跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周孟儒
研究生(外文):Meng Ju, Chou
論文名稱:鸚哥魚初期型成魚之食性與消化機制
論文名稱(外文):Studies on the feeding habit and digestive mechanism of parrotfish (Scarus ghobban)
指導教授:孫寶年孫寶年引用關係陳麗淑陳麗淑引用關係
指導教授(外文):Bonnie Sun, PanL. S. Chen
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:79
中文關鍵詞:鸚哥魚消化酵素食性消化機制
外文關鍵詞:parrotfishdigestive enzymefeeding habitdigestive mechanism
相關次數:
  • 被引用被引用:2
  • 點閱點閱:677
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:1
鸚哥魚是珊瑚礁裡優勢的魚類,俗稱青衣,為高價的活海鮮,因而飽受過漁壓力而銳減,進而造成珊瑚表面所附著的藻類無法被鸚哥魚刮食去除,加速了珊瑚衰敗。近年來台灣雖有珊瑚礁的體檢及鸚哥魚的生態研究,但其食性與消化機制則尚有待探討。
藍點鸚哥魚初期型成魚消化道中至少有三種蛋白,其最適pH 3.0、7.0、9.0,最適作用溫度為55 °C,以合成基質鑑定發現有內切trypsin-like、chymotrypsin-like及外切carboxypeptidase B活性。醣中amylase有中性(pH 7.0)及鹼性(pH 9.0)兩種,最適反應溫度為50 ~ 55 °C﹔exo-1,4-b-glucanase與laminarinase則皆於pH 5.0、8.0有活性峰,laminarinase於pH 3.0亦有活性峰,其最適作用溫度為50 °C。
藍點鸚哥魚初期型成魚咽喉囊袋與食道(I)之消化活性顯著低於腸道中,腸組織中由小腸囊(II)至後腸(V)部位有蛋白及laminarinase活性,消化蛋白質及藻類中b-1,3-polysaccaride結構性多醣類﹔於前腸(III)、中腸(IV)部位則有exo-1,4-b-glucanase泌出破壞藻類細胞壁上的 b-1,4-polysaccaride結構,使紅藻細胞膜類囊體中的水溶性藻膽蛋白色素釋出,經蛋白作用釋出藻紅色素,於後腸(V)吸收呈色,amylase活性亦在後腸(V)部位達到最高,組織中之絨毛細胞亦較中腸(IV)大,邊緣皺摺較多,顯示其吸收表面積較大,故為主要消化藻類貯藏性多醣類之腸段。
藍點鸚哥魚初期型成魚之醣∕蛋白之活性比值為27.55,腸道長(RGL)為1.40,介於肉食性與雜食性之間,顯示鸚哥魚初期型成魚為雜食性。
Parrotfish (Scaridae) is a dominant fish species living in coral reefs. It is considered a high priced food fish transported and sold live. Due to the market demand and overfishing, parrotfish have been endangered in nature. Thus created stress to the coral reef by overgrowth of algae on coral, otherwise are cleaned up and consumed by parrotfish. Although, the health of coral reef has gone through annual checkup in Taiwan, and the ecology of parrotfish has also been investigated in recent years, the feeding habit and the digestive mechanism of parrotfish has not been much studied. It is the objective of this study to understand how the food intake is digested, and whether the parrotfish is herbivore.
Three proteases were found in the crude extract of digestive tract in Scaridae at initial phase. The optimal pH was found at 3.0, 7.0, and 9.0, the optimal temperature was 55 °C. Trypsin-like, chymotrypsin-like and carboxypeptidase B were identified in gut using synthetic substrates. Maximal amylase activity was found at pH 7.0 and 9.0, and the optimal temperature was 50 ~ 55 °C using soluble starch as substrate. Both exo-1,4-b-glucanase and laminarinase showed maximal activity at 50 °C, and two activity peaks at pH 5.0 and 8.0. Laminarinase had an additional activity peak at pH 3.0.
