Takeuchi, T. (1997a) Formamicin, a novel antifungal antibiotic produced by a strain of Saccharothrix sp. Ⅰ: taxonomy, production, isolation, and biological properties. J. Antibiot., 50, 926-931.
Igarashi, M., Kinoshita, N., Ikeda, T., Kameda, M., Hamada, M., Takeuchi, T. (1997b) Resormycin, a novel herbicidal and antifungal antibiotic produced by a strain of Streptomyces platensisⅠ taxonomy, production, isolation, and biological properties. J. Antibiot., 50, 1020-1025.
Irobi, O. N. and Daramola, S. O. (1993) Antifungal activities of crude extracts of Mitracarpus villosus. J. Ethnopharmacol., 40, 137-140.
Isono, K., Nagatsu, J., Kawashiwa, Y., Suzuki, S. (1965) Isolation and characterization of polyoxins A and B. Agric. Biol. Chem., 29, 848-854.
Jackson, M., Frost, D. J., Karwowski, J. P., Humphrey, P. E., Dahod, S. K., Choi, W. S., Brandt, K., Malmberg, L. H., Rasmussen, R. R., Scherr, M. H. (1995) Fusacandins A and B; novel antifungal antibiotics of the papulacandin class from Fusarium sambucinum. I. Indentity of the producing organism, fermentation and biological activity. J. Antibiot., 48, 608-613.
James, P. R. and Rawlings, B. J. (1996) Probing the mechanism of action of amphotericin B. Bioorganic & medicinal chemistry letters., 6, 505-508.
Joffe, A. Z., (1974) The relationship between the toxin of Fusarium poae, Fusarium sporotrichioides and Alimentary toxin aleukia (ATA). In: Purchase I. F. H. (ed). Mycotoxins. 289-326. Cheng-Chung Book Company.
Jones, J., H. and Russell, C. (1974) The histology of chronic candidal infection of rat’s tongue. J. Pathol. 113, 97-100.
Kennedy, T. C., Webb, G., Cannell, R. J. P., Kinsman, O. S., Middleton, R. F., Sidebottom, P. J., Taylor, N. L., Dawson, M. J., Buss, A. D. (1998) Novel inhibitors of fungal protein synthesis produced by a strain of Graphium putredinis: isolation, characterisation and biological properties. J. Antibiot., 51, 1012-1018.
Kinsman, O. S., Chalk, P. A., Jackson, H. C., Middleton, R. F., Shuttleworth, A., Rudd, B. A. M., Jones, C. A., Noble, H. M., Wildman, H. G., Dawson, M. J., Stylli, C., Sidebottom, P. J., Lamont, B., Lynn, S., Hayes, M. V. (1998) Isolation and characterisation of an antifungal antibiotic (GR135402) with protein synthesis inhibition. J. Antibiot., 51, 41-49.
Kleinwachter, P., Schlegel, B., Dornberger, K. (1999) 9-Hydroxyoudemansin A, a novel antifungal (E)-β-methoxyacrylate from a Mycena species. J. Antibiot., 52, 332-334.
Kurtz, M. B. and Douglas, C. M. (1997) Lipopeptide inhibitors of fungal glucan synthase. J. Med. Vet. Mycol., 35, 79-86.
Lancini, G., Parenti, F., Gallo, G. G. (1995) The antibiotics: an overview. In: Antibiotics/ A Multidisciplinary Approach, G. Lancini, F. Parenti, and G. G. Gallo, (ed). 1-14. Plenum Publishing Corporation.
Lee, D. G., Shin, S. Y., Maeng, C. Y., Jin, Z. Z., Kim, K. L., Hahm, K. S. (1999) Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem. Biophys. Res. Commun., 263, 646-651.
Lebbadi, M., Galvez, A., Maqueda, M., Martinez-Bueno, M., Valdivia, E. (1994) Funficin M-4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Bacteriol. 78, 97-108.
Louie, A., Drusano, G. L., Banerjee, P., Liu, Q. F., Liu, W., Kaw, P., Shayegani, M., Taber, H., Miller, M. H. (1998) Pharmacodynamics of fluconazole in a murine model of systemic Candidiasis. Antimicrob. agents Chemother., 42, 1105-1109.
Lowry, O. H., Rosebriugh, N. T., Farr, A. L., Randul, R. J. (1951) Protein measurement with Folin Phenol reagent. J. Biol. Chem., 193, 265.
Lyman, C. A. and Walsh, T. J. (1992) Systemically administered antifungal agents. A review of their clinical pharmacology and therapeutic applications. Drugs, 44, 9-35.
