跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/15 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧重王衣
研究生(外文):Chung-I Lu
論文名稱:海洋細菌Neisseriasp.strainSCA38抽絲性胞外黏性物質(EAS)之生產及成分分析與應用
論文名稱(外文):The Production and Composition Analysis and Application of Ropy Extracellular Adhesive Substance of Marine Bacterium Neisseria sp. strain SCA38
指導教授:潘崇良
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:抽絲胞外黏性物質海洋細菌
外文關鍵詞:ropyExtracellular Adhesive SubstanceEASmarine bacterium
相關次數:
  • 被引用被引用:1
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
菌株 Neisseria sp. strain SCA38 為篩選自附著於浸置海水中材料片的海洋黏性細菌分離株。實驗結果顯示將金屬離子與緩衝劑添加於培養基 MSBB 中,可使胞外黏性物質 (EAS) 產率提高至 0.13 與 0.28 g/L。分別以 0.58% polypeptone 或甘露醣取代 MSBB 之氮源碳源進行培養,其 EAS 產量可個別增加至 0.31 g/L 與 0.81 g/L。綜合組合成為菌株 SCA38 之最佳黏液產生培養液 modified-mucous production broth-mannose (M-MPB-M),次佳者為 modified-mucous production broth-glucose (M-MPB-G)。在不同培養溫度、振盪轉速及培養液起始 pH 值等培養條件之測試可得到個別最佳培養條件分別為:培養液之起始 pH 值為 8.2、振盪轉速 150 rpm 與培養溫度 26oC,其 EAS 產量可提升至 0.71-0.83 g/L。
添加六種吸附性材料於 M-MPB-G 中,加入幾丁質片組可獲得較佳的 EAS 產量 (0.98  0.27 g/L),其次為添加活性碳片組之 EAS 產量為 0.72  0.01 g/L。在發酵槽中以 200 rpm 培養菌株 SCA38 之攪拌速率可得更佳之 EAS 產率 (1.01  0.05 g/L)。菌株 SCA38 所產EAS 凍乾粉末中水分、全醣與蛋白質含量分別為 10.2-10.9%、 63.1-71.0% 及 8.7-15.9%。EAS (0.2%) 復水溶液經 Sephacryl S-400 HR 膠過濾層析分析,依所得結果推測其應為一蛋白質與多醣類之複合物。菌株 SCA38 所產 EAS 於 50oC 時,可以完全融解,在去離子水 (溶解度為 96.4%)、1.0-4.0% NaCl (溶解度為 85.6-95.0%) 及 formic acid (溶解度為 91.8%) 中可以完全溶解。室溫下不同濃度的 EAS 凍乾粉末之復水溶液相對黏度 (relative viscosity, RV) 會隨著加入 EAS 濃度增加而增加。測定在 pH 2.0 — 10.0 下,該水溶液的 RV 變化時,發現當 pH 值在 6.0-8.0 時,0.2% EAS 水溶液之 RV 表現較為穩定。0.2% EAS 水溶液在 40oC 時呈現較佳的 RV,但在溫度上升與下降後,其 RV 均呈現下降之變化趨勢。在探討菌株 SCA38 之乳化性質時,發現當 EAS 的濃度在 0.2-0.8% 時,其乳化活性為 42-48%。當 EAS 之添加量為 0.4% 及 1.0% 時,則皆可呈現較佳的乳化安定性 (均為 53%)。
菌株 SCA38 於 MSBB、M-MPB-M、及 M-MPB-G 三種培養液中所得之 EAS,依 10-50 mg/mL 三種濃度測試其抗氧化與抗致突變能力,在清除 DPPH 自由基能力方面,測試結果均未呈現顯著效果,以 M-MPB-M 培養所得 EAS 對於抑制血紅素催化亞麻油酸自氧化能力較為顯著,在濃度為 10 mg/mL 時,可達到 93.04  0.58%。以 MSBB 與 M-MPB-G 培養所得 EAS 則隨著測試濃度之增加而其抑制血紅素催化亞麻油酸自氧化能力亦隨之上升 (5.51%-79.81%)。抗致突變能力方面,以 MSBB 所產 EAS 於濃度 5.0% 時,對 MMNG 及 B[a]P 抑制率分別為 37.1% 與 5.5%,濃度在 1.0-5.0% 之 M-MPB-G 所產 EAS 之抑制 MMNG 能力在 85.7-88.6% 之間,B[a]P 抑制率為 33.7-34.4% 範圍間。
Abstract
Neisseria sp. strain SCA38 was isolated from the biofouling material suspended in sea water. Four metal ions or three buffering agents was added individually into the MSBB to testing the EAS production of strain SCA38, the results indicated that the EAS yields were increased to the range of 0.13-0.28 g/L. And as yeast extract or polypeptone/yeast extract was used to replace the original nitrogen source, the EAS yields of strain SCA38 were higher than the inorganic nitrogen replacement groups. Five monosaccharide and three disaccharides were used individually to replace the carbon source of MSBB, the results indicated that the substitution of mannose in the MSBB performed higher EAS yield (0.81 g/L) than others. In the study of incubation conditions for the maximum EAS production of strain SCA38, the results showed that while the initial pH at 8.2, shaking speed with 150 rpm, or incubation temperature at 26oC the higher EAS yields ranged from 0.71 to 0.83 g/L were observed.
