跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/05 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱文瑞
研究生(外文):Chiou, W. R.
論文名稱:海鱺飼料化學組成特性及其影響魚肉品質之探討
論文名稱(外文):Studies on chemical composition of the diets of cobia(Rachycentron canadum)and its effects on meat quality
指導教授:蕭泉源蕭泉源引用關係
指導教授(外文):Shiau, C. Y.
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:海鱺飼料一般成分脂肪酸組成游離胺基酸
外文關鍵詞:cobiadietproximate compositionfatty acid compositionfree amino acid
相關次數:
  • 被引用被引用:5
  • 點閱點閱:901
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:3
摘要
海鱺(Cobia, Rachycentron canadum)已成為目前箱網養殖主要魚種之一,本研究針對海鱺飼料成分加以分析,並探討不同飼料配方與海鱺化學組成分的相關性。
市售海鱺飼料係依養成魚體大小製成大小與外形不同之飼料,十五種飼料之水分為3.56~9.91%、灰分9.40~13.32%、粗蛋白41.45~50.86%,粗脂肪10.85~21.34%;游離胺基酸組成以牛磺酸(Tau)及組胺酸(His)為主,顯示海鱺飼料蛋白質來源係以洄游魚類所製成之紅魚粉為主;另有三種飼料添加甲硫胺酸(Met)作為營養劑。在脂肪酸方面,以16:0及18:1含量最多,而20:5n-3及22:6n-3等多元不飽和脂肪酸亦豐,其值介於10.5~27.0%之間,此乃因添加多量的魚油所致。
提高飼料蛋白質及脂質含量會促進海鱺肉之蛋白質、脂質、核酸化合物與游離胺基酸含量的增加,但在魚體體重、肥滿度、肝體比與脂肪酸組成方面,卻無顯著效果。背肉、腹肉及肝中之脂肪含量差異甚大;核酸及其相關化合物以IMP為主;肌肉之游離胺基酸以Tau、Gly及Ala含量較高,肝則以Tau為主。魚肉之脂肪酸主要以C16:0、C18:1及C16:1的比例最多,肝則以C16:0、C18:1及C18:0為主。
添加牛油及魚油之飼料餵食海鱺後,發現飼養末期餵食魚油者有較高的油脂含量,腹部肉中脂肪之蓄積更為顯著,顯示海鱺對魚油之吸收轉換較牛油佳;不同種類油脂飼料飼養對海鱺之游離胺基酸影響小,但對脂肪酸組成之影響甚大,末期餵食牛油者,以C18:1含量最高,而餵食魚油者以EPA及DHA含量較高。
餵食添加牛油之飼料九週後,海鱺之肝體比增加,但肥滿度則無差異;在內臟(不含肝)、腹肉及尾肉之脂肪含量皆有增加趨勢,但肝之含量明顯減少。
澎湖養殖場之海鱺肉與肝之脂肪含量高於屏東養殖者,但脂肪酸組成差異不大,海鱺之一般成分及脂肪酸組成受飼料組成的影響甚鉅,因此養殖業者藉飼料調控魚體脂肪與品質至為重要。
Abstract
Cobia, Rachycentron canadum, has become one of the main cage cultured fish. The chemical composition of commercial feeds of cobia were analyzed in this study, and the relationship between different formula of diets and the chemical changes of cobia as also studied.
The commercial feeds had different size and shape by culture stage of cobia. The moisture of fifteen commercial feeds was ranged from 3.56 % to 9.91 %, ash 9.40% to 13.32%, protein 41.45% to 50.86%, and fat 10.85% to 21.34%. Taurine (Tau) and histidine (His) were dominant free amino acids (FAA), suggesting that the major protein source was brown fish meal made from migratory fish. Three commercial feeds were added in methionine (Met) as a nutrient supplement. C16:0 and C18:1 were the major fatty acids. The levels of polyunsaturated fatty acids, EPA and DHA, were also high, ranging from 10.5% to 27.0%. This result showed that the feeds contained a high level of fish oil.
The protein, fat, nucleotides related compounds (NRC) and FAA in the muscle of cobia tended to increase with increasing of protein and fat content in diets. However, the body weight, condition factor, hepatosomatic index (HSI) and fatty acid composition showed no good correlation. The variations of fat contents in dorsal meat, ventral meat and liver were great. Among NRC, IMP was the major compound. Tau, glycine (Gly) and alanine (Ala) were rich in the muscle, but Tau was the major FAA in the liver. C16:0, C18:1 and C16:1 were the dominant fatty acids in the muscle, but C16:0, C18:1 and C18:0 were the major fatty acids in the liver.