Martinez, A., Ferrer, S., Santos, I., Jimenez, E., Sparrowe, J., Regadera, J., De Las Heras, F. G., Gargallo-Viola, D. (2001) Antifungal activities of teo new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. Antimicrob. Agents Chem., 45, 3304-3309.
McBride, R. C. (1960) Mucormycosis. Am. J. Med., 28, 832-840.
McCarthy, P.J., Pitts, T. P., Gunawardana, G. P., Kelly-Borges, M., Pomponi, S. A. (1992) Antifungal activity of meridine, a natural product from the marine sponge Corticium sp. J. Nat. Prod., 55, 1664-1668.
Medoff G., Kobayashi G. S., Kwan C. N., Schlessinger D., Venkov P. (1972) Postentiation of rifampicin and 5-fluorocytosine as antifungal antibiotics by amphotericin B. Proc. Natl. Acad. Sci. U. S. A., 69, 196-199.
Mikami, Y., Komaki, H., Imai, T., Yazawa, K., Nemoto, A., Tanaka, Y. (2000) A new antifungal macrolide component, brasilinolide B, produced by Nocardia brasiliensis. J. Antibiot., 53, 70-74.
Millon, L., Manteaux, A., Reboux, G., Drobacheff, C., Monod, M., Barale, T., Michelbriand, Y. (1994) Fluconazole-resistant recurrent oral candidiasis in human immunodeficiency virus-positive patients: persistence of Candida albicans strains with the same genotype. J. Clin. Microbiol., 32, 1115-1118.
Mukhopadhyay, T., Roy, K., Bhat, R. G., Sawant, S. N., Blumbach, J., Ganguli, B. N., Fehlhaber, H. W., Kogler, H. (1992) Deoxymulundocandin-a new echinocandin type antifungal antibiotic. J. Antibiot., 45, 618-623.
Mukhopadhyay, T., Vijayakumar, E. K. S., Nadkarni, S. R., Fehlhaber, H.-W., Kogler, H., Petry, S. (1998) Mathemycin A, a new antifungal macrolactone from Actinomycete sp. HIL Y-8620959.Ⅱ structure elucidation. J. Antibiot., 51, 582-586.
Mukhopadhyay. T., Nadkarni, S. R., Bhat, R. G., Gupte, S. V., Ganguli, B. N., Petry, S., Kogler, H. (1999) Mathemycin B, a new antifungal macrolactone from actinomycete species HIL Y-8620959. J. Nat. Prod., 62, 889-890.
Munimbazi, C., Bullerman, L. B. (1998) Isolation and partial characterization of antifungal metabolites of bacillus pumilus. J. Appl. Microbiol., 84, 959-968.
Nadkarni, S. R., Mukhopadhyay, T., Bhat, R. G., Gupte, S. V. (1998) Mathemycin A, a new antifungal macrolactone from Actinomycete sp. HIL Y-8620959.Ⅰ fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot., 51, 579-581.
Newberne, P. M. (1974) Rubratoxins produced by Penicillium rubrum. In: Mycotoxins, I. F. H. Purchase, (ed), 197-217. Cheng-Chung Book Company.
Ng, T. T. C. and Denning, D. W. (1993) Fluconazole resistance in Candida in patients with AIDS-a therapeutic approach. J. Infect., 26, 117-125.
Nishi, K., Yoshida, M., Fujiwara, D., Nishikawa, M., Horinouchi, S., Beppu, T. (1994) Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J.Biol. Chem., 269, 6320-6324.
Nose, H., Seki, A., Yaguchi, T., Hosoya, A., Sasaki, T., Hoshiko, S., Shomura, T. (2000) PF1163A and B, new antifungal antibiotics produced by Penicillium sp. ⅠTaxonomy of producing strain, fermentation, isolation and biological activities. J. Antibiot., 53, 33-37.
Odds, F. C. (1993) Resistance of yeasts to azole-derivative antifungals. J. Antimicrob. Chemother., 31, 463-471.
Ogawa, A., Hashida-Okado, T., Endo, M., Yoshioka, H., Tsuruo, T., Takesako, K., Kato, I. (1998) Role of ABC transporters in aureobasidin A resistance. Antimicrob. agents Chemother., 42, 755-761.
Okada, H., Kamiya, S., Shina, Y., Suwa, H., Nagashima, M., Nakajima, S., Shimokawa, H., Sugiyama, E., Kondo, H., Kojiri, K., Suda, H. (1998) BE-31405, a new antifungal antibiotic produced by penicillium minioluteumⅠdescription of producing organism, fermentation, isolation, physico-chemical and biological properties. J. Antibiot., 51, 1081-1086.
O'Neill, R. P. and Penman, R. W. B. (1970) Clinical aspects of blastomycosis. Thorax, 25, 708-715.