Strain SCA38 was cultured in the M-MPB-G with the addition of substratum such as actived carbon flake, chitin flake, wood piece, stainless steel beads, glass beads, or polypropylene beads. The EAS production results indicated that the chitin flake added to M-MPB-G performed the highest EAS yield as 0.98 ± 0.27 g/L. To test the different agitating speed on the EAS yield for strain SCA38, the higher EAS yield of this strain were observed while 200 rpm was employed. The proximate compositions of lyophilized EAS produced by strain SCA38 in various media are primarily carbohydrate 63.1-71.0%, and 8.7-15.9% the second highest content was crude protein. The results observed from gel permeation chromatography implied that the EAS derived from strain SCA38 was a complex compound with polysaccharide and protein. The solubility of rehydrated aqueous solution with strain SCA38 EAS powder was dissolved in distilled water, 1.0-4.0% NaCl, 80% formic acid, and 99% dimethyl sulphoxide. The relative viscosity (RV) of strain SCA38 EAS rehydrated aqueous solution was increased while the concentration of EAS was increased in the reacting solution. However, EAS solutions with the addition of increasing NaCl concentration were performed the decreasing RV. The 0.2% lyophilized EAS powder rehydrated is solution showed the higher and more stable RV over a pH range from 6.0 to 8.0. The RV of 0.2% lyophilized EAS powder rehydrated solution more stabled at 40oC, and then declined while the temperature is either raising or falling. The emulsion activity (EA) of EAS obtained from strain SCA38 was examined as the EAS concentration ranged from 0.2% to 0.8%, the results showed that the EAS standing among 42% to 48%. As 0.4% or 1.0% EAS was added to the testing solution, the resultant emulsion stabilities (ES) were both 53%, which is better than the rest testing groups.
The EAS recovered from the cultivation of strain SCA38 in MSBB M-MPB-M, and M-MPB-G were used to test their capability on antioxidation and antimutagenicity in the concentration ranged from 10 to 50 mg/mL. The antioxidative performance of those EAS were not remarkable on the scavenging DPPH free radical, but the lyophilized EAS (derived from M-MPB-M) showed a good result on the inhibition of hemoglobin catalyzing linoleic acid. While in such 1% EAS solution, the inhibition rate could reach 93.040.58%. As to the EAS recovered from the strain SCA38 cultured MSBB and M-MPB-G, the inhibition performances on the hemoglobin catalyzing linoleic acid were ranged from 5.51% to 79.81% as the added concentration of EAS was increased. As to the antimutagenicity of EAS (5%) that produced from strain SCA38 cultured MSBB, the inhibition rate to the mutation caused by MMNG or B[a]P could be 37.1% and 5.5%, respectively. In the same testing system, the EAS of strain SCA38 that derived from M-MPB-G had inhibition rates while against the mutation caused by among 85.7-88.6% MMNG.
目 錄
目 錄 i
表 目 錄 vi
圖 目 錄 viii
中文摘要 x
英文摘要 xiii
一、前言 1
二、文獻整理 3
I. 海洋產黏性菌株之種類及其生產胞外黏性物質之特性 3
I-1. 海洋產黏性菌之種類 3
I-2. 胞外黏性物質的產生 4
I-3. 胞外黏性物質之特性 4
II. 從海洋黏性物質菌株分離胞外黏性物質 5
II-1. 萃取 5
II-2. 分子量分布 6
II-3. 食品與醫學上之應用 7
III. 活性氧與自由基 8
III-1. 活性氧與自由基之定義 8
III-2. 自由基與活性氧之生成來源 8
III-2-1. 電子傳遞鏈 8
III-2-2. 吞噬細胞之活化 9
III-2-3. 外界因子的影響 9
III-2-4. 自發性反應 9
III-3. 氧化傷害 9
IV. 生物體內抗氧化系統 10
V. 抗氧化劑的作用原理 10
V-1. 自由基終止型 10
V-2. 還原型或耗氧劑 11
V-3. 金屬螯合劑 11
V-4. 單重氧抑制劑 12
VI. 致突變劑之抑制機制 12
VI-1. Kada等分類法 12
