跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 19:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃議輝
研究生(外文):Yi-Hui Hwang
論文名稱:鰻魚廢棄物黏液之生化特性及其食用安全性之研究
論文名稱(外文):Studies on Biochemical Characteristics and Food Safety of Eel Mucus
指導教授:黃登福黃登福引用關係
指導教授(外文):Deng-Fwu Hwang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:鰻魚黏液生物活性食用安全性生化
外文關鍵詞:eelmucusbiological activitiesfood safetybiochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1803
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:1
中 文 摘 要
魚體表皮黏液細胞所分泌的黏液,其功用被認為是在魚類游泳時可減少水之阻力,同時具有防禦掠食者、微生物和寄生蟲的侵入及攻擊。由前人對黏液成分所做的研究指出,黏液中含有醣蛋白或蛋白質的生理活性物質存在。台灣的鰻魚養殖以日本鰻(Anguilla japonica)為主,其在食品加工上,鰻魚算是一種具高經濟價值的魚類。唯加工時所產生之黏液,仍被視為降低生產製成率的廢棄物。
本研究首先瞭解鰻魚黏液之一般組成與其所具有的生理活性特性,由研究中指出其一般組成90%以上為水分及蛋白質。此外,以緩衝溶液抽取黏液中的蛋白質,作生理活性分析,發現其中具有溶血物質、毒性物質及lipase、alkaline phosphatase(ALP)和aspartate transferase(AST)等酵素活性物質存在。其中溶血活性物質,會隨時間及溫度有活性上的變化。在電泳圖中,也顯示其中主要具有92、48、32、21 Kda與其他多種蛋白質的存在。而在抗菌分析中,並無發現對腸炎弧菌、大腸桿菌、金黃色葡萄球菌有明顯抗菌的效果。其次以酵素水解蛋白質,測知其水解液中游離胺基酸組成主要為threonine、leucine、isoleucine、serine和glycine等。
為探討新鮮鰻魚黏液及其生理食鹽水抽出液之動物食用安全性。分別以灌食方式,灌食老鼠四週,測其體重變化、肝腎體比及血液生化指標,來瞭解新鮮鰻魚黏液及其生理食鹽水抽出液對大白鼠產生的影響。結果顯示,兩種物質皆會造成老鼠生長之減緩,另對血液中AST、ALT、ALP等活性,及triglyceride、cholesterol、BUN、creatinine和血漿中免疫蛋白量等,皆會產生影響。尤以生理食鹽水抽出液的影響較大。
進而探討鰻魚黏液凍乾後之食用安全性,以大白鼠為實驗動物,在飼料中分別添加鰻魚黏液凍乾物及酵素水解凍乾物,餵食四週,測其體重和肝腎體比並無明顯差異。經抽血作生化分析,發現會導致血液中AST、alanine transferase(ALT)、ALP、triglyceride、cholesterol、blood urea nitrogen(BUN)、creatinine、albumin、血漿中白血球及免疫蛋白量等出現變化,顯示經過凍乾與酵素水解之後,鰻魚黏液凍乾品仍具有對生理上會造成傷害的物質存在。

Abstract
The mucus which being secreted by the mucus cells present in the fish epidermal layer was considered to decrease the resistance during fish swimming and protect fish from predator, microorganism and parasite attack. In early study, the composition of fish mucus has reported to contain glycoproteins or proteins which had biological activities. Japanese eel (Anguilla Japonica) is majority of cultured eel in Taiwan. On food processing, eel is one kind of higher economical value. The eel mucus which still is one kind of waste when eel is processed.
In this study, it is first thing to investigate the composition and physiology of eel mucus. It was found that water and proteins were major components more than 90 percents in the eel mucus. Besides, the mucus extracted with different buffer solutions for biochemistry analysis. The extracts were found to have hemolytic substances, toxin, lipase, alkaline phosphatase (ALP) and aspartate transferase (AST), etc. Among them, the hemolytic substance would change with storage time and temperature. After analysis of electrophoresis, it indicated to contain 92 KDa, 48 KDa, 32 KDa, 21 KDa and other proteins. After antibacterial test, the eel mucus did not have definite antibacterial activity for Vibrio parahaemolyticus, Escherichia coli and Staphylococcus aureus in the extracts. After enzyme digestion, the major free amino acid of digesting solution included threonine, leucine, isoleucine, serine and glycine.