O'Sullivan, J., Phillipson, D. W., Kirsch, D. R., Fisher, S. M., Lai, M. H., Trejo, W. H. (1992) Lanomycin and glucolanomycin, antifungal agents produced by pycnidiophora dispersaⅠdiscovery, isolation and biological activity. J. Antibiot., 45, 306-312.
Payne, J. W. and Shallow, D. A. (1985) Studies on drug targeting in the pathogenic fungus Candida albicans: peptide transport mutants resistant to polyoxins, nikkomycins, and bacilysin. FEMS. Micro. Boil. Lett., 28, 55-60.
Petraitis, V., Petraitiene, R., Groll, A. H., Bell, A., Callender, D. P., Sein, T., Schaufele, R. L., McMillian, C. L., Bacher, J., Walsh, T. J. (1998) Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary Aspergillosis in persistently neutropenic rabbits. Antimicrob. agents Chemother., 42, 2898-2905.
Peypoux, F., Besson, F., Michel, G., Delcambe, L. (1981) Structure of bacilomycin D, a new antibiotic of the iturin group. Euro. J. Biochem. 118, 323-327.
Phae, C. G., Shoda, M., Kubota, H. (1990) Suppressive effect of Bacillius subtilis and its products on phytopathogenic microoranisms. J. Fermentation Bioengineeing, 69, 1-7
Ping, X., Akeda, Y., Fujita, K.-I., Tanaka, T., Taniguchi, M. (1998) The mode of action of AKD-2C, an antifungal antibiotic from Streptomyces sp. OCU-42815. J. Antibiot., 51, 852-856.
Polak A. and Grenson M. (1973) Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candida albicans Eur. J. Biochem. 32, 276-282.
Prescott, L. M., Harley, J. P., Klein, D. A. (1996a) The fungi, slime molds, and water molds. In: Microbiology. L. M. Prescott, J. P. Harley, D. A. Klein, (eds), 503-519. Wm. C. Brown Publishers, USA.
Prescott, L. M., Harley, J. P., Klein, D. A. (1996b) Human diseases caused by fungi and protozoa. In: Microbiology. L. M. Prescott, J. P. Harley, D. A. Klein, (eds), 790-808. Wm. C. Brown Publishers, USA.
Purchase I. F. H. (1974) Cyclopiazonic acid produced by Penicillium cyclopium. In: Mycotoxins, I. F. H. Purchase, (ed), 179-196. Cheng-Chung Book Company.
Pusey, P. L. and Wilson, C. L. (1984) Postharvest biological control of stone fruit brown rot by Bacillius subtilis. Plant Dis., 68, 753-756.
Redding, S., Smith, J., Farinacci, G., Rinaldi, M., Fothergill, A., Rhinechalberg, J., Pfaller, M. (1994) Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin. Infect. Dis., 18, 240-242.
Robbins, S. L. and Cotran, R. S.(1974a) Infectious disease: Coccidiodomycosis. In: Pathologic Basis of Disease, S. L. Robbins, and R. S. Cotran, (ed), 452-454. W. B. Sannders Company.
Robbins, S. L. and Cotran, R. S.(1974b) Infectious disease: Paracoccidiodomycosis. In: Pathologic Basis of Disease, S. L. Robbins, and R. S. Cotran, (ed), 452. W. B. Sannders Company.
Robinson, R. F., Nahata, M. C. (1999) A comparative review of conventional and lipid formulations of amphotericin B. J. Clin. Phar. Thera., 24, 249-257.
Ruhnke, M., Eigler, A., Engelmann, E., Geiseler, B., Trautmann, M. (1994a) Correlation between antifungal susceptibility testing of Candida isolates from patients with HIV infection and clinical results after treatment with fluconazole. Infection, 22, 132-136.
Ruhnke, M., Eigler, A., Tennagen, I., Geiseler, B., Engelmann, E., Trautmann, M. (1994b) Emergence of fluconazole-resistant strains of Candida albicans in patients with recurrent oropharyngeal candidosis and human immunodeficiency virus infection. J. Clin. Microbiol., 32, 2092-2098.
Ryu, G., Choi, W. C., Hwang, S., Yeo, W. H., Lee, C. S., Kim, S. K. (1999) Tetrin C, a new glycosylated polyene macrolide antibiotic produced by Streptomyces sp. GK9244. J. Nat. Prod., 62, 917-919.
Saag, M. S. and Dismukes, W. E. (1988) Azole antifungal agents: emphasis on new triazoles. Antimicrob. agents Chemother., 32, 1-8.
Sanglard, D., Kuchler, K., Ischer, F., Pagant, J., Monod, M., Bille, J. (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. agents Chemother., 39, 2378-2386.