VI-2. Aeschbacher之分類 13
VII. 致突變物與抗致突變物之快速檢驗 14
三、材料與方法 15
I. 實驗材料 15
I-1. 菌株 15
I-2. 培養基 15
I-3. 化學試藥 17
I-4. 儀器設備 19
II. 實驗菌株 20
II-1. 菌株之來源與活化 20
II-2. 菌株之保存 20
II-3. 菌株 SCA38 於培養基之生長曲線及在培養基之
黏性表現 20
II-3-1. 菌液酸鹼度之測定 20
II-3-2. 菌液光學密度之測定 20
II-3-3. 相對黏度之測定 21
II-3-4. 生菌數之測定 21
III. 菌株 SCA38 EAS 之萃取流程 21
III-1. 不同溫度與不同加熱時間對海洋黏性菌 EAS 萃取
之影響 21
III-2. 海洋黏性菌 EAS 萃取之流程圖 22
IV. 菌株 SCA38培養基組成與培養條件之測試 23
IV-1. 培養基組成
IV-1-1. 微量金屬離子 23
IV-1-2. 緩衝劑 23
IV-1-3. 氮源 23
IV-1-4. 碳源 24
IV-2. 培養條件 24
IV-2-1. 起始酸鹼度 24
IV-2-2. 培養溫度 24
IV-2-3. 振盪培養之速率 25
V. 添加不同吸附性材質對產胞外黏性物質之影響 25
V-1. 吸附性材料顆粒清洗 25
V-2. 吸附性材質對海洋黏菌產 EAS 影響之測試方法 25
VI. 以 5.0 L 發酵槽生產菌株 SCA38 EAS培養條件
之探討 25
VI-1. 攪拌速率 25
VI-2. pH 值之控制 26
VII. 菌株 SCA38 EAS 粗萃取物凍乾粉末之成分分析 26
VII-1. 水分、灰份與總氮量之測定 26
VII-2. 醣量的測定 26
VII-3. 蛋白質含量之測定 27
VII-4. 膠過濾層析分析 27
VIII. 菌株 SCA38 EAS 之理化特性分析 27
VIII-1. 溶解度之測定 27
VIII-2. 相對黏度之測定 28
VIII-2-1. 測定 EAS 水溶液在不同條件下之相對黏度 28
VIII-2-2. 相對黏度之測試方法 28
IX. 菌株 SCA38 EAS 之應用 29
IX-1. 菌株 SCA38 所產 EAS 乳化特性的測定 29
IX-1-1. 乳化活性 29
IX-1-2. 乳化安定性 29
IX-2. 菌株 SCA38 所產 EAS 成膜性、膜厚度、膜穿破點
及穿破強度之測定 29
X. 菌株 SCA38 EAS 之抗氧化與抗致突變性 30
X-1. 抗氧化能力 30
X-1-1. 清除 DPPH 自由基能力測定 30
X-1-2. 抑制血紅素催化亞麻油酸自氧化能力測定 30
X-1-3. 螯合鐵離子能力之測試 31
X-2. 抗致突變性 31
X-2-1. 試驗菌株之來源 31
X-2-2. 試驗菌株之保存與使用前之培養 32
X-2-3. 試驗菌株基因型態之確認 32
X-2-4. 毒性試驗 33
X-2-5. 致突變性試驗 33
X-2-6. 抗致突變性試驗 34
X-2-7. 統計分析 35
四、結果與討論 36
I. 抽絲黏性菌代表性之挑選、生長及相對黏度表現 36
I-1. 抽絲黏性菌株代表性之挑選 36
I-2. Neisseria sp. strain SCA38 生長及相對黏度表現 36
II. 菌株 SCA38生產 EAS 最適培養基成分與培養條件
之測試 37
II-1. 培養基組成 37
II-1-1. 金屬離子 38
II-1-2. 緩衝劑 38
II-1-3. 氮源 38
II-1-4. 碳源 39
II-2. 培養條件 40
II-2-1. 起始pH 值 41
II-2-2. 培養溫度 41
II-2-3. 振盪培養之速率 41
II-3. 添加不同吸附性材質對產胞外黏性物質之影響 42
III. 以 5.0 L發酵槽生產菌株 SCA38 EAS 培養條件
之探討 43
III-1. 攪拌速率 43
III-2. pH 值之控制 43
IV. 菌株 SCA38 EAS 粗萃取物凍乾粉末之成分分析 44
IV-1. 一般成分分析 44
IV-2. 膠過濾層析分析 44
V. 菌株 SCA38 所產 EAS 之理化特性分析 45
V-1. 溶解度之測定 45
V-2. 相對黏度之測定 45
V-2-1. EAS 水溶液之相對黏度 45
V-2-2. pH值對 EAS 水溶液之相對黏度的影響 46
V-2-3. 溫度對 EAS 水溶液之相對黏度的影響 47
VI. 菌株 SCA38 所產EAS 之應用 47
VI-1. 乳化特性的測定 47
VI-2. 成膜性、膜厚度、膜穿破點及穿破強度之測定 48
VII. 菌株 SCA38所產 EAS 之抗氧化與抗致突變性 49
VII-1. 抗氧化能力 49
VII-1-1. 清除 DPPH 自由基能力測定 49
VII-1-2. 抑制亞麻油酸自氧化能力測定 49
VII-1-3. 螯合鐵離子之能力測試 50
VII-2. 抗致突變性 51
VII-2-1. 毒性試驗 51
VII-2-2. 致突變試驗 52
VII-2-3. 抗致突變試驗 53
五、結論 54
六、參考文獻 56
六、參考文獻
呂嘉敏。2001。海洋細菌 Micrococcus sp. strain SDC 07 所產聚集性胞外黏性物質 (EAS) 之生產、成分分析及應用。國立台灣海洋大學食品科學系碩士學位論文。基隆。
李崇榮。1996。培養基組成與培養條件對Klebsiella oxytoca CF154之胞外黏性物質產量之影響。國立臺灣海洋大學水產食品科學系碩士學位論文。基隆。
汪復進。2000。從Klebsiella oxytoca CF154分離純化胞外黏性物質及其理化特性與在水產品應用之探討。國立台灣海洋大學食品科學系博士學位論文。基隆。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。1996。食品化學。華香園出版社。台北。pp. 327-328。
梁展帆、潘崇良、汪復進。1995。漁船表面黏性菌株之篩選。食品科學。22(2): 86-98。
黃文瑛。1993。Klebsiella oxytoca 菌株生物乳化劑之生產。中國農業化學會誌。31(4): 466-469。
溫晴美。2001。吸附性材料對 Klesiella oxytoca 附著能力與胞外黏性物質 (EAS) 產量的影響。國立台灣海洋大學食品科學系碩士學位論文。基隆。
廖哲逸。1996。食品加工環境中生物膜之控制。食品工業月刊。28(7): 39-47。
潘崇良、梁展帆。1995。Klebsiella oxytoca CF154之黏性物質分離與培養基中碳源與氮源組成之探討。食品科學 22(1): 99-112。
蔡雅卉。2001。雙叉桿菌發酵乳對 4NQO 及 B[a]P 抗致突變性之研究。國立台灣大學食品科技研究所碩士學位論文。台北。
蔡震壽、譚永慧。1990。多醣類對分離大豆蛋白乳化物的乳化特性之影響。食品科學。23 (4): 567-574。
蔡震壽。1998。海洋細菌生產黏性物質的流變與成膜特性。國科會專題研究計畫成果報告 (NSC 87-2214-E-019-03)。台北。
賴怡君。1999。乳酸菌之抗氧化及抗致突變性對細胞Intestine 407之影響。國立中興大學食品科學系碩士學位論文。臺中。
蘇遠志。1999。微生物多醣類。應用微生物學 pp. 881-896。華香園出版社。台北。
Aeschbacher, H. U. 1990. Antimutagenic/anticarcinogenic food components. In “Mutagens and Carcinogens in the Diet”. pp. 1-18. Ed. by Pariza, M. W., J. S. Felton, H. U. Aeschbacher, and S. Sato, Wiley-Liss Inc., New York.