No matter what feeds contained fish oil or beef tallow at the initial stage of culture, cobia fed feeds with fish oil at the final stage of culture had a higher level of fat. The accumulation of fats in ventral meat was more significant, indicating that the utilization of fish oil in cobia was more efficient than beef tallow. The effect of diets with different lipid source on FAA composition of cobia was not obvious, but it was significant on fatty acid composition. The proportion of C18:1 of cobia fed feeds with beef tallow was the highest at the final stage of culture. However, the cobia fed feeds with fish oil had higher levels of EPA and DHA.
Although HSI of cobia fed feeds with beef tallow was increased after 9 weeks of culture, the condition factor remained unchanged. The content of fat in viscera, ventral meat and tail meat were increased, but that in the liver was decreased significantly.
The fat contents in the muscle and liver of cultured cobia from Penghu coastal area were higher than those from Pingtung coastal area. However, the fatty acid composition showed no significant difference. The effect of feeds on proximate composition and fatty acid in cobia was great; therefore, the control of fat content and quality of fish meat throughout the preparation of diet ingredients was important for cobia culture.
目錄
頁次
中文摘要…………………………………….………………………… Ⅰ
英文摘要…………………………………….………………………… Ⅲ
目錄………………………………………….………………………… Ⅴ
表目錄………………………………………….………………………. Ⅸ
圖目錄………………………………………….………………………. XI
壹、前言……………………………………………………….………. 1
貳、文獻整理…………………………….…….……………………… 3
一、海鱺之生態與養殖…….……………………………….……… 3
二、魚類的化學組成分……………………………...…………….. 4
(一)一般成分…………………………………..………...… 4
(二)萃取物成分………………………...……….…………. 5
1.游離胺基酸………..…………….....………….……….. 6
2.雙胜…………………………………………..……… 7
3.核酸及其相關化合物………...……………………... 7
(三)脂質與脂肪酸…………………………………………... 8
三、飼料對魚類成長之化學組成分的影響…………….……..…… 8
(一)飼料中蛋白質品質的影響…….………………………… 9
1.魚粉原料新鮮度的影響………………………………… 9
2.魚粉原料加工條件的影響………………………………. 10
3.植物蛋白質取代魚粉的影響…………………………… 10
(二)飼料中脂質成分的影響………….………………………. 11
參、材料與方法…………………………...…………………………… 13
一、實驗項目與材料……….……………………………………… 13
(一)市售海鱺飼料之化學組成分……….…………………… 13
(二)飼料中油脂及蛋白質含量對二階段養成海鱺化學組成分之影響….………….…………………….….………… 13
(三)飼料中油脂來源對海鱺化學組成分之影響……………. 13
(四)飼料中添加牛油對海鱺不同部位脂肪及脂肪酸蓄積之影響….…….……………….……….…………………… 14
(五)不同養殖場中飼料對海鱺化學組成分之影響………… 14
二、分析方法……………………………….……………………… 15
(一)pH值……………………….…………………………….. 15
(二)肥滿度………...…………………………………………... 15
(三)肝體比………...………………..………………………… 15
(四)一般成分…………………...……………………………… 15
1.水分………..…………….....………….………………… 15
2.灰分………..…………….....………….………………… 15
3.粗蛋白質………..…………….....………….…………… 15
4.粗脂肪………..…………….....………….……………… 15
(五)游離胺基酸、雙胜、尿素與氨……………………….. 16
(六)核酸相關化合物…………………..…………………… 16
(七)脂肪酸………………………...…………………………... 18
(八)統計分析…………………...……………………………... 19
肆、結果與討論………………………………………...……………... 20
一、市售海鱺飼料之化學組成分……..…………………………… 20
(一)一般成分…………………………………..………………. 20
(二)脂肪酸………………………………………..…………… 21
(三)游離胺基酸……………………………..………………… 22
(四)pH值、氨及尿素…………………………………..……… 22
二、飼料中油脂及蛋白質含量對二階段養成海鱺化學組成分之影響………………………………………..……………………… 24
(一)飼料之化學組成分…………………………………..…… 24
1.一般成分…………………………………..……………… 24
2.脂肪酸組成…………………………………..…………… 24
3.游離胺基酸……………………………..………………… 25
(二)飼料中添加不同油脂及蛋白質含量對海鱺化學組成之影響…………………………………..……………………… 25
1.海鱺之體重、體長、肥滿度及肝體比………………….. 25
2.一般成分…………………………………..……………… 25
3.脂肪酸組成……………………………………..………… 26
4.游離胺基酸及雙胜……………………….…………… 27
5.核酸及其相關化合物……………………..…………… 27
三、飼料中油脂來源對海鱺化學組成分之影響……………….…. 29
(一)飼料之化學組成分…………………………………..…… 29
1.一般成分…………………………………..……………… 29
2.脂肪酸………………………………………..…………… 29
3.游離胺基酸……………………………..………………… 29
(二)飼料對海鱺化學組成分之影響…………………………… 30
1.體重、體長、肥滿度及肝體比…………………………… 30
2.一般成分…………………………………..……………… 30
3.脂肪酸…………………………………..………………… 31
4.游離胺基酸…………….……………….………………… 32
四、飼料中添加牛油對海鱺不同部位脂肪及脂肪酸蓄積之影響… 33
(一)飼料化學成分…….…………………………………..…… 33
(二)體重、體長、肝體比及不同部位比例之變化…………… 33
(三)不同部位之脂肪蓄積之變化……………………………… 33
(四)不同部位脂肪酸組成之變化……………………………… 34
五、不同養殖場中飼料對海鱺化學組成分之影響………………… 36
(一)一般成分………………………………….………………… 36
(二)脂肪酸組成………………………………………………… 36
伍、結論…………………………………..……………………………. 38
陸、參考文獻…………………………………..……………………… 40
柒、表…………………………………..………………………………. 49
捌、圖…………………………………..……………………………… 80
LIST OF TABLES
Table 1. Appearance of commercial cobia feeds. ……………….. 49
