跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育德
論文名稱:幾丁聚醣與褐藻酸鈉複合水合膠之物化特性
論文名稱(外文):The physical and chemical properties of chitosan-alginate complex hydrogels
指導教授:陳榮輝陳榮輝引用關係
指導教授(外文):Rong Huei Chen
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:幾丁聚醣複藻酸鈉水合膠分子量去乙醯度濃度pH
外文關鍵詞:chitosanalginatehydrogelmolecular weightdegree of deacetylationconcentrationpH
相關次數:
  • 被引用被引用:11
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的在探討幾丁聚醣 (chitosan) 之分子量、去乙醯度 (degree of deacetylation, DD)、濃度以及凝膠系統中pH影響幾丁聚醣與褐藻酸鈉 (sodium alginate) 所製備的複合水合膠之物化性質,物化性質的探討包括水合膠之動粘彈性、吸水性以及熱性質。從大頭紅蝦 (Solemocera prominenitis) 之加工廢棄物抽取幾丁質 (chitin),利用熱鹼處理法製備三種不同去乙醯程度之幾丁聚醣;再將這三種不同去乙醯程度之幾丁聚醣以超音波降解,以得到相同去乙醯度不同分子量之幾丁聚醣。利用相同分子量不同去乙醯度或相同去乙醯度不同分子量之幾丁聚醣與褐藻酸鈉製備複合水合膠並探討濃度與pH值對水合膠之物化性質影響結果如下:
幾丁聚醣之濃度、分子量、去乙醯度以及凝膠製備pH均會影響其與褐藻酸鈉之交互作用,隨著這些因子的增加,水合膠之粘彈特性尤其是貯存模數 (storage modulus, G) 隨之提高,其中又以濃度及分子量所造成之交纏結構影響最為顯著。水合膠的吸水性亦受到上述因子所影響,但其呈現出不同的效應,即隨著這些因子的增加,水合膠之吸水性會相對較差,這現象除了與聚合物間之靜電交互作用以外,分子內及分子間之氫鍵結構亦是影響因子。水合膠之最大熔化溫度及熱焓會隨著幾丁聚醣之分子量、去乙醯度、濃度以及凝膠pH增加而提高,顯示上述因子均會增加幾丁聚醣與褐藻酸鈉間之交互作用。由紅外線光譜之分析得知增加幾丁聚醣之濃度會加強與褐藻酸鈉間之靜電交互作用及氫鍵結構,而增加幾丁聚醣之分子量對紅外線光譜之差異不大,表示在相同濃度下,幾丁聚醣之分子量大小對水合膠之機械強度所造成的差異原因主要來自於分子鏈之交纏度所造成。
The aims of this study are to explore the effects of molecular weight, degrees of deaectylation, concentrations of chitosan and gelling pH on physical-chemical properties of complex hydroges prepared from chitosan and alginate. Physical-chemical properties includes dynamic viscoelastic, water absorptivity and thermal properties. Chitin was extracted from red shrimp (Solemocera prominenitis) process waste. Three different degrees of deacetylation chitosans were prepared by hot alkali deacetylation from prepared chitin. The same degrees of deacetylation but different molecular weight chitosans were produced by ultrasonication treatment on three different degrees of deacetylation chitosans. The effect of the same degrees of deacetylation but different molecular weight or the same molecular weight but different degrees of deacetylation, their concentration and gelling pH on physical-chemical properties of complex hydrogels of chitosans and alginate were explored and results obtained are as following:
The viscoelastic properties especially the storage modulus (G) of complex hydrogels of chitosans and alginate increased with increasing concentration, molecular weight, degrees of deacetylation of chitosans and gelling pH. This may be due to the conformation, chain flexibility of the chitosan molecules and entanglement between chitosan and alginate were affected by increasing concentration and molecular weight of the chitosan. The electrostatic interaction between chitosan and alginate and hydrogen bond of intra-molecular and inter-molecular were then play their role to form hydrogels. The absorptivity of these hydrogels were also affected by these factors, but in the opposite trends. Increasing of these factors, the absorptivity of the hydrogels decreased. The maximum melting point and enthalpy also increased with increasing the molecular, degree of deacetylation and concentration as well as the gelling pH. This may be owing to that these factors enhanced the interactions of chitosan and alginate. The infrared spectra data show that increasing the concentration of chitosan would facilitate the electrostatic interactions and hydrogen bond between chitosan and alginate. But increasing the molecular weight of chitosan did not result in significant difference in infrared spectra. These results indicated that the main factor that increased the mechanical strength of the hydrogel of the same concentration were the entanglement of the molecular chains between chitosan and alginate.