Ames, B. N. 1983. Dietary carcinogens and antgicarcinogens, oxygen radicals and degenerative diseases. Science 221: 1256-1564.
Anton, J., I. Meseguer, and F. Rodrigurz-Valera. 1988. Production of an extracellular polysaccharide by Haloferax mediterranei. Appl. Environ. Microbiol. 54: 2381-2386.
AOAC. 1997. Offical Methods of Analysis. 16th ed. Association of Official Analytical Chemists. Washington, DC.
Appanna, V. D. 1988. Alteration of exopolysaccharide composition in Rhizobium meliloti JJ-1 exposed to manganese. FEMS Microbiol. Lett. 50: 141-144.
Appanna, V. D., and C. M. Preton. 1987. Manganese elicits the synthesis of a novel exopolysaccharide in an arctic Rhizobium. FEBS Lett. 25: 79-82.
Atkinson, B., and H. W. Fowler. 1974. The significance of microbial film in fermenters. Adv. Biochem. Eng. 3: 224-277.
Austin, B., D. A. Allen, A. Zachary, M. R. Belas, and R. R. Colwell. 1979. Ecology and taxonomy of bacteria attaching to wood surfaces in a tropical harbor. Can. J. Microbiol. 30: 447-461.
Beech, I. B., C. C. Gaylarde, J. J. Smith, and G. G. Geesey. 1991. Extracellular polysaccharides from Desulfovibrio desulfuricans and Pseudomonas fluorescens in the presence of mild and stainless steel. Appl. Micribiol. Biotechnol. 35: 65-71.
Bejar, V., L. Inmaculada, C. Calvo, and E. Quesada. 1998. Characterization of exopolysaccharide produced by 19 halophilic strains of the species Halomonas eurihalina. J. Biotech. 61: 135-141.
Biliaderis, C. G., D. R. Grant, and J. R. Vose. 1979. Molecular weight distribution of legume starches by gel chromatography. Cereal Chem. 56: 475-480.
Bourne, M. C. 1982. Viscosity and consistency. In: Food Texture and Viscosity: Concept and Measurement. pp. 199-200. Academic Press, New York.
Boyle, C. G., and A. E. Reade. 1983. Characterization of two extracellular polysaccharide from marine bacteria. Appl. Environ. Microbiol. 46: 392-299.
Brand-Williams, W., M. E. Cuveliver, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28: 25-30.
Brown, M. J., and J. N. Lester. 1980. Comparisons of bacterial extracellular polymer extraction method. Appl. Environ. Microbiol. 40: 179-185.
Bruyninckx, W. J., H. S. Mason, and S. A. Morse. 1978. Are physiological oxygen concentrations mutagenic? Nature 274: 606-607.
Bucke, C. 1998. Polysaccharide biotechnology: A cinderella subject. Trends Biotech. 16(2): 50-52.
Buckova, M., J. Labuda, J. Sandula, L. Krizkova, I. Stepanek, and Z. Durackova. 2002. Detection of damage to DNA and antioxidative of yeast polysaccharide at the DNA-modified screen-printed electrode. Talanta 56: 939-947.
Bull, A. T. 1972. Environmental factors influencing the synthesis and excretion of exocellular macromolecules. J. Appl. Chem. Biotechnol. 22: 261-292.
Buller, C. S., and K. C. Voepeol. 1990. Production and purification of an extracellular polyglucan produced by Cellulomonas flavigena strain KU. J. Indust. Microbiol. 5: 139-146.
Burdon, R. H., and E. C. Rice. 1989. Free radicals and the regulation of mammalian cell proliferation. Free Radic. Res. Commun. 6: 345-358.
Casas, J. A., V. E. Santos, and F. Garcia-Ochoa. 2000. Xanthan gum production under several operational conditions: Molecular structure and rheological properties. Enz. Microb. Technol. 26: 282-291.