Sanglard, D., Ischer, F., Monod, M., Bille, J. (1996) Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. agents Chemother., 40.
Saito, M. and Ontsudo, K. (1974) Trichothecene produced by Fusarium sp. In: Mycotoxins, I. F. H. Purchase, (ed), 327-352. Cheng-Chung Book Company.
Sawistowska-Schroder, E. T., Kerridge, D., Perry, H. (1984) Echinocandins inhibition of 1,3-β-D-glucan synthase from Candida albicans. FEBS. Lett., 173, 134-138.
Schlingmann, G., Milne, L., Williams, D. R., Carter, G. T. (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256Ⅱ isolation and structure determination. J. Antibiot., 51, 303-316.
Schmatz, D. M., Abruzzo, G., Powles, M. A., McFadden, D. C., Balkovec, J. M., Black, R. M., Nollstadt, K., Bartizal, K. (1992) Pneumocandins from Zalerion arboricola Ⅳ biological evaluation of natural and semisynthetic pneumocandins for activity against Pneumocystis carinii and Candida species. J. Antibiot., 45, 1886-1891.
Shibata, K., Hanafi, M., Fujii, J., Sakanaka, O., Iinuma, K., Ueki, M., Taniguchi, M. (1998) UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517-02Ⅳabsolute configuration of an antifungal antibiotic, UK-2A, and consideration of its conformation. J. Antibiot., 51, 1113-1116.
Smith, K. J., Warnock, D. W., Kennedy, C. T., Johnson, E. M., Hopwood, V., van Cutsem, J., Bossche, H. V. (1986) Azole resistance in Candida albicans. J. Med. Vet. Mycol., 24, 133-144.
Stefanelli, S., Corti, E., Montanini, N., Denaro, M., Sarubbi, E. (1997) Inhibitors of type-Ⅰinterleukin-1 receptor from microbial metabolites. J. Antibiot., 50, 484-489.
Sugar, A. M., Liu, X. P., Chen, R. J. (1997) Effectiveness of quinolone antibiotics in modulating the effects of antifungal drugs. Antimicrob, Agents Chemother., 41, 2518-2521.
Sugawara, T., Tanaka, A., Nagai, K., Suzuki, K., Okada, G. (1997) New members of the trichothecene family. J. Antibiot., 50, 778-780.
Suzuki, S., Isono, K., Nagutsu, J., Mizutani, T., Kawashimer, C. (1965) A new antibiotic, polyoxin A. J. Antibiot., 18, 131-132.
Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., Kato, I. (1991) Aureobasidins, new antifungal antibiotics: taxonomy, fermentation, isolation, and properties. J. Antibiot., 44, 919-924.
Takimoto, H., Machida, K., Ueki, M., Tanaka, T., Taniguchi, M. (1999) UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517-02 Ⅳ comparative studies of UK-2A with antimycin A3 on cytotoxic activity and reactive oxygen species generation in LLC-PK1 cells. J. Antibiot., 52, 480-484.
Tanimoto, T., Ohya, S., Tsujita, Y. (1998) Inhibitory activity to protein prenylation and antifungal activity of zaragozic zcid D3, a potent inhibitor of squalene synthase produced by the fungus, Mollisia sp. SANK 10294. J. Antibiot., 51, 428-431.
Tsuge, K., Ano, T., Shoda, M. (1995) Characterization of Bacillus subtilis YB8, coproducer of lipopeptides surfactin and plipastatin B1. J. Gener. Appl. Microb. 41, 541-545.
Ueki, M. and Taniguchi, M. (1997a) The mode of action of UK-2A and UK-3A, novel antifungal antibiotics from streptomyces sp. 517-02. J. Antibiot., 50, 1052-1057.
Ueki, M., Kusumoto, A., Hanafi, M., Shibata, K., Tanaka, T., Taniguchi, M. (1997b) UK-3A, a novel antifungal antibiotic from Streptomyces sp. 517-02: fermentation, isolation, structural elucidation and biological properties. J. Antibiot., 50, 551-555.
Ueki, M., Shibata, K., Taniguchi, M. (1998) Uk-1, a novel cytotoxic metabolite from Streptomyces sp. 517-02: Ⅳ antifungal action of methyl UK-1. J. Antibiot., 51, 883-885.
Ueno, Y. (1974) Citreoviridin produced by Penicillium citreo-viride Biourage. In: Purchase I. F. H. (ed). Mycotoxins. 353-378. Cheng-Chung Book Company.
Uno, J., Shigematsu, M. L., Arai, T. (1982) Primary site of action of ketoconazole on Candida albicans. Antimicrob. Agents Chem., 21, 912-918

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top