中文摘要………………………………………………………………... IV
英文摘要………………………………………………………………... V
一. 前言………………………………………………………………… 1
二. 文獻整理…………………………………………………………… 3
1. 水合膠之定義、種類與應用方法………………………………. 3
2. 幾丁質類物質凝膠的製備與應用………………………………. 3
2.1. 幾丁質類物質凝膠的製備………………………………….. 3
2.2. 幾丁質類物質凝膠的應用…………………………………. 4
3. 褐藻酸鈉凝膠的製備與應用……………………………………. 6
3.1. 褐藻酸鈉凝膠的製備………………………………………. 6
3.2. 褐藻酸鈉凝膠的應用………………………………………. 8
4. 幾丁聚醣與褐藻酸鈉之離子鍵水合膠…………………………. 8
4.1. 聚電解質複合物……………………………………………. 8
4.2. 幾丁聚醣與褐藻酸鈉之離子鍵水合膠的應用……………. 9
三. 材料與方法………………………………………………………… 11
1.材料………………………………………………………………... 11
2.方法………………………………………………………………... 11
2.1. 不同去乙醯度幾丁聚醣之製備……………………………. 11
2.2. 相同去乙醯度、不同分子量幾丁聚醣之製備……………. 12
2.3. 幾丁聚醣之去乙醯程度測定………………………………. 12
2.4. 幾丁聚醣分子量之測定……………………………………. 13
2.5. 褐藻酸鈉分子量的測定……………………………………. 13
2.5.1. dn / dc 測定……………………………………………. 13
2.5.2. 褐藻酸鈉分子量的測定………………………………. 14
2.6. 褐藻酸鈉 M / G比的測定………………………………… 15
2.7. 幾丁聚醣-褐藻酸鈉複合水合膠的製備…………………… 16
2.8. 動態粘彈性質之測定………………………………………. 16
2.8.1. 應力掃瞄………………………………………………. 17
2.8.2. 頻率掃瞄………………………………………………. 17
2.9. 複合水合膠吸水膨潤性測定………………………………. 18
2.10. DSC. 分析………………………………………………... 19
2.11. 幾丁聚醣與褐藻酸鈉靜電交互作用系統………………... 19
2.11.1. 傅立葉轉換紅外線光譜分析………………………... 19
四. 結果與討論………………………………………………………… 20
1. 幾丁質/幾丁聚醣的製備………………………………………… 20
2. 褐藻酸鈉性質……………………………………………………. 21
3. 幾丁聚醣與褐藻酸鈉靜電交互作用……………………………. 21
4. 幾丁聚醣與褐藻酸鈉複合水合膠之流變特性…………………. 22
4.1. 幾丁聚醣與褐藻酸鈉複合水合膠之應變掃瞄……………. 22
4.2. 幾丁聚醣與褐藻酸鈉複合水合膠之頻率掃瞄……………. 22
4.2.1. 幾丁聚醣濃度對複合水合膠粘彈性質的影響………. 22
4.2.2. 成膠pH對複合水合膠粘彈性質的影響…………….. 23
4.2.3. 幾丁聚醣分子量對複合水合膠粘彈性質的影響……. 25
4.2.4. 幾丁聚醣去乙醯度對複合水合膠粘彈性質的影響…. 26
5. 幾丁聚醣-褐藻酸鈉複合水合膠之吸水澎潤性………………… 27
5.1. 幾丁聚醣濃度及凝膠pH之影響………………………….. 28
5.2. 幾丁聚醣分子量及去乙醯度之影響………………………. 28
6. DSC分析………………………………………………………… 29
6.1. 幾丁聚醣濃度之影響………………………………………. 29
6.2. 凝膠pH之影響…………………………………………….. 30
6.3. 幾丁聚醣去乙醯度與分子量之影響………………………. 30
7. 傅立葉轉換紅外線光譜分析……………………………………. 31
五. 結論………………………………………………………………… 34
六. 參考文獻…………………………………………………………… 35
圖………………………………………………………………………... 49
表………………………………………………………………………... 73
陳榮輝,金曉珍,1995,水產甲殼類廢棄物開發高經濟價值之幾丁質、幾丁聚醣、幾丁寡醣研究之規劃報導。科學發展月刊,23 (6), 550-562.