Table 2. The proximate composition(%) of commercial feeds of cobia. 50
Table 3. Fatty acid composition (% of total fatty acids) of commercial feeds of cobia. ……………………………………………. 51
Table 4. The free amino acids and dipeptides (mg/100g) of commercial feeds of cobia. .…………………………………………… 53
Table 5. The pH value, ammonia and urea of commercial feeds of cobia. ……………………………………………………... 55
Table 6. The proximate composition (%) of experimental diets for two step cultured cobia. .…………………………………….. 56
Table 7. Fatty acid composition (% of total fatty acids) of experimental diets for two step cultured cobia………...………………….. 57
Table 8. The free amino acids (mg/100 g) of experimental diets for two step cultured cobia. ..……………………… 58
Table 9. Body weight, body length, condition factor and HSI of two step cultured cobia. .………………………………………. 59
Table 10. The proximate composition(%) of dorsal meat, ventral meat and liver of two step cultured cobia. .…………………….. 60
Table 11. Fatty acid composition (% of total fatty acids) of dorsal meat, ventral meat and liver of two step cultured cobia. … 61
Table 12. The free amino acids and dipeptides (mg/100 g) of dorsal meat, ventral meat and liver of two step cultured cobia. .… 62
Table 13. The ATP-related compounds (μmole/g of wet wt) of dorsal meat, ventral meat and liver of two step cultured cobia..…… 63
Table 14. The proximate composition(%) of experimental diets with different lipid sources. …………………………………… 64
Table 15. Fatty acid composition (% of total fatty acids) of experimental diets with different lipid sources...…………… 65
Table 16. The free amino acids (mg/100 g) of experimental diets with different lipid sources……………………………..………… 66
Table 17. Body weight, body length, condition factor and HSI of cobia fed diets with different lipid sources. .……………………. 67
Table 18. The proximate composition(%) of dorsal meat and ventral meat of cobia fed diets with different lipid sources. .…….. 68
Table 19. Fatty acid composition (% of total fatty acids) of dorsal meat of cobia fed diets with different lipid sources. .…………... 69
Table 20. Fatty acid composition (% of total fatty acids) of ventral meat of cobia fed diets with different lipid sources. .………….. 70
Table 21. The free amino acids and dipeptides(mg/100 g) of dorsal meat of cobia fed diets with different lipid sources. .…….. 71
Table 22.…The free amino acids and dipeptides (mg/100 g) of ventral meat of cobia fed diets with different lipid sources. .…..... 72
Table 23. Changes in body weight, body length, condition factor and HSI of cobia fed diets with beef tallow for 9 weeks. .…… 73
Table 24. Changes in fatty acid composition (% of total fatty acids) of dorsal meat, ventral meat and tail meat of cobia fed diets with beef tallow for 9 weeks. ..…………………………… 74
Table 25. Changes in fatty acid composition (% of total fatty acids) of liver, viscera and skin of cobia fed diets with beef tallow for 60 days. ..………………………………………………….. 75
Table 26. The proximate composition(%) of commercial feeds from different localities. ..…………………………………….. 76
Table 27. The proximate composition(%) of various tissues in cultured cobia from different localities. ..………………………….. 77
Table 28. Fatty acid composition (% of total fatty acids) of commercial feeds from different localities. ..………………………… 78
Table 29. Fatty acid composition (% of total fatty acids) of various tissues in cultured cobia from different localities. .………. 79
LIST OF FIGURES
Fig. 1. The fatty acid composition(% of total fatty acid) of experimental diets with beef tallow. .……………………………………….. 80
Fig. 2. Changes in the proportion (%) of various tissues of cobia fed with diets with beef tallow for 9 weeks. .…………………….. 81
Fig.3. Changes in crude fat content of various tissues of cobia fed with diets with beef tallow for 9 weeks. .………………………….. 82
Reference
Adron, J. W., Blair, A., Cowey, C. B., Shanks, A. M., 1976. Effects of dietary energy level and dietary energy source on growth, feed conversion and body composition of turbot (Scophthalmus maximus L.). Aquaculture 7:125~132.