The food safty of the fresh eel mucus and its saline extracts was also conducted. After four-weeks feeding, the body weight, the ratio of liver and kidney weight to body weight, and several biochemical properties in blood showed a significant difference. The results demonstrated that the raw eel mucus could cause the slow growing. Besides, the raw eel mucus led to the change of activities of AST, ALT, ALP and the levels of triglyceride, cholesterol, BUN, creatinine and immunglobulins in blood. The effect of saline extract was bigger than that of fresh eel mucus.
Further more, the food safety of freezed-dried eel mucus powder and enzyme digested eel mucus powder was conducted by using animal test in rats. After four-weeks feeding, the body weight and the ratio of liver and kidney weight to body weight were found to have not any definite difference. However, the change of activities of aspartate transferase (AST), alanine transferase (ALT) and alkaline phosphatase (ALP) and the levels of triglyceride, cholesterol, blood urea nitrogen (BUN), creatinine, albumin, white blood cell and immunglobulins in blood have been found. These results demonstrated that the eel mucus powder and enzyme digested eel mucus powder had harmful substances.

目錄
中文摘要…………………………………………………………..I
英文摘要………………………………………………………….III
壹、文獻整理……………………………………………………..1
一、 研究魚體黏液概況……………………………………1
二、 黏液中存在之抗菌物質與效果……………………....3
(一) 抗菌物質種類及特性.…………………………...4
(二) 抗菌效果受菌種、抗菌種類、濃度和環境因
子的影響……..………………………………….4
三、 魚類中凝集素的存在…………………………………5
(一) Lectins的類型與分布…………………………...6
(二) 影響lectin的因素……………………………….8
四、 鰻魚背景與生物特性………………………………....8
五、 鰻魚黏液的研究……………………………………...10
(一) 早期對鰻屬魚種的研究………………………...10
(二) 鰻魚黏液中的蛋白質成分……………………...11
(三) 凝血及溶血物質………………………………...11
(四) 溶菌活性物質…………………………………...11
(五) 毒性物質………………………………………...12
六、 水產加工廢棄物之利用……………………………...13
(一) 呈味胺基酸……………………………………...13
(二) 蛋白質及含氮化合物之回收利用……………...14
貳、研究內容 ……………………………………………………17
第一章 鰻魚之生化與生理活性探討………………………...17
一、 前言…………………………………………….17
二、 材料…………………………………………….17
三、 化學分析方法………………………………….18
四、 結果…………………………………………….28
五、 討論…………………………………………….30
第二章 新鮮鰻魚黏液及其生理食鹽水抽出物對大白鼠之
食用安全性探討………….………………………..….40
一、 前言………………………………………..…...40
二、 材料………………………………………..…...40
三、 方法………………………………………….…41
四、 結果………………………………………….…45
五、 討論………………………………………….…47
第三章 鰻魚黏液凍乾物及其酵素水解凍乾對大白鼠之食
用安性探討…………………………...………………57
一、 前言…………………………………………….57
二、 材料…………………………………………….57
三、 方法…………………………………………….58
四、 結果…………………………………………….60
五、 討論…………………………………………….63
參、參考文獻………………………………………………………….74

參、參考文獻
Aranishi F. and Nakane M. (1997). Epidermal proteases of the Japanese eel. Fish Physiology and Biochemistry. 16: 471-478.
Arason G. J. (1996). Lectins as defence molecules in vertebrates and invertebrates. Fish & Shellfish Immunology. 6: 277-289.
Asakawa A., Yamaguchi K. and Konous S. (1981). Taste-active components of the shrimp pandalus borealis. Nippon Shokuhin Kogyo Gakkaishi. 28: 594-599.
Asakawa M. (1970). Histochemical studies of the mucus on the epidermis of eel, Anguilla japonica. Bulletin of the Japanese Society of Scientific Fisheries. 36: 83-87.
Asakawa M. (1974). Sialic acid-containing glycoprotein in the external mucus of eel, Anguilla japonica temminck et schlegel-II. Carbohydrate and amino acid composition. Bulletin of the Japanese Society of Scientific Fisheries. 40: 303-308.
Asakawa M. (1977). Sialic acid-containing glycoprotein in the external mucus of eel, Anguilla japonica Temminck et Schlegel-III. Alkaline-reductive cleavage of sialic acid-containing glycoprotein. Bulletin of the Japanese Society of Scientific Fisheries. 43: 727-731.
Asakawa M. (1979). Sialic acid-containing glycoprotein in the external mucus of eel, Anguilla japonica Temminck et Schlegel-IV. Isolation and some properties of the carbohydrate moiety. Bulletin of the Japanese Society of Scientific Fisheries. 45: 601-604.