林俊煌,1992,不同去乙醯程度之幾丁聚醣的流變性與鏈柔軟度、膜之物理特性的關係,國立臺灣海洋大學水產食品科學研究所碩士論文。
蔡敏郎,1993,不同分子量、不同去乙醯的幾丁聚醣溶液的流變性質與膠囊物性的關係,國立台灣海洋大學水產食品科學研究所碩士論文。
華宏達,1994,分子量、鏈柔性度、化學修飾對幾丁聚醣超過濾膜特性的影響,國立台灣海洋大學水產食品科學研究所碩士論文。
黄志誠,2000,以流變學方式探討數種生物性複合高分子溶液的凝膠點,國立中興大學化學工程研究所碩士論文。
Arai, K., Minumari, K. and Fujita, T. 1968. On the toxicity of chitosan. Bull. Tokai. Reg. Fish. Lab. 56, 899.
Alamelu, S. and Panduranga Rao, K. 1994. Liposomes sequestered in chitosan gel as a delivery device for dapsone. Carbohydr. Polym. 24, 215-221.
Bartkowiak, A. and Hunkeler, D. 1999. Alginate-oligochitosan microcapsules: A mechanistic study relating membrane and capsule properties to reaction conditions. Chem. Mater. 11, 2486-2492.
Bartkowiak, A. and Hunkeler, D. 2000. Alginate-oligochitosan microcapsules. II. Control of mechanical resistance and permeability of the membrane. Chem. Mater. 12, 206-212.
Bough, W. A. and Landes, D. R. 1976. Recovery and nutritional evaluation of proteinaceous solids separated from whey by coagulation with chitosan. J. Dairy Sci. 59, 1874.
Bodmeier, R., Oh, K. H. and Pramar, Y. 1989. Preparation and evaluation of drug-contatining chitosan beads. Drug Develop. Ind. Pharma. 15 (9), 1475-1494.
Baxter, A., Dillon, M. and Taylor, K. D. A. 1992. Improved method for i.r. determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 14, 166-169.
Bouhadir, K. H., Hausman, D. S. and Mooney, D. J. 1999. Synthesis of cross-linked poly(aldehyde guluronate) hydrogels. Polymer. 40, 3575-3584.
Chandía, N. P., Matsuhiro, B. and Vásquez, A. E. 2001. Alginic acids in Lessonia trabeculata: Characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydr. Polym. 46, 81-87.
Chen, C, Liau, W. and Tsai, G. 1998. Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. J. Food Proct. 61 (9), 1124-1128.
Chen, R. H., Lin, J. H. and Yang, M. H. 1994. Relationships between the chain flexibilities of chitosan molecules and physical properties of their casted films. Carbohydr. Polym. 24, 41-46.
Chen, R. H., Lin, C. W. and Lin, J. H. 1994. Effect of pH, ionic strength, and type of anion on the rheological properties of chitosan solutions. Acta Polymer. 45, 41-46.
Chen, R. H. Chang, J. R. and Shyur, J. S. 1997. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr. Res. 299, 287-294.
Chenite, A., Buschmann, M., Wang, D., Chaput, C. and Kandani, N. 2001. Rheology characterization of thermogelling chitosan / glycerol-phosphate solutions. Carbohydr. Polym. 46, 39-47.