Agradi, E., Bonomi, L., Rigamonti, E., Liguori, M. and Bronzi, P., 1995. The effect of dietary lipids on tissue lipids and ammonia excretion in European eels (Anguilla anguilla) Comp. Biochem. Physiol. 111A(3): 445~451.
Aksnes, A. and Mundheim, H., 1997. The impact of raw material freshness and processing temperature for fish meal on growth, feed efficiency and chemical composition of Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 149: 87~106.
Alava, V. R. and Kanazawa, A., 1996. Effect of dietary fatty acid on growth of milkfish Chanos chanos fry in brackish water. Aquaculture 144: 363~369.
Anderson, J. S., Higgs, D. A., Beames, R. M. and Rowshandeli, M., 1997. Fish meal quality assessment for Atlantic salmon (Salmo salar L.) reared in sea water. Aquaculture Nutri. 3: 25~38.
AOAC. 1995. Official Methods of Analysis, 16th edition, Association of Official Analytical Chemist, Arlington, VA.
Aoki, T., Takada, K. and Kunisaki, N., 1991. On the study of proximate composition, mineral, fatty acid, free amino acid, muscle hardness, and color difference of six species of wild and cultured fishes. Bull. Jap. Soc. Sci. Fish. 57: 1927~1934.
Arzel, J., Lopez, F. X., Metailler, R., Stephan, G., Viau, M., Gandemer, G. and Guillaume, J., 1994. Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) reared in seawater. Aquaculture 123:361~375.
Bautista, M. N., Valle, M. J. and Orejana, F. M., 1991. Lipid and fatty acid composition of brackishwater- and freshwater- reared milkfish (Chanos chanos Forskal). Aquaculture 96: 241~248.
Bewick, M. D., Wells, R. M. and Wong, R. J., 1997. Free amino acid and nucleotide concentrations in New Zealand abalone (Paua), Haliotis iris, fed casein-based, macroalgal, or wild diets. J. Aqua. Food Prod. Tech. 6:57~69.
Boldyrev, A., 1993. Does carosine possess direct antioxidant activity? Intl. J. Biochem. 25: 1101~1107.
Boonyaratpalin, M., 1997. Nutrient requirements of marine food fish cultured in Southeast Asia. Aquaculture 151:283~313.
Chiou, T. K., Shiau, C. Y. and Chai, T. J., 1990. Extractive nitrogenous components of cultured milkfish and tilapia. Nippon Suisan Gakkaishi 56: 1313~1317.
Chou, R. L., Su, M. S. and Chen, H. Y., 2001. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture 193: 81~89.
Castell, J. D., 1983. Fatty acid metabolism in crustaceans. In Pruder, G. D., Langdon, C. J. and Conklin, D. E., (Eds), Proceeding of the Second International Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutri. Baton Rouge, Louisiana, pp.124~145.
Catacutan, M. R. and Coloso, R. M., 1997. Growth of juvenile asian seabass, Lates Calcarifer, fed carbohydrate and lipid levels. Aquaculture 149:137~144.
Dalla, G. J., 1986. Salinity responses of the juvenile penaeid shrimp (Penaeus japinieus)-Ⅱ of free amino acid. Aquaculture 55: 307~316.
Date, K. and Yamamoto, Y., 1988. Seasonal variations with growth in nutritive components in meat of cultured yellowtail Seriola quinqueradiata. Nippon Suisan Gakkaishi 54: 1041~1047.
Deering, M. J., Fielder, D. R. and Hewitt, D. R., 1997. Growth and fatty acid composition of juvenile leader prawns, Penaeus monodon, fed different lipids. Aquaculture 151: 131~141.