Casciano, D. A. 1982. Mutagenesis assay methods. Food Tech. 36: 48-54.
Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130.
Cerning, J., C. M. G. C. Renard, J. F. Thibault, C. Bouillanne, M. Landon, M. Densmazeaud, and L. Topisirovic. 1994. Carbon source requirement for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914-3919.
Chakrabarti, B. K., and P. C. Banerjee. 1991. Surface hydrophobicity of acidophilic heterotrophic bacterial cells in relation to their adhesion on minerals. Can. J. Microbiol. 37: 692-696.
Characklis, W. G., and K. E. Cooksey. 1983. Biofilms and microbial fouling. Adv. Appl. Microbiol. 29: 93-138.
Characklis, W. G., and K. E. Cooksey. 1990. Biofilms. John Wiley, Cheng, S. L., and L. H. Wang. New York. 1990. A new potential microbial polysaccharide form sucrose. Report Taiwan Sugar Res. Inst. 100: 8-15.
Chen, H., L. J. Pellett, H. J. Andersen, and A. L. Tappel. 1993. Protection by vitamin E, selenium, and beta-carotene against oxidative damage in rat liver slices and homogenate. Free Radic. Biol. Med. 14: 473-482.
Cheng, S. J., and C. T. Ho. 1988. Mutagens, carcingens and inhibitors in Chinese foods. Food Rev. Int. 4: 353-355.
Colwell, R. R., M. R. Belas, A. Zachary, and D. Allen. 1987. Attachment of microorganism to aquatic environment. Can. J. Microbiol. 36: 169-178.
Corpe, W. A. 1970a. Attachment of marine bacteria to solid surfaces. In “Adhesion in Biological Systems”. pp. 32-41. Ed. by Manly, R. S., Academic Press, New York , USA.
Corpe, W. A. 1970b. An acidic polysaccharide produced by a primary film-forming marine bacterium. Develop. Indust. Microbiol. 2: 402-413.
Costerton, J. W., and H. M. Lappin-Scott. 1989. Behavior of bacteria in biofilms. ASM News 55: 650-654.
Costerton, J. W., G. G. Gissey, and K. J. Cheng. 1978. How bacteria stick ? J. Bacteriol. 26: 86-95.
Costerton, J. W., R. T. Irvin, and K. J. Cheng. 1981. The bacterial glycocalyx in nature and disease. Ann. Rev. Microbiol. 35: 299-324.
Davies, D. G., and G. A. McFeters. 1988. Growth and comparative physiology of Klebsiella oxytoca attached to granular activated carbon particles and liquid media. Microbiol. Ecol. 15: 165-175.
de Vuyst, L., and A. Vermeire. 1994. Use of industrial medium components for xanthan production by Xanthomonas campestris NRRL-B-1459. Appl. Microbiol. Biotechnol. 42: 187-191.
Deavin, L., T. R. Jarman, C. J. Lawson, R. C. Righelato, and S. Slocombe. 1977. The production of alginic acid by Azotobacter vinelandii in batch and continuous culture. Am. Chem. Soc. Symp. Ser. 45: 14-26.
Decker, E. A., and B. Welch. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38: 674-677.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colormetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
Duguid, J. P. 1959. Fimbriae and adhesive properties in Klebsiella strains. J. Gen. Microbiol. 21: 271-286.
Dziezak, J. D. 1986. Preservatives: Antioxidant. Food Technol. 40: 94-102.
Dziezak, J. D. 1991. A focus on gums. Food Technol. 45: 116-120.
Ebube, W. K., O. K. Udeala, and A. A. Ghobashy. 1992. Isolation and characterization of a novel polysaccharide from Bacillus licheniformis NCIB 11634. J. Indust. Microbiol. 9: 229-245.
Egan, B. 1989. Marine microbial adhesions and its consequences. Dev. Indust. Microbiol. 45: 221-237.
Enriquez, L. G., J. W. Hwang, G. P. Hong, N. A. Bati, and G. J. Flick. 1989. Plant and microbial food gums. In “Food Emulsifiers.” pp. 386-391. Ed. by Charalambous, G., and G. Doxastakis, Elsevier, New York.
Fletcher, M., and G. D. Floodgate. 1972. An electron-microscopic demonstration of an acidic polysaccharide involve in the adhesion of a marine bacterium to solid surface. J. Gen. Microbiol. 74: 325-334.
Foote, C. S. 1976. Photosensitised oxidation and singlet oxygen: Consequences in biological system. In “Free Radical in Biology,” pp. 58-133. Vol. II Ed. by Pryor, W. A., Wily-Liss Inc., Now York.
Frenkel, K. 1992. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol. Ther. 53: 127-166.
Funami, T., M. Funami, H. Yada, and Y. Nakao. 1999. Rheological and thermal studies on gelling characteristics of curdlan. Food Hydrocol. 13: 317-324.
Gahan, L. C., P. A. Sandford, and H. E. Cornd. 1967. The structure of the serotype 2 capsular polysaccharide of Aerobacter aerogenes. Biochem. 6: 2755-2766.
Glazer, A. N., and H. Nikaido. 1995. Micrbial polysaccharide and polyesters. In: Microbial Biotechnology. pp. 1265-1295. Freeman, W. H. and Company, New York.