Daly, M. M. and Knorr, D.1988. Chitosan-alginate complex coacervate capsules: Effects of calcium chloride, plasticizers, and polyelectrolytes on mechanical stability. Biotech. Progress. 4 (2), 76-81.
Draget, K. I., Varum, K. M. and Smidsrod, O. 1992. Chitosan crosslinked with Mo (VI) polyoxyanions: Effects of chemical composition. In: Advances in Chitin and Chitosan. Eds. Brine, C. J., Sandford, P. A. and Zikakis, J. P. Elsevier Appl. Sci., London, pp. 604-613.
Denuziere, A., Ferrier, D. and Domard, A. 1996. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr. Polym. 29, 317-323.
Draget, K., Myhre, S., Skjåk-Bræk, G. and Østgaard, K. 1988. Regeneration, cultivation and differentiation of plant protoplasts immobilized in Ca-alginate beads. J. Plant Physiol. 132, 552-556.
Dumitriu, S. and Chornet, E. 1998. Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv. drug delivery reviews. 31, 223-246.
Dumitriu, S., Magny, P., Montane, D., Vidal, P. F. and Chornet, E. 1994. Polyionic hydrogels obtained by complexation: Their properties as support for enzyme immobilization. J. Bioact. Compat. Polym. 9, 184-209.
Draget, K. I., Strand, B., Hartmann, M., Valla, S., Smidsrød, O. and Skjåk-Bræk, G. 2000. Ionic and acid gel formation of epimerized alginates; the effect of AlgE4. Int. J. Biol. Macromol. 27, 117-122.
Endo, S. Suzuki, K. and Marui, K. 1990. Water-in-oil emulsion-type fat compositions containing chitosan for margarine and their manufacture. Jap. Patent 02, 299, 545 (1990).
Fan, S. W., Li, C. F. and Shih, D. Y. C. 1994. Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Proct. 56 (2), 136-140.
Fukuda, H. and Kikuchi, Y. 1978. Polyelectrolyte complexes of chitosan with sodium carboxymethyldextran. Bull. Chemical Society Japan. 51, 1142-1144.
Fukuda H. 1980. Polyelectrolyte complexes of chitosan with sodium carboxymethylcellulose. Bull. Chemical Society Japan. 53, 837-840.
Gåserød, O., Smidsrød, O. and Skjåk-Bræk, G. 1998. Microcapsules of alginate-chitosan. ― I. A quantitative study of the interaction between alginate and chitosan. Biomaterials. 19, 1815-1825.
Gåserød, O., Sannes, A. and Skjåk-Bræk, G. 1999. Microcapsules of alginate-chitosan. ― II. A study of capsule stability and permeability. Biomaterials. 20, 773-783.
Gacesa, P., Squire, A. and Winterburn, P. J. 1983. The determination of the uronic acid composition of alginates anion-exchange liquid chromatography. Carbohydr. Res. 118, 1-8.
Hadwiger, L. A., Kendra, D. F., Fristensky, B. W. and Wagoner, W. 1986. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Chitin in Nature and Technology. ed. by Muzzarelli, R., Jeniaux, C. and Gooday, G. W. Plenum Press, N. Y., pp. 209-214.
Hanawa, N. Ro, K. Takeuchi, M. Nishitani, T and Kanazawa, H. 1991. Fruits jellies containing chitosan, phosphates, and gelation agents and their manufacture. Jap. Patent 03, 127, 954 (1991).
Hart, R. 1989. Stable protein foams: a new technology with new uses. Prepared Food. 158 (6), 71.
Haug, A. and Larsen, B. 1963. The solubility of alginate at low pH. Acta Chem. Scand. 17, 1653-1660.
Haug, A., Myklestad, S., Larsen, B. and SmidsrØd. 1967. Correlation between chemical structure and physical properties of alginates. Acta Chem. Scand. 21, 768-775.