Ditty, J. G. and Shaw, R. F., 1992. Larval development, distribution, and ecology of cobia Rachycentron canadum (Family:Rachycentridae) in the northern Gulf of Mexico. Fish. Bull. 90: 668~677.
Fair, P., Williams, W. P. and Smith, T. I. Jr., 1993. Effect of dietary menhaden oil on growth and muscle fatty acid composition of hybrid striped bass, Morone chrysops × M. saxatilis. Aquaculture 116: 171~189.
Folch, J., Lee, M. and stanley, C. H. S., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497~509.
Franks, J. S., Garber, N. M. and Warren, J. R., 1996. Stomach contents of juvenile cobia, Rachycentron canadum, from the northern Gulf of Mexico. Fish. Bull. 94: 374~380.
Franks, J. S., Warren, J. R. and Buchanan, M. V., 1999. Age and growth of cobia, Rachycentron canadum, from the Northeastern Gulf of Mexico. Fish. Bull. 97: 459~471.
Fuke, S., 1994. Taste-active components of seafood with special reference to umami substance. In “ Seafoods: Chemistry & Processing Technology and Quality ” , Shshidi, F. and Botta, J. R. Eds., p. 115~139. Blackie Academic & Professional, Glasgow, UK.
Fuke, S. and Konosu, S., 1991.Taste-active components in some food: A review of japanese research. Physiol. Behav. 49: 863~868.
Furuita, H., Konishi, K. and Takeuchi, T., 1999. Effect of different level of eicosapentaenoic acid and docosahexaenoic acid in Artemia nauplill on growth, survival and salinity tolerance of larvae of the Japanese flounder, Paralichthys olivaceus. Aquaculture 170: 59~69.
Guillou, A., Soucy, P., Khalil, M. and Adambounou, L., 1995. Effects of dietary vegetable and marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brook charr (Salvelinus fontinalis). Aquaculture 136:351~362.
Hata, M., Sato, Y., Tamaguchi, T., Ito, M. and Kuno, Y., 1988. The chemical and amino acid compounds in tissues of cultured and wild coho salmon Oncorhynchus kisutch. Nippon Suisan Gakkaishi 54: 1365~1370.
Hirano, T., Nakamura, H. and Suyama, M., 1980. Quality of wild and cultured ayu-II. Seasonal variation of proximate composition. Bull. Jpn. Soc. Sci. Fish. 46: 75~78.
Hummel, H., Bogaards, R., De-Wolf, L., Sinke, J. and Poortvliet, T., 1994. Evaluation of free amino acid as a biochemical indicator of metal pollution. Mar. Environ. Res. 38: 303~312.
Ibeas, C., Izquierdo, M. S. and Lorenzo, A., 1994. Effect of different levels of n-3 highly unsaturated fatty acids on growth and fatty acid composition of juvenile gilthead seabream (Sparus aurata). Aquaculture 127: 177~188.
Ikeda, S., 1980. Other organic components and inorganic components. In “ Advance in Fish Science and Technology ”, Connel, J. J. Ed., p. 111.
Inoue, K., Morioka, K., Shioya, I., Mitsuboshi, T., Itoh, Y., Obatake, A. and Sataka, M., 1998. Effects of deep seawater acclimation on components and texture of the muscle of red seabream. Fish. Sci. 64: 804~807.
Ioka, H. and Yamanaka, H., 1997. Quality evaluation of the muscle of cultured plaice fed with three different diets. Nippon Suisan Gakkaishi 63: 370~377.
Jackson, A. J., Capper, B. S. and Matty, A. J., 1982. Evalution of some plant proteins in complete diets for tilapia, Sarotherodon mossambicus. Aquaculture 27: 97~109.
Jahncke, M., Hale, M. B., Gooch, J. A. and Hopkins, J. S., 1988. Comparison of pondraised and wild read drum (Sciaenops ocellatus) with respect to proximate composition, fatty acid profiles and sensory sensory evaluations. J. Food Sci. 53:286~287.
Jantrarotai, W., Sitasit, P. and Rajchapakdee, S., 1994. The optimum carbohydrate to lipid ratio in hybrid Clarias Catfish (Clarias macrocephalus × C. gariepinus) diets containing raw broken rice. Aquaculture 127:61~68.
Jones, N. R., 1967. Fish flavor. In “ The Chemistry and Physiology of Flavor ”, Schultz, H. V., Day, E. A. and Libbey, L. M. Eds., p. 267. AVI Pulishing Co., Westport. CT.
Kisssil, G. W., Youngson, A., Cowey, C. B., 1987. Capacity of the European eel (Anguilla anguilla) to elongate and desaturate dietary linoleic acid. J. Nutr. 117:1379~1384.