The digestive enzyme activity was lower in pharyngeal mill pouch and oesophagus (I) than in intestine of Scaridae. Protease and laminarinase were active between intestine bulb (II), and posterior intestine (V) where protein and structural b-1,3-polysaccaridaes of algae are digested. High levels of exo-1,4-b-glucanase activity occurred on the anterior intestine (III) and mid-intestine (IV), where gross breakage of structural b-1,4-polysaccaridaes of the cell walls took place. The thylakoid membrane of Rhodophyta were digested and the hydrophilic phycobiliprotein released. Proteolytic activities hydrolyzed the protein moiety and resulted in free phycoerythrobilin which was absorbed in the posterior intestine (V), where the tissues appeared red. Amylase activity was the highest in the posterior intestine (V). Histochemical observation showed that the villi of this gut segment V appeared in larger size and more finger-like papillae than mid-intestine (IV) and provided larger absorption surface. Posterior intestine (V) seemed to be the main digestion and absorption site for algal storage polysaccharides.
Parrotfish had a ratio of amylase to protease activity of 27.55 and relative gut length 1.40. The two indices were in the range between omnivorous and carnivorous suggesting that Scaridae is omnivorous.
摘要 1
一、前言 4
二、文獻整理 6
(一)鸚哥魚生理生態簡介 6
1. 種類 6
2. 鸚哥魚消化生理特徵 7
· 口腔 8
· 食道 8
· 腸道 9
3. 攝食行為及食性 11
· 攝食行為 11
· 食性分析 11
(二)消化活性變化 12
1. 種類……. 12
2. 魚類之消化 13
3. 影響消化酵素之因子 15
· 成長 15
· 食性 16
· 攝餌 17
· 餌料組成 18
三、材料方法 20
(一)鸚哥魚 20
(二)粗酵素液之製備 20
(三)消化活性分析 21
1. 基質配製 21
2. 緩衝溶液配製 21
3. 蛋白活性測定 22
3-1. 作用時間及最適溫度 22
3-2. 最適作用pH 22
4. 醣活性測定 22
4-1. 作用時間及最適溫度 22
4-2. 最適作用pH 23
5. 粗酵素液蛋白質定量 23
6. 以合成基質測定蛋白活性 24
6-1. 腸粗酵素液 24
6-2. 胰蛋白(trypsin) 24
6-3. 胰凝乳蛋白(chymotrypsin) 25
6-4.基B(carboxypeptidase B) 25
(三)肝臟脂質分析 25
1. 油脂含量測定 25
2. 脂肪酸分析 26
(四)組織切片 26
(五)第V段腸組織及內容物中色素之萃取與鑑定 27
(六)統計分析 27
四、結果與討論 28
(一)鸚哥魚之消化生理指標 28
(二)消化道之形態特徵 34
(三)消化道蛋白之種類及分佈 37
1. 基質親和力 37
2. 消化道中蛋白之分佈 39
· 咽喉囊袋 39
· 食道 39
· 腸道組織 40
· 消化道內容物 40
3. 腸道中蛋白特性 42
4. 腸蛋白之種類 42
· 內切蛋白(endopeptidases) 42
· 外切蛋白(exopeptidase) 43
(四)消化道中醣種類及分佈 49
1. 基質親和力 49
2. 消化道中醣分佈 50
· 咽喉囊袋 50
· 腸道組織 50
3. 腸道中醣特性 55
· 澱粉(amylase) 55
· 纖維素(cellulase) 55
· 海藻多醣(laminarinase) 56
(五)第V段腸道粉紅色物質之鑑定 62
(六)食性評估 65
(七)消化道pH與腸道形態 68
五、結論 - 鸚哥魚成魚的消化機制 72
六、參考文獻 74
六、參考文獻
邱謝聰、孫寶年。2001。 糰狀及粒狀浮性飼料對鰻魚消化吸收與成長之影響。台灣農業化學與食品科學,39:165-172。
朱祥海。1997。消化系統。魚類學。水產出版社。基隆。pp. 81-95。
紀明侯。1997。藻類脂肪酸。海藻化學。科學出版社。北京。中國。pp. 508-571。
紀明侯。1997。藻類色素。海藻化學。科學出版社。北京。中國。pp. 458-507。
施瑔芳。1994。消化和吸收。魚類生理學。水產出版社。基隆。pp. 105-158.
沈世傑。1993。緒論。台灣魚類誌。國立台灣大學動物學系。台北。pp. 1-7.