Hirano, S. 1978. A facile method for the preparation of novel membranes from N—acyl - and N-arylidene-chitosan gels. Agric. Biol. Chem. 42 (10), 1939-1940.
Hirano, S. Tobetto, K., Hasegawa, M. and Noishiki, Y. 1980. Permeability properties of gels and membranes derived from chitosan. J. Biomedical Materials Res. 14, 477-486.
Hirano, S. and Ohe,Y. 1975. Chitosan gels: A novel molecular aggregation of chitosan in acidic solutions on a facile acylation. Agric. Biol. Chem. 39 (6), 1337-1338.
Hirano, S., Kondo, S. and Ohe, Y. 1975. Chitosan gel: A novel polysaccharide gel. Polymer, 16, 622.
Hirano, S. 1990. Chitosan as an ingredient for domestic animal feeds. Am. Chem. Soci. 38: 1214.
Hwang.C., Rha, C. K. and Sinskey, A. J. 1986. Encapsulation with chitosan: Trans-membrane diffusion of proteins in capsules. In: Chitin in Nature and Technology. ed. by Muzzarelli, R., Jeuniaux, C. and Gooday, G. W. Plenum Press, N.Y., pp. 389-396.
Hayes, E. R. and Davies, D. H. 1978. Characterization of chitosan: Thermoreversible chitosan gels. In: Proceedings of The First International Confercene on Chitin/Chitosan. Eds. Muzzarelli, R. A. A. and Pariser, E. R. MTT Sea Grant Program, Cambridge, MA. pp. 193-198.
Hagino, Y. and Huang, S. 1995. Super absorbing gels derived from chitosan and sodium alginate. Polym. Mater. Sci. Eng., 72, 249-50.
Hamann, D. D. and Webb, N. B. 1979. Sensory and instrumental evaluation of material properties of fish gels. J. Texture Stud. 10, 117-130.
Hugerth, A., Caram-Lelham, N. and Sundeloef, L. O. 1997. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan. Carbohydr. Polym. 34, 149-156.
Huguet, M. L., Groboillot, A., Neufeld, R. J., Poncelet, D. and Dellacherie, E. 1994. Hemoglobin encapsulation in chitosan/calcium alginate beads. J. Appl. Polym. Sci. 51, 1427-1432.
Huguet, M. L., Neufeld, R. J. and Dellacherie, E. 1996. Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE-Dextran. Process Biochem. 31, 347-353.
Huguet, M. L. and Dellacherie, E. 1996. Calcium-alginate beads coated with chitosan: Effect of the structure of encapsulated materials on their release. Process Biochem. 31, 745-751.
Hou, W. M., Miyazaki, S., Takada, M. and Komai, T. 1985. Sustained release of indomethacin from chitosan granules. Chem. Pharm. Bull. 33, 3986-3994.
Hussain, Q., Iqbal, J. and Saleemuddin, M. 1985. Entrapment of concanavalin a glycoenzyme complexes in calcium alginate gels. Biotechnol. Bioeng. 27, 1102-1107.
Hiroshi, F. 1978. In vitro clot formation on the polyelectrolyte complexes of sodium dextran sulfate with chitosan. J. Biomed. Mater. Res. 12, 531-539.
Jain, D. and Ghose, T. K. 1984. Cellobiose hydrolysis using Pichia etchellsi cells immobilized in calcium alginate. Biotechnol. Bioeng. 26, 340-346.
Kesting, R. E. 1971. Synthetic Polymeric Membranes. McGraw-Hill Book Comp. New York. pp. 32-33.
King, K. 1994. Changes in the functional properties and molecular weight of sodium alginate following  irradiation. Food Hydrocolloid. 8, 83-96.
Knorr, D. 1984. Use of chitinous polymers in food - a challenge for food research and development. Food Tech. 38 (1), 85-97.
Knorr, D. and Daly, M.1988. Mechanics and diffusional changes observed in multi—layer chitosan/alginate coacervate capsules. Process Biochem. April, 48-50.