Konosu, S., Watanabe, K. and Shimizu, T., 1974. Distribution of nitrogenous constituents in the muscle extracts of eight species of fish. Bull. Jap. Soc. Sci. Fish. 40: 909~915.
Konosu, S. and Yamaguchi, K., 1982. The flavor components in fish and shellfish. In "Chemistry & Biochemistry of Marine Food Products" (Eds. Martin, R. E. et al.), p. 367~404. The AVI Publishing Co., Inc., Westport, CT.
Kora, H., Fujio, M., Osato, S., Doi, T., Misima, T., Tachibana, K. and Tsuchimoto, M., 1990. Relationship between thickness coefficient and body fat on cultured red sea bream. Bull. Jap. Soc. Sci. Fish. 56:1279~1284.
Lochmann, R. T. and Gatlin, D. M., 1993. Essential fatty acid requirement of juvenile red drum (Sciaenops ocellatus). Fish Physiol. Biochem. 12(3): 221~235.
Love, R. M. 1970. The Chemical Biology of Fishes. p.222~257. Academic Press, London.
Lynch, M. P. and Wood, L., 1966. Effects of environmental salinity on free amino acids of Crassostrea virginica. Comp. Biochem. Physiol. 19: 783~790.
Morika, M., Moriki, T., Itoh, Y. and Obatake, A., 1998. Comparison of chemical components in the muscle of red seabream fed different diets. Nippon Suisan Gakkaishi 64: 867~877.
Morishita, T., Uno, K., Imura, N. and Takahashi, T., 1987. Variation with growth in the proximate compositions of cultured red sea bream. Nippon Suisan Gakkaishi 53: 1601~1607.
Murata, Y., Henmi, H. and Nishioka, F., 1994. Extractive components in the skeletal muscle from ten different species of scombroid fishes. Fish. Sci. 60: 473~478.
Obatake, A., Tsumiyama, S. and Yamamoto, Y., 1985. Extractive nitrogenous constituents from the dark muscle of fish. Bull. Jap. Soc. Sci. Fish. 51: 1461~1468.
Opstvedt, J., Miller, R., Hardy, R. W. and Spinelli, J., 1984. Heat-induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri). J. Agric. Food Chem. 32: 929~935.
Opstvedt, J., Mundheim, H., Nygard, E., Aase, H. and Pike, I. M., 2000. Reduced growth and feed consumption of Atlantic salmon (Salmo salar L.) fed fish meal made from stale fish is not due to increased content of biogenic amines. Aquaculture 188: 323~337.
Osato, S., Miyata, K., Matsuo, S., Itou, T., Kora, H., Misima, T., Tachibana, K. and Tsuchimoto, M., 1991. Change of fat in various parts of fish body accompanying growth in cultured red sea bream. Nippon Suisan Gakkaishi 57: 905~913.
Park, C. K., Matsui, T., Watanabe, K., Yamaguchui, K. and Konosu, S., 1990. Seasonal variation of extractive nitrogen constituents in ascidian Halocynthia roretzi tissues. Nippon Suisan Gakkaishi 55: 823.
Park, S. R., 1995. Study on the seasonal changes of proximate composition of striped jack, Caranx delicatissimus. Bull. Natl. Fish. Res. Dev. Agency 50: 157~177.
Regost, C., Arzel, J., Cardinal, M., Robin, J., Laroche, M. and Kaushik, S. J., 2001. Dietary lipid level, Hepatic lipogenesis and flesh quality in turbot (Psetta mazima). Aquaculture 193:291~309.
Saeki, K. and Kumagai, H., 1982. The variations with growth in nutritive components and several nutritive elements for wild and cultured puffers. Bull. Jpn. Soc. Sci. Fish. 48: 967~970.
Saito, K. and Kunisaki, N., 1998. Proximate composition, fatty acid composition, free amino acid contents, mineral contents, and hardness of muscle from wild and cultured puffer fish Takifugu rubripes. Nippon Suisan Gakkaishi 64:116~120.
Sanz, A., Suarez, M. D., Hidalgo, M. C., Garcia Gallego, M. and De La Higuera, M., 1993. Feeding of the European eel Anguilla anguilla. III. Influence of the relative proportions of the energy yielding nutrients. Comp. Biochem. Physiol. 105A: 177~182.
Satoh, S., Poe, W. E. and Wilson, R. P., 1989. Studies on the essential fatty acid requirement of channel catfish, Ictalurus punctatus. Aquaculture 79: 121~128.