邵廣昭、陳立文。1993。鸚哥魚科。台灣魚類誌。國立台灣大學動物學系。台北。pp. 470-478.
陳翠瑤。1993。烏魚消化道蛋白的分佈與特性及對飼料蛋白質的體外消化率。國立海洋大學食品科學所碩士論文。基隆。
陳秋敏。1991。維生素E對養殖鯔魚(Mugil cephalus L.)脂肪酸組成及生殖腺變化之影響。國立海洋大學食品科學所碩士論文。基隆。
藍群傑、孫寶年。1991。基質對草蝦中腸腺蛋白活性之影響。中國農化學會誌,29:33-42。
郭欽明。1988。以生理觀點探討魚類的營養需求。水產飼料研討會專輯。Pp. 25-45。
小川和朗。1964。觀察法。組織培養─基礎之應用。中井準之助、岡本道雄編。朝倉書店。東京。日本。Pp. 144 — 204。
A.O.A.C. 1995. Official methods of analysis, 16th Eds., Association of Official Analytical Chemists. Washington, DC, USA.
Aranishi, F., H. Ogata, K. Hara, K. Osatomi and T. Ishihara. 1997. Purification and characterization of cathepsin L from hepatopancreas of carp Cyprinus carpio. Comp. Biochem. Physiol. 118B:531-537.
Bautista, M.N., M.J. Valle and F.M. Orejana. 1991. Lipid and fatty acid composition of brackishwater- and freshwater- reared milkfish (Chanos Forskal). Aquaculture. 96:241-248.
Bellwood, D.R. 1988. Ontogenetic changes in the diet of early post-settlement Scarus species (Pisces: Scaridae). J. Fish Biol. 33:213-219.
Bellwood, D.R. 1995. Carbonate transport and within-reef pattern of bioerosion and sediment release by parrotfishes (family: Scaridae) on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 117:127-136.
Bellwood, D.R. and J.H. Choat. 1990. A functional analysis of grazing in parrotfishes (family: Scaridae): the ecological implications. Environ. Biol. Fishes. 28:189-214.
Bernfeld, P. 1955. Amylase, a and b. In “Methods in Enzymology I”. S.P. Colowick and N.O. Kaplan (Eds.), Academic Press, New York. Pp. 149-158.
Bruggemann, J.H., M.J.H. van Oppen and A.M. Breeman. 1994a. Foraging by the stoplight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar. Ecol. Prog. Ser. 106:41-55.
Bruggemann, J.H., J. Begeman, E.M. Bosma, P. Verburg and A.M. Breeman. 1994b. Foraging by the stoplight parrotfish Sparisoma viride. II. Intake and assimilation of food, protein and energy. Mar. Ecol. Prog. Ser. 106:57-71.
Buchholz, K., P. Rapp and F. Zadrazil. 1981. Cellulase. In “Methods of enzymatic analysis”. Bergmeyer, H.U. (Ed.) Verlag Chemie. Veinheim. Florida, USA. pp. 178-188.
Chen, L., M. Sadek, B.A. Stone, R.T.C. Brownlee and G. Fincher, 1995. Stereochemical course of glucan hydrolysis by barley (1®3) - and (1®3, 1®4) - b-glucanases. Biochimica et Biophysica Acta. 1253:112-116.
Chen, L.S. 2002. Post-settlement diet shift of Chlorurus sordidus and Scarus schlegeli (Pisces: Scaridae). Zoological Studies. 41:47-58.
Chiu, S.T. and B.S. Pan. 2002. Digestive protease activities of juvenile and adult eel (Anguilla japonica) fed with floating feed. Aquaculture. 205: 141-156.
Choat, J.H. and J.E. Randall. 1986. A review of the parrotfishes (Family Scaridae) of the great barrier reef of Australia with description of a new species. Records of The Australian Museum. 38:175-228.
Choat, J.H. and K.D. Clements. 1993. Daily feeding rates in herbivorous labroid fishes. Mar. Biol. 117:205-211.
Choat, J.H. and K.D. Clements. 1998. Vertabrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29:375-403.