Granath, K. A. 1965. Gel filtration. In “Methods in Carbohydrate Chemistry”. pp. 47-52. Vol. 5. Ed. by Whistler, R. L., Academic Press, New York.
Grobben, G. J., I. Chin-Joe, V. A. Kitzen, I. C. Boels, F. Bore, J. Sikkema, and M. R. Simth. 1998. Enhancement of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a simplified defined medium. Appl. Environ. Microbiol. 64: 1333-1337.
Grobben, G. J., J. Sikkema, M. R. Smith, and J. A. M. de-Bont. 1995. Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J. Appl. Bacteriol. 79: 103-107.
Guezennec, J., P. Pignet, Y. Lijour, E. Gentric, J. Ratiskol, and S. Colliec-Jouault. 1998. Sulfation and depolymerization of a bacterial exopolysaccharide of hydrothermal origin. Car. Polymers 37: 19-24.
Gyamfi, M. A., M. Yonamine, and Y. Aniya. 1999. Free-radical scavenging action of medicinal herbs from Ghana Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol. 32: 661-667.
Halliwell, B., and J. M. C. Gutteridge. 1989. "Free Radical in Biology and Medicine", Ed. by Haillwell, B., and J. M. C. Gutteridge. Clarendon Press, Oxford.
Hong, J., Z. Wang, T. Smith, S. Zhou, S. Shi, J. Pan, and C. Yang. 1992. Inhibitory effects of diallyl sulfide on the metabolism and tumorigenicity of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)- 1-butanone (NNK) in A/J mouse lung. Carcinogenesis 13: 901-904.
Hood, S. K., and E. A. Zottola. 1995. Biofilm in food processing. Food Control 6: 9-18.
Jarman, T. R., and G. W. Pace. 1984. Energy requirements for microbial exopolysaccharide synthesis. Arch. Microbiol. 137: 231-235.
Jeanes, A. 1974. Extracellular microbial polysaccharide. Food Technol. 12: 34-38.
Kada, T., K. Kaneko, S. Matsuzaki, T. Matsuzaki, and Y. Hara. 1985. Detection and chemical identification of natural bio-antimutagens A case of the green tea factor. Mut. Res. 150: 127-130.
Kada, T., K. Morita, and T. Inoue. 1978. Antimutagenic action of vegetable factor on the mutagenic principle of tryptophan pyrolysate. Mut. Res. 53: 351-358.
Kada, T., T. Inoue, and M. Namiki. 1981. Environmental desmutagens and antimutagens. In “Environmental Mutagenesis, Carcinogenesis, and Plant Biology.” pp. 134-148. Vol. 1, Ed. by Klelowski, E. J. Praeger Press, New York.
Kada, T., T. Inoue, T. Ohta, and Y. Shirasu. 1986. Antimutagens and their modes of action, In “Antimutagenesis and Anticarcinogenesis Mechanisms” pp. 181-196. Ed. by Shankel, D. M., P. E. Hartman, T. Kada, and A. Hollaender. Plenum Press, New York.
Kantha, S. S., S. Wada, H. Tanaka, M. Takeuchi, S. Watabe, and H. Ochi. 1996. Carnosine sustains the retention of cell morphology in continuous fibroblast culture subjected to nutrional insult. Biophys. Res. Comm. 223:278-282.
Kaptan, N., Z. Zonsin, and E. Rosenberg. 1987. Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsify by pure polysaccharide and protein. Appl. Environ. Microbiol. 53: 440-446.
Kawaguchi, K., K. Satomi, M. Yokoyama, and H. Kadota. 1992. Condition for production of an extracellular polysaccharide by a Klebsiella sp. isolated from river water. Nippon Suisan Gakkaishi 58: 1955-1960.
Kellems, B. L., and L. W. Lion. 1989. Effect of bacterial exopolymer on lead (II) adsorption by Al2O3 in seawater. Estuarine Coast. Shelf Sci. 28: 443-457.
Kennedy, J. F., P. Jones, and S. A. Barker. 1982. Factors affecting microbial growth and polysaccharide production during the fermentation of Xanthomonas campestris cultures. Enz. Microbol. Technol. 4: 39-43.
Keyhani, N. O., and S. Roseman. 1999. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Bioph. Acta 1473: 108-122.
Kim, K. Y., and J. F. Frank. 1995. Effect of growth on biofilm formation by Listeria monocytogenes on stainless steel. J. Food Protect. 58(1): 24-28.
Kumar, G. C., and S. K. Anand. 1998. Singnificance of microbial biofilms in food industry: A review. Int. J. Food Microbiol. 42: 9-27.
Kuo, J. M., D. B. Yen, and B. S. Pan. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47 (8): 3206-3209.
Launay, B., J. L. Doublier, and G. Cuvelier. 1986. Flow properties of aqueous solutions and dispersions of polysaccharides. In “Functional Properties of Food Macromolecules.” pp. 1-19. Ed. by Mitchell, J. R. and D. A. Ledward. Elsevier, New York.
Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709-715.
Liu, F., and T. B. Ng. 2000. Antioxidative and free radical scavenging action of medicinal herbs. Life Sci. 66: 725-735.
Lobas, D., S. Schumpe, and W. D. Deckwer. 1992. The production gellan exopolysaccharide with Sphingomonas paucimobilis E2 (DSM6314). Appl. Environ. Biotechnol. 37: 411-415.