Kim, S. -K. and Rha, C. 1989. Chitosan for the encapsulation of mammalian cell culture. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. eds. Skjåk-Bræk, G., Anthonsen, T. and Sandford, P. Elsevier Appl. Sci., London, pp. 617-626.
Kim, Y. Yoon, K. and Ko, S. 2000. Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde. J. Applied Polym. Sci. 78, 1797-1804.
Kikuchi, Y. and Fukuda, H. 1974. Polyelectrolyte complexes of sodium dextran sulfate with chitosan. Makromol. Chem. 175, 3593-3596.
Kikuchi, Y. and Noda, A. 1976. Polyelectrolyte complexes of heparin with chitosan. J. Appl. Polym. Sci. 20, 2561-2563.
Kulkarni A. R., Soppimath K. S., Aminabhavi T. M., Dave A. M. and Mehta M. H. 2000. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Controlled Release. 63, 97-105.
Kokufuta, E. 1979. Colloid titration behavior of poly(ethyleneimine). Macromolecules. 12, 350-353.
Kuo, C. K. and Ma, P. X. 2001. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 22, 511-521.
Kopp, B. and Rehm, H. J. 1983. Alkaloid production by immobilized mycelia of Claviceps purpurea. Eur. J. Appl. Microbiol. Biotechnol. 18, 257-263.
Leuba, J. L. and Stossel, P.,1986. Chitosan and other polyamines: antifungal activity and interaction with biology membranes. In: Chitin in Nature and Technology. eds. by Muzzarelli, R., Jeniaux, C. and Gooday, G. W. Plenum Press, N. Y., pp. 215-222.
Liu, L. S., Liu, S. Q., Ng, S. Y., Froix, M., Ohno, T. and Heller, J. 1997. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. J. Controlled Release. 43, 65-74.
Lee, K. Y., Park, W. H., and Ha, W. S. 1997. Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives. J. Appl. Polym. Sci. 63, 425-432.
Macleod, G. S., Collett, J. H. and Fell, J. T. 1999. The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release. J. Control. Release. 58, 303-310.
Martinsen, A., Skjåk-Bræk, G. and Smidsrød, O. 1989. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotech. bioengin. 33, 79-89.
Moe, S. T., Draget, K. I., Skjåk-Bræk. G. and SmidsrØd, O. 1995. Alginates. Food Polysaccharides and Their Application. Ed. by Stebhen, A. M. Marcel Dekken, Inc. New York. Pp. 245-286.
Manabe, M. Kuwabara, Y. and Otsuka, N. 1989. Improvement of texture of pickles with chitosan. Jap. Patent 01, 304, 843 (1989).
Matsumoto T. Kawai M. and Masuda T. 1993. Rheologigal properties and fractal structure of concentrated polyion complexes of chitosan and alginate. Biorheology. 30, 435-441.
Markey, M. L., Bowman, L. m. and Bergamini, M. V. W. 1989. Contact lenses made of chitosan. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. eds. Skjåk-Bræk,G., Anthonsen, T. and Sandford, P. Elsevier Appl. Sci., London, pp. 713-717.
Mima, S., Miya, M., Iwamoto, R. and Yoshikawa, S. 1983. Highly deacetylated chitosan and its properties. J. Appl. Polym. Sci. 28, 1909-1917.
Miles, M. J. 1988. Gelation. In: Development in Crystalline Polymers―2, D.C. Bassett, ed., pp. 233-295. Elsevier, New York, USA.
Mi, F. L., Kuan, C. Y., Shyu, S. S., Lee, S. T. and Chang, S. F. 2000. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydr. Polym. 41, 389-396.
Mi, F. L., Sung, H. W. and Shyu, S. S. 2002. Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr. Polym. 48, 61-72.
Murata, Y., Maeda, T., Miyamoto, E. and Kawashima, S. 1993. Preparation of chitosan-reinforced alginate gel beads―effects of chitosan on gel matrix erosion. Int. J. Pharm. 96, 139-145.
Minoura, N., Koyano, T., Koshizaki, N., Umehara, H., Nagura, M. and Kobayashi, Ken-ichi. 1998. Preparation, properties, and cell attachment / growth behavior of PVA / chitosan-blended hydrogels. Materials Sci. Eng. C 6, 275-280.