Choat, J.H., K.D. Clements and W.D. Robbins. 2001. The trophic status of herbivorous fishes on coral reefs I: Diet analyses. Mar. Eco. Prog. Ser. (In press)
Clements, K.D., V.P. Gleeson and M. Slaytor. 1994. Short-chain fatty acid metabolism in temperate marine herbivorous fish. J. Comp. Physiol. B. 164:372-377.
Clements, K.D. and J.H. Choat. 1995. Fermentation in tropical marine herbivorous fish. Physiol. Zool. 68:355-378.
Crossman, D.J., K.D. Clements and G.J.S. Cooper. 2000. Determination of protein for studies of marine herbivory: a comparison of methods. J. Exp. Mar. Biol. Ecol. 244:45-65.
Crossman D.J., K.D. Clements and J.H. Choat. 2002. Nutritional ecology of nominal herbivorous fishes on coral reefs. Unpulished.
Das, K.M. and S.D. Tripathi. 1991. Studies on the digestive enzymes of grass caro, Ctenopharyngodon idella (Val.). Aquaculture. 92:21-32.
Fal’ge, R. and L. Shpannkhof. 1976. Amylase, esterase and protease activity in the gut contents of the rainbow trout Salmo gairdneri after feeding. J. Ichthyol. 16:672-677.
Farkas, T. and R. Roy. 1989. Temperature mediated restructuring of phosphatidylethanolamines in livers of freshwater fishes. Comp. Biochem. Physiol. 93B:217-222.
Folch, J., M. Lee and G.H. Stanlay. 1957. A simple method for the isolation and purification of total lipid from animal tissue. J. Biol. Chem. 226:497-509.
Folk, J.E., K.A. Pize, W.R. Carrol and J.A. Glander. 1960. Carboxypeptidase B IV. Purification and characterization of the procine enzyme. J. Biol. Chem. 235:2435-2459.
Foster, G.G., A.N. Hodgson and C.S. Boyd. 1999. Polysaccharolytic activity of the digestive enzymes of the macroalgal herbivore, Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae). Comp. Biochem. Physiol. B. 122:47-52.
Gantt E. 1990. Pigmentation and photoacclimation. In “Biology of the red algae”. Cole, K.M. and R.G. Sheath (Eds.). Cambridge University Press. New York, USA. pp. 203-220.
Gohar, H.A.F. and A.F.A. Latif. 1959. Morphological studies on the gut of some scarid and labrid fishes. Publ. Mar. Biol. Stn. Ghardaqa. 1:145-189.
Hidalgo, M.C., E. Urea and A. Sanz. 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170:267-283.
Horn, M.H. 1989. Biology of marine herbivorous fishes. Oceanogr. Mar. Biol. Annu. Rev. 27:167-272.
Hsu, Ya-Li and Jen-Leih Wu. 1979. The relationship between feeding habits and digestive proteases of some freshwater fishes. Bull. Inst. Zool. Academia Sinica 18:45-53.
Hughes, T.P. 1994. Catastrophes, phase-shift and large-scale degradation of a Carribbean coral reef. Science. 265:1547-1551.
James, A.G, T. Probyn and L. Seiderer. 1989. Nitrogen excretion and absorption efficiencies of the Cape anchovy Engraulis capensis Gilchrist fed upon a variety of plankton diets. J. Exp. Mar. Biol. Ecol. 131:101-124.
Kuz’mina, V.V. and A.N. Nevalennyy. 1983. Effect of hydrogen ion concentration on the activity of some carbohydrases in the fish digestive tract. J. Ichthyol. 23:114-123.
Kuz’mina, V.V. 1995. Protective function of the digestive tract of fishes. J. Ichthyol. 35:28-39.
Kuz’mina, V.V. 1996. Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture, 148:25-37.
Lan C.C. and B.S. Pan. 1993. In-vitro digestibility simulating the proteolysis of feed protein in the midgut gland of grass shrimp (Penaeus monodon). Aquaculture. 109:59-70.
Lindsay, G.J.H. and J.E. Harris. 1980. Carboxymethylcellulase activity in the digestive tracts of fish. J. Fish Biol. 16:219-233.
Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193:265-280.
Luczkovich, J.J. and E.J. Stellwag. 1993. Isolation of cellolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: size-related changes in diet and microbial abundance. Marine Biology. 116:381-388.