Macedo M. G., C. Lacroix, N. J. Gardner, and C. P. Champagne. 2002. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int. Dairy J. 12: 419-426.
Machlin, L. J., and A. Bendich. 1987. Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J. 1: 441-445.
Maeda, M., T. Uehara, N. Haoki, M. Sekiguchi, and A. Hiraoka. 1991. Heparinoid-active sulphated polysaccharides from Monostrom nitidum and their distribution in the cholrophyta. Phytochem. 30(11): 3611-3615.
Maron, D. M., and B. N. Ames. 1983. Revised methods for the Salmonella mutagenicity test. Mut. Res. 113: 173-215.
Min., D. B., S. H. Lee, and E. C. Lee. 1988. Singlet oxygen oxidation of vegetable oils. In “Flavor Chemistry of Lipid Foods.” pp. 57-97. Ed. by Min, D. S. and T. H. Smouse. American Oil Chemists’ Society, Champaign, U.S.A.
Namiki, M. 1990. Antioxidants/antimutagens in foods. Crit. Rev. Food Sci. Nutr. 29: 273-300.
Oh, D. K., J. H. Kim, and T. Yoshida. 1997. Production of a high viscosity polysaccharide, methylan, in a novel bioreactor. Biotecnol. Bioeng. 54(2): 115-120.
Okamoto, G., F. Hayase, and H. Kato. 1992. Scavenging of active oxygen species by glycated proteins. Biosci. Biotech. Biochem. 56: 928-931.
Orrenius, S., D. J. McConkey, G. Bellomo, and P. Nicotera. 1989. Role of Ca2+ in toxic cell killing. Trends Pharmacol. Sci. 10: 281-285.
Okutani, K. 1982. Structure investigation of fructan from marine bacterium NAM-1. Bull. Jap. Soc. Sci. Fish. 48: 1621-1625.
Pavlova, K., and D. Grigorova. 1999. Production and properties of exopolysaccharide by Rhodotorula acheniorum MC. Food Res. Int. 32: 437-477.
Peters, H. U., H. Herbst, P. G. M. Hesselink, H. Lunsdirf, A. Schumpe, and W. D. Deckwer. 1989. The influence of agitation rate on xanthan production by Xanthomonas campestris. Biotechnol. Bioeng. 34: 1393-1397.
Peterson, G. L. 1979. Review of the folin phenol protein quantitation method of Lowry, Rosebrough, Farr, and Randall. Anal. Biochem. 100: 201-220.
Ramel, C., U. K. Alekperov, B. N. Ames, T. Kada, and L. W. Wattenberg. 1986. Inhibitors of mutagenesis and their relevance to carcinogenesis. Mut. Res. 168: 47-52.
Randall, R. C., G. O. Phillips, and P. A. Williams. 1988. The role of the proteinaceous component on the emulsifying properties of the gum Arabic. Food Hydrocoll. 2(2): 131-134.
Read, R. R., and J. W. Costerton. 1987. Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can. J. Microbiol. 35: 1081-1085.
Regenstein, J. M., and C. E. Regenstein. 1984. Protein functionality for food scientists. In “Food Protein Chemistry”. pp. 279-280. Ed. by Regenstein, J. M. and C. E. Regenstein, Academic Press, Inc., London.
Ren, T. J., and J. F. Frank. 1993. Susceptibility of starved planktonic and biofilm Listeria monocytogenes to quaternary ammonium sanitizer as determined by direct viable and agar plate counts. J. Food. Prot. 56: 573-576.
Roberts, C. M., W. F. Fett, S. F. Osman, C. Wijey, J. V. OConnor, and D. G. Hoover. 1995. Exopolysaccharide production by Bifidobacterium longum BB-79. J. Appl. Bacteriol. 78: 463-468.
Roblot, C., J. P. Seguin, J. N. Barbotin, P. Michaud, J. Courtois, B. Courtois, and A. Heyraud. 1995. Effect of salts on production and on acetylation of glucuronan excreted by the Rhizobium meliloti M5N1CS srrain. Int. J. Macromol. 17(6): 365-368.
Rocks, J. K. 1971. Xanthan gum. Food Technol. 25: 476-478.
Rosenberg, E., and D. L. Glutrick. 1979. Emusifying properties of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol. 37: 403-428.
Rudd, T., R. M. Steritt, and J. N. Lester. 1982. The use of extraction methods for the quantification of extracellular polymer production by Klebsiella aerogenes under varying cultural conditions. European J. Appl. Microbiol. Biotechnol. 16: 23-27.
SAS. 1996. SAS User’s Guide: Basic Statistical Analysis. SAS Institute Inc., Cary, North Carolina, USA.
Scott J. A., A. M. Karanjkar, and D. L. Rowe. 1995. Biofilm covered granular activated carbon for decontamination of streams containing heavy metals and organic chemicals. 1995. Miner. Eng. 12: 221-230.
Shamala, T. R., R. Triveni, and N. K. Rastogi. 2001. Optimised production and utilization of exopolysaccharide from Agrobacterium radiobacter. Proc. Biochem. 36: 787-795.
Shepherd, R., J. Rockey, I. W. Sutherland, and S. Roller. 1995. Novel bioemulsifers from microorganisms for use in foods. J. Biotechnol. 40: 207-217.
Simizu, S., M. Imoto, N. Masuda, M. Takada, and K. Umezawa. 1996. Involvement of hydrogen peroxide production in erbstatin-induced apoptosis in human small cell lung carcinoma cells. Cancer Res. 56 : 4978-4982.