Scholz, N., 1987. Significance of the taurine-glycine ratio as an indicator of stress. Bull. Environ. Contam. Toxicol. 38: 15~21.
Shaff, R. V. and Nakamura, E. L., 1989. Synopsis of biological data on the cobia Rachycentron canadum (Pisces:Rachycentridae). NOAA Tech. Rep. NMFS 82, FAO Fisheries Synopsis 153.
Shiau, S. Y., Chung, J. L. and Sun, C. L., 1987. Inclusion of soybean meal in tilapia (Oreochromis niloticus ×O. aureus) diets at two protein levels. Aquaculture 65: 251~261.
Shiau, C. Y., Pong, Y. J., Chiou, T. K. and Chai, T. J., 1996. Free amino acids and nucleotide-related compounds in milkfish (Chanos chanos) muscles and viscera. J. Agric. Food Chem. 44: 2650~2653.
Shiau, C. Y., Pong, Y. J., Chiou, T. K. and Chai, T. J., 1997. Effect of growth on the levels of free histidine and amino acids in the muscle of milkfish (Chanos chanos). J. Agric. Food Chem. 45: 2103~2106.
Shimeno, S., Kheyali, D. and Takeda, M., 1990. Metabolic adaptation to prolonged starvation in carp. Nippon Suisan Gakkaishi 56: 35~41.
Shimeno, S., Ming, D. C. and Takeda, M., 1993. Metabolic response to dietary carbohydrate to lipid rations in Oreachromis niloticus. Nippon Suisan Gakkaishi 59:827~833.
Shirai, T., Fuke, S., Yamaguchi, K. and Konosu, S., 1988. Nucleotides, quaternary ammonium bases, and related compounds in the raw and heated muscles of salmon. Nippon Suisan Gakkaishi 54: 1199~1207.
Shirai, T., Hirakawa, Y., Koshikawa, Y., Toraishi, H., Terayama, M., Suauki, T. and Hirano, T., 1996. Taste components of Japanese spiny and shovel-nosed lobsters. Fish. Sci. 62: 283~287.
Stansby, M. E., 1989. Introduction. In: Fish Oil in Nutrition. Stansby, M. E. (Ed.). pp.1~5. Van Nostrand Reinhold, N. Y.
Suyama, M., Hirano, T., Okada, N. and Shibuya, T., 1977. Quality of wild and cultured ayu-I. On the proximate composition, free amino acids and related compounds. Bull. Jap. Soc. Sci. Fish. 43: 535~540.
Suyama, M. and Shimizu, T., 1982. Buffering capacity and taste of carnosine and its methylated compounds. Bull. Jpn. Soc. Sci. Fish. 48: 89~95.
Suyama, M. and Yoshizawa, Y., 1973. Free amino acid composition of the skeletal muscle of migratory fish. Bull. Jap. Soc. Sci. Fish. 39: 1339~1341.
Suzuki, T., Hirano, T. and Shirai, T., 1990. Distribution of extractive nitrogenous constituents in white and dark muscle of fresh-water fish. Comp. Biochem. Physiol. 96: 107~111.
Suzuki, T., Hirano, T. and Suyama, M., 1987. Free imidazole compounds in white and dark muscles of migratory marine fish. Comp. Biochem. Physiol. 87B: 615~619.
Takeuchi, T., Arai, S., Watanabe, T. and Shimma, Y., 1980. Requirement of eel Anguilla japonica for essential fatty acids. Bull. Jap. Soc. Sci. Fish. 46(3): 345~353.
Takeuchi, T., Satoh, S. and Watanabe, T., 1983. Requirement of Tilapia nilotica for essential fatty acids. Bull. Jap. Soc. Sci. Fish. 49(7): 1127~1134.
Takeuchi, T., Watanabe, K.and Yong, W. Y., 1991. Essential fatty acid of grass carp Ctenopharyngodon idella. Nippon Suisan Gakkashi 57(3): 467~473.
Watanabe, K., Maezawa, H., Nakamura, H. and Konosu, S., 1983. Seasonal variation of extractive nitrogen and free amino acid in the muscle of the ascidian Halocynthia roretzi. Bull. Jap. Soc. Sci. Fish. 49: 1755~1758.
Watanabe, K., Uehara, H., Sato, M. and Konosu, S., 1985. Seasonal variation of extractive nitrogen constituents in the muscle of the ascidian Halocynthia roretzi. Bull. Jap. Soc. Sci. Fish. 51: 1293~1298.
Watanabe, T., Kobayshi, I., Utsie, O. and Ogino, C., 1974. Effect of dietary linolenate on fatty acid composition of lipids in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 40:387~392.