Mourente, G. and J.M. Odriozola, 1990. Effect of broodstock diets on lipids classes and their fatty acid composition in eggs gilthead sea bream (Sparus aurata L.). Fish Physiol. Biochem. 8:93-101.
Nordgarden, U., G.-I. Hemre and T. Hansen. 2002. Growth and body composition of Atlantic salmon (Salmo salar L.) parr and smolt fed diets varying in protein and lipid contenys. Aquaculture. 207:65-78.
Opstvedt, J., R. Miller, R.W. Hardy and J. Spinelli. 1984. Heat induced chandes in sulfhydryl group and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout. J. Agric. Food Chem. 32:929-935.
Polunin, N.V.C. and D.W. Klumpp. 1992. Algal food supply and grazer demand in a very productive coral-reef zone. J. Exp. Mar. Biol. Ecol. 164:1-15.
Randall, J.E., G.R. Allen and R.C. Steene. 1990. Parrotfishes (family: Scaridae). In “Fishes of The Great Barrier Reef and Coral Sea”. Randall, J.E., G.R. Allen and R.C. Steene. (Eds.) Toppan. Singapore. Pp. 342-355.
Rick, W. 1965. Trypsin and chymotrypsin. In “Method of Enzymatic Analysis”. H.U. Bergmeyer (Eds.) Verlag Chemie. Veinheim. New York and London. Pp. 800-815.
Schwert, G.M. and Y. Takenada, 1955. A spectrophotometric determination of trypsin and chymotrypsin. Biochem. Biophys. Acta. 16:570-575.
Shao, K.T. and L.W. Chen. 1989. Fishes of the family Scaridae from Taiwan. Bull. Inst. Zool. Academia Sinica. 28:15-39.
Simpson, B.K. 2000. Digestive proteinases from marine animals. In “Seafood Enzymes”. N.F. Haard and B.K. Simpson (Eds.) Marcel Dekker, Inc. New York. Pp. 191-213.
Smith, L.S. 1989. Digestive functions in teleost fishes. In “Fish Nutrition”. J.E. Halver (Ed.) Academic Press, Inc. California. Pp. 332-411.
Smith, R.L. and A.C. Paulson. 1974. Food transit time and gut pH in two pacific parrotfishes. Copeia. 3:796-799.
Smith, R.L. and A.C. Paulson. 1975. Carbonic anhydrase in some coral reef fishes: adaptation to carbonate ingestion? Comp. Biochem. Physiol. 50:131-134.
Squires, E.J., N.F. Haard and L.A.W. Feltham. 1986. Gastic protease of greenland cod Gadus ogac. Structural properties. Biochem. Cell Biol. 64:215-222.
Sturmbauer, C. 1991. Different enzymes for laminarine digestion in Chondrostoma nasus (Cyprinidae) and Oreochromis sp. (Cichlidae). Comp. Biochem. Physiol. 100A:199-202,
Takii, K., S. Shimeno and M. Takeda. 1985. Changes in digestive enzyme activities in eel after feeding. Bull. Japan. Soc. Sci. Fish. 51:2027-2031.
Takii, K., S. Shimeno, M. Takeda and S. Kanejawa. 1986. The effect of feeding stimulants in diet on digestive enzyme activities of eel. Bull. Japan. Soc. Sci. Fish., 52:1449-1454.
Uys, W., T. Hecht and M. Walters. 1987. Changes in digestive enzyme activities of Clarias gariepinus (Pisces:Clariidae) after feeding. Aquaculture, 63:243-250.
Walter, H.E. 1984. Proteinases: methods with hemoglobin, casein and azocoll as substrate. In “Methods of Enzymatic Analysis”. H.U. Bergmeyer (Ed.) Verlag Chemie. Veinheim. New York and London. pp. 270-275.
Watanabe, T. 1982. Lipid nutrition in fish. Comp. Biochem. Physiol. 73(B):3-15.
Xue, X.M., A.J. Anderson, N.A. Richardson, A.J. Anderson, G.P. Xue, and P.B. Mather. 1999. Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture. 180:373-386.
Zemke-White, W.L. and, K.D Clements. 1999. Chlorophyte and rhodophyte starches as factors in diet choice by marine herbivorous fish. J. Exp. Mar. Biol. Ecol. 240:137-149.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