Miyazaki, S., Ishii, K. and Nadai, T. 1981. The use of chitin and chitosan as drug carriers. Chem. Pharm. Bull. 29, 3067-3078.
Nagyvary, J. J., Falk, J. D., Hill, M. L., Schmidt, M. L., Withins, A. K. and Braddbury, E. L. 1979. The hypolipidemic activity of chitosan and other polysaccharides in rats, Nutr. Rep. Int. 20 (5), 677.
Niskioka, Y., Kyotani, S., Okamura, M., Miyazaki, M., Okazaki, K., Ohnishi, S.,Yamamoto, Y. and Ito, K. 1990. Release characteristics of cisplatin chitosan microspheres and effect of containing chitin. Chem. Pharm. Bull. 38 (10), 2871-2873.
Nakamura, K., Nishimura, Y., Hatakeyama, T. and Hatakeyama H. 1995. Thermal properties of water insoluble alginate films containing di- and trivalent cations. Thermochimica Acta. 267, 343-353.
Ouwerx C., Velings N., Mestdagh M. M. and Axelos M. A. V. 1998. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks. 6, 393-408.
Oerther, S., Maurin, A. C., Payan, E., Hubert, P., Lapicque, F., Presle, N., Dexheimer, J., Netter, P. and Lapicque, F. 2000. High interaction alginate-hyaluronate associations by hyaluronate deacetylation for the preparation of efficient biomaterials. Biopolymers. 54, 273-281.
Peppas, N. A. 1996. Hydrogels In: Biomaterials Science. Ed. Ratner, B. D. Hoffman, A. S. Schoen, F. J. and Lemons, J. E. Academic Press San Diego, pp 60-64.
Pandya, Y. and Knorr, D.1991. Diffusion characteristics and properties of chitosan coacervate capsules. Process Biochem. 16, 75-81.
Pandya, Y. and Knorr, D.1993. Diffusion characteristics and properties of chitosan coacervate capsules. Process Biochem. 26, 75-81.
Roberts, G. A. F. 1989. Chitosan gels: Part 4. Chitosan — based thermally reversible gel. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. eds. Skjåk-Bræk, G., Anthonsen, T. and Sandford, P. Elsevier Appl. Sci., London, pp. 479-485.
Roberts, G. A. F. and Taylor, K. E. 1989. The preparation and characterization of chitin beads for use in chromatography. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. eds. Skjåk-Bræk, G., Anthonsen, T. and Sandford, P. Elsevier Appl. Sci., London, pp 577-583.
Risbud, M. V., Hardikar, A. A., Bhat, S. V. and Bhonde, R. R. 2000. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J. Control. Release. 68, 23-30.
Ruel-Gariẻpy, E., Chenite, A., Chaput, C., Guirguis, S. and Leroux, J. C. 2000. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int. J. Pharm. 203, 89-98.
Struszczyx, H., Pospieszny, H. and Kotlinski, S.1989. Some new applications of chitosan in agriculture. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. eds. by Skjåk-Bræk, G., Anthonsen, T. and Sandford, P. Elsevier Appl. Sci., London, pp 733-742.
Sabnis, S. and Block, L. H. 2000. Chitosan as an enabling excipient for drug delivery systems. I. Molecular modifications. Int. J. Biol. Macromol. 27, 181-186.
Sakiyama, T., Chu, C. H., Fujii, T, and Yano, T. 1993. Preparation of a polyelectrolyte complex gel from chitosan and κ-carrageenan and its pH-sensitive swelling. J. Appl. polym. Sci. 50, 2021-2025.
Steffe, J. F. 1996. Viscoelasticity. In: Rheological methods in food process engineering. Freeman press, USA. pp: 294-349.
Thanoo, B. C.,Sunny, M.C. and Jayakishnan, A. 1992. Cross — linked chitosan microspheres: preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J. Pharm. Pharmacol. 44 (4), 283-286.