Webster, C. D., Tidwell, J. H., Goodgame, L. S., Yancey, D. H. and Mackey, L., 1992. Use soybean meal and distillers grains with solubles as partial or total replacement of fish meal in diets for channel catfish, Ictalurus punctatus. Aquaculture 106: 301~309.
Williams, C. D. and Robinson, E. H., 1988. Response of red drum to various dietary levels of mehaden oil. Aquaculture 70:107~120.
Wilson, R., 1989. Amino acids and proteins. In:Halver, J. E. (Ed.), Fish Nutrition. Acadeic Press, San Diego, CA, pp. 112~153.
Yokoyama, Y., Sakaguchi, M., Kawai, F. and Kanamori, M., 1994. Chemical indices for assessing freshness of shellfish during storage. J. Food Sci. 60: 329~333.
Yone, Y. M., Furuchi, M., Sakamoto, S., 1971. Optimal ration of protein to lipid in diets of rainbow trout. Bull. Jpn. Soc. Sci. Fish. 44:683~688.
Yu, T. C. and Sinnhuber, R. O., 1976. Growth response of rainbow trout (Salmo gairdneri) to dietary ω-3 and ω-6 fatty acids. Aquaculture 8:309~317.
中島宣郎、市川恒平、鐮田政喜、藤田榮一郎,1961。5’-食品化學研究(第2報),食品中5’-(2)魚貝肉魚肉中5’-。農化,35: 803-808。
朱承天,1999。促銷箱網養殖新貴海鱺美食饗宴登場。漁業推廣月刊,153:34~35。
朱承天,2001。台北魚市示範推廣海鱺壽司現場製作。漁業推廣月刊,176:21~22。
李玉蘭,2000。箱網養殖海鱺之化學組成特性及其季節與貯存變化。國立臺灣海洋大學食品科學系碩士論文,基隆。
李秀女,1999。海上箱網養殖「海鱺」美食隆重登場全省各大餐廳聯合促銷。漁業推廣月刊,154:30~31。
李家璞,1996。鹽鯖品質風味改善之研究,國立臺灣海洋大學水產食品科學系碩士學位論文。
余光雄,2001。全吃海鱺魚。養魚世界,1:168~169。
沈世傑,1993。臺灣魚類誌,國立台灣大學動物學系。
行政院漁業署,2000。中華民國台灣地區漁業統計年報,行政院漁業署,台北。
林雅真,1996。飼料中不同油脂來源及n-3或n-6多不飽和脂肪酸的含量對幼蟳成長與活存之影響。國立臺灣海洋大學水產養殖系碩士論文,基隆。
林瑞堂,2000。影響海鱺化學組成分因素之探討。國立臺灣海洋大學食品科學系碩士論文,基隆。
邱思魁、游昭玲、蕭泉源,1995。虱目魚貯藏中鮮度及呈味成分之變化。食品科學,22: 46-58。
邱思魁、蕭泉源、藍惠玲,1997。養殖台灣蜆化學成份之季節變化,食品科學,24:469-478。
吳世吉,1998。歐洲鰻對三種飼料原料之消化率暨歐洲鰻飼料以熟化黃豆粉取代魚粉之研究,國立台灣海洋大學水產養殖學系碩士學位論文。
吳清熊、邱思魁 (譯著),1996,水產食品學,p. 1-428,國立編譯館。
邵廣昭,1996。台灣常見魚介貝類圖說(下),台灣省漁業局。
胡興華,1999。台灣箱網養殖發展現況與展望。漁業推廣工作專刊,1~8。
翁平勝,2000。台灣海鱺箱網養殖現況與問題。中國水產,9:3~20。
莊健隆、林崇興、洪平、許福來,1992。魚類營養及飼料學概要。華香園出版社。
張賜玲、謝介士、周瑞良、蘇茂森,1999。海鱺繁養殖技術簡介。養魚世界,9:14~26。
須山三千三、源巢章二,1987。水產食品學,恆星社厚生閣,東京,日本。
鄭莉莉,2001。中華生技室內循環水海鱺飼養研究報告。養魚世界,1:75~82。
龐玉珍,1995。影響虱目魚游離組胺酸及其他含氮抽出物含量因素之探討,國立臺灣海洋大學水產食品科學系碩士論文。
蕭泉源,1997。海宴精緻牡蠣產品品質簡易指標之建立,台灣省漁業局八十六年度研究計畫成果報告。
蕭新泉,2000。飼料中不同油脂含量與來源及卵磷脂對石斑魚稚魚成長與活存之影響。國立臺灣海洋大學水產養殖學系碩士學位論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top