Skaper, S. D., M. T. Fabris, V. Ferrari, M. D. Carbonare, and A. Leon. 1997. Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: Cooperative effects of ascorbic acid. Free Radic. Biol. Med. 22: 669-678.
Souw, P., and A. L. Demain. 1979. Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459. Appl. Environ. Microbiol. 37: 1186-1192.
Stasionopoulos, S. J., and R. J. Seviour. 1992. Exopolysaccharide production by Acremonium persicinum in stirred-tank and air-lift fermentors. Appl. Microbiol. Biotechnol. 36: 465-468.
Suda, D., J. Schwartz, and G. Shklar. 1986. Inhibition of experimental oral carcinogensis by topical -carotene. Carcinogenesis 7: 711-715.
Sutherland, I. W. 1972. Bacterial exopolysaccharides. Adv. Microb. Physiol. 161:143-213.
Sutherland, I. W. 1982. Biosynthesis of microbial exopolysaccharides. Adv. Microbiol. Physiol. 23: 79-150.
Sutherland, I. W. 1998. Novel and established application of microbial polysaccharides. TIBTECH 16: 41-46.
Sutherland, I. W., and J. Williamson. 1979. A yellow polysaccharide-producing bacterium with unusual characteristics. European J. Appl. Microbiol. Biotechnol. 6: 233-240.
Sutherland, I. W., and S. Thomson. 1975. Comparison of polysaccharides produced by Myxococcus strains. J. Gen. Microbiol. 89: 124-132.
Tait. M. I., I. W. Sutherland, and A. J. Clarke-Sturman. 1986. Effect of growth conditions on the production, composition, and viscosity of Xanthomonas campestris exopolysaccharide. J. Gen. Microbiol. 121: 1483-1492.
Time. 2000. Bad milk raises old fears: Where are the watchdogs. 7/ 31/ 2000. p. 19. U.S.A.
Troy, F. A. 1973. Chemistry and biosynthesis of the poly (γ-
D-glutaamyl) capsule in Bacillus licheniformis. I: Properties of the membrane-mediated biosynthesis reaction. J. Biol. Chem. 248: 53-57.
Ueda, S., F. Momii, K. Osajima, and K. Ito. 1981. Extracellular polysaccharide produced by strain No. 626 of Aeromonas hydrophila. Agric. Biol. Chem. 45: 1977-1981.
Umezawa, H., Y. Okami, S. Kurawa, T. Ohnuki, M. Ishizuka, T. Takeeuchi, T. Shiio, and Y. Yugari. 1983. Marinactan, an antitumor polysaccharide produced by marine bacteria. J. Antibiot. 36: 471-477.
van den Berg, D. J. C., G. W. Robijn, A. C. Janssen, M. L. F. Giuseppin, A. M. Ledeboer, and C. T. Verrips. 1995. Production of a novel extracellular polysaccharide by Lb. sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61: 2840-2844.
van Kranenburg, R., I. I. van Swam, M. Kleerebezem, and W. M. de Vos. 1998. Expression, disruption , and complementation of eps genes essential for exopolysaccharide biosynthesis in Lc. lactis. Abstracts of ASM Conference on Streptococcal Genetics, pp. 45-46. Vichy.
Vuillaume, M. 1987. Reduced oxygen species, mutation, induction and cancer initiation. Mutat. Res. 186: 43-72.
Wang, F. J., C. L. Pan, and C. S. Wu. 1999. Composition and rheological properties of extracellular mucilage from marine bacterium Klebsiella oxytoca CF154. Fish. Sci. 65(5): 742-749.
Whitekettle, W. K. 1991. Effects of surface-active chemicals on microbial adhesion. J. Indust. Microbiol. 7: 105-116.
Whitifield, C. 1988. Bacterial extracellular polysaccharides. Can. J. Microbiol. 34: 514-420.
Williams, A. G., and J. W. T. Wimpenny. 1977. Exopolysaccharide production by Pseudomonas NCIB11264 grown in batch culture. J. Gen. Microbiol. 102: 13-21.
Yamamoto, M., Y. Tadokoro, H. Imai, and K. Mita. 1980. Physicochemical characterization of sulfated polysaccharides from green seaweeds: Ulva pertusa and Ylva conglobata. Agric. Biol. Chem. 44(4): 723.
Yurewicz, E. C., M. A. Ghalambors, and E. C. Heath. 1979. The structure of Klebsiella aerogenes capsular polysaccharide. J. Biol. Chem. 216: 5596-5608.
Zaidi, B. R., R. F. Bard, and T. R. Tosteson. 1984. Microbial specificity of metallic surfaces exposed to ambient seawater. Appl. Environ. Microbiol. 48: 519-524.
Zobell, C. E. 1943. The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46: 39-56.
Zobell, C. E., and E. C. Allen. 1934. The significance of marine bacteria in the fouling of submerged surfaces. J. Gen. Bacterol. 7: 239-251.
Zobell, E. C., and C. B. Feltham. 1988. Preliminary studies on the distribution and characteristics of marine bacteria. Dev. Indust. Microbiol. 22: 1213-1227.
Zottola, E. A. 1994. Microbial attachment and biofilm formation: A new problem for the food industry. Food Technol. 48(7): 107-114.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top