Tamura, H., Tsuruta, Y. and Tokura, S. 2002. Preparation of chitosan-coated alginate filament. Materials Science and Engineering C. 20: 143-147.
Tsaih, M. L. and Chen, R. H. 1997. Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int. J. Biol. Biomacromol. 20, 233-240.
Terbojevich, M., Cosani, A., 1996. Solution behaviour of chitin in dimetylacetamide / LiCl. In: Advances in Chitin Science, eds. Domard, A., Jeuniaux, C., Muzzarelli, R. and Roberts, G. Jacques Andre Publisher, France, pp. 333-339.
Takahashi, T., Takayama, K., Machida, Y. and Nagai, T. 1990. Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int. J. Pharm. 61, 35-41.
Tsuchida, E. Formation of polyelectrolyte complexes and their structures. J. Macromol. Sci. Pure Appl. Chem. A31, 1-15.
Thu, B., Bruheim, P., Espevil, T., Smidsrød, O., Soon-Shiong, P. and Skjåk-Bræk, G. 1996a. Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials. 17, 1031-1040.
Thu, B., Bruheim, P., Espevik, T., Smidsrød, O., Soon-Shiong, P. and Skjåk-Bræk, G. 1996b. Alginate polycation microcapsules. II. Some functional properties. Biomaterials. 17, 1069-1079.
Vorlop, K. D. and Klein, J. 1981. Formation of spherical chitosan biocatalysis by ionotropic gelation. Biotechnol. Lett. 3 (1), 9-14.
Vachoud, L., Zydowicz, N. and Domard, A. 1997. Formation and characterization of a physical chitin gel. Carbohydr Res. 302, 169-177.
Vandenbossche, G. M. R., Oostveldt, P. V., Demeester, J. and Remon, J. P. 1993. The molecular weight cut-off of microcapsules is determined by the reaction between alginate and polylysine. Biotech. Bioeng. 42, 381-386.
Winterowd, J. G. and Sandford, P. A. 1995. Chitin and chitosan In: Food Polysaccharide and Their Application. Ed. Stephen, A. M. Marcel Dekker, Inc., New York. Pp. 441-462.
Wang, W., Bo, S., Li, S. and Qin, W. 1991. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int. J. Biol. Macromol. 13, 281-285.
Yamane, H. and Takada, K. 1991. Frozen desserts with good shape-retaining property and their manufacture with chitosan. Jap. Patent 03, 76, 537 (1991).
Yao, K. D., Peng, T., Feng, H. B. and He, Y. Y. 1994. Swelling kinetics and release characteristic of crosslinked chitosan: Polyether polymer network (semi-IPN) hydrogels. J. Polym. Sci. Part A: Polym. Chem. 32, 1213-1223.
Yeom, C. K., Kim, C. U., Kim, B. S., Kim, K. J. and Lee, J. M. 1998. Recovery of anionic surfactant by RO process. Part Ⅰ. Preparation of polyelectrolyte-complex anionic membrane. J. membrane sci. 143, 207-218.
Yamaguchi, R., Arai, Y. and Itoh, T. 1982. A microfibril formation from depolymerized chitosan by N-acetylation. Biol. Chem. 46 (9), 2379-2381.
Yan, X. L., Khor, E. and Lim, L. Y. 2001. Chitosan-alginate film prepared with chitosans of different molecular weights. J. Biomed Mater. Res. (Appl. Biomater) 58, 358-365.
Yao, K. D., Xu, M. X., Yin, Y. J., Zhao, J. Y. and Chen, X. L. 1996. pH-sensitive chitosan/gelatin hybrid polymer network microspheres for delivery of cimetidine. Polymer Int. 39, 333-337.
Zydowict, N., Vachoud, L. and Domard, A.1996. Influence of the acetylation degree of a chitin gel on its physical and chemical properties. In: Advances in Chitin Science. ed. by Domard, A., Jeuniaux, C., Muzzarelli, R. And Roberts,G. Jacques Andre Publisher, France, pp. 262-270.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top