Asakawa M. (1983). Structure of disaccharide from eel skin mucous glycoprotein and its linkage to protein moiety. Bulletin of the Japanese Society of Scientific Fisheries. 49: 1601-1606.
Asakawa M. (1996). Role of skin mucous substances in biological protection of fish: Function of sialic acid-containing glycoprotein in eel skin mucus. Nippon Suisan Gakkaishi. 62: 291-292.
Associaation of Official Analytical Chemists (AOAC). (1995). Official Methods of Analysis, 16th edition, Arlington, VA, USA.
Bazil V. and Entlicher G. (1999). Complexity of lectins from the hard roe of perch (Perca fluviatilis L.). The International Journal of Biochemistry & Cell Biology. 31: 431-442.
Bradshaw C. M., Richard A. S., and Sigel M. M. (1971). IgM antibodyies in fish mucus. Proceedings of the Society for Experimental Biology and Medicine. 136: 1122-1124.
Cameron A. M., and Endean R. (1973). Epidermal secretions and the evolution of venom glands in fishes. Toxicon. 11: 401-410.
Castle D. H. J. and Williamson G. R. (1974). On validity of the freshwater eel species, Anguilla ancestralis, from Celebes. Copeia. 2: 569-570.
Chen Y. H. (1992). Aquaculture in the Republic of China: A biosocio-economic analysis of the aquaculture industry in Taiwan. In ”Aquaculture in Asia”, Liao I. C. et al., Eds. p. 9. Taiwan Fisheries Research Institute, Keelung, Taiwan.
Cole A. M., Weis P. and Diamond G. (1997). Isolation and characterization of pleurocidin, an antimicrobial peptidein the skin secretions of winter flounder. The Journal of Biological Chemistry. 272: 12008-12013.
Davies D. H. (1975). The isolation and characterization of the light antibody from Atlantic salmon (Salmo salar). Ph. D. Thesis. University of Salford.
Di Conza J. J. (1970). Some characteristic of natural haemagglutinins found in serum and mucus of the catfish, Tachysurus australis. The Australian Journal of Experimental Biology and Medical Science. 48: 515-523.
Di Conza J. J. and Halliday W. J. (1971). Relationship of catfish serum antibodies to immunoglobulin in mucus secretions. The Australian Journal of Experimental Biology and Medical Science. 49: 517-519.
Dubois M., Gilles A. K., Hamilton J. K., Rebers P. A. and Smith F. (1956). Colorimetry method for determination of sugars and related substances. Analytical Chemistry. 28: 350-356.
Ebran N., Julien S., Orange N., Auperin B. and Molle G. (1999). Pore-forming properties and antibacterial activity of proteins extracted from epidermal mucus of fish. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. 122: 181-189.
Ebran N., Julien S., Orange N., Auperin B. and Molle G. (2000). Isolation and characterization of novel glycoproteins from fish epidermal mucus: Correlation between their pore-forming properties and their antibacterial activities. Biochemica et Biophysica Acta. 1467: 271-280.
Ellis A. E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Developmental and Comparative Immunology. 25: 827-839.
Ewart K. V., Johnson S. C. and Ross N. W. (1999). Identification of a pathogen-binding lectin in salmon serum. Comparative Biochemistry and Physiology Part C. 123: 9-15.
Fletcher T. C. ad Grant P. T. (1968). Glycoproteins in the external mucous secretions of the plaice, Pleuronectes platessa, and other fishes. The Biochemical Journal. 106: 12p.
Fletcher T. C. ad Grant P. T. (1969). Immunoglobulins in the external mucous secretions of the plaice (Pleuronectes platessa). The Biochemical Journal. 115: 65p.
Fontana A., Cavaliere P., Wahidulla S., Naik C. G. and Cimino G. (2000). A new antitumor isoquinoline alkaloid from the marine nudibranch jorunna funebris. Tetrahedron. 56: 7305-7308.
Goto-Nance R., Watanabe Y., Kamiya H. and Ida H. (1995). Characterization of lectins from the skin mucus of the loach Misgurnus anguillicaudatus. Fisheries Science. 61: 137-140.
Guyton C. (1991). Renal disease, diuresis and micturttin. In: Texbook of Medical Physiology (ed. By Guyton C.), Saunders, New York, pp. 344-347.
Halstead B. W. (1988). Poisonus and venomous marine animals of the world. 2nd. Darwin Presc, Inc. New Jersey. pp. 373-377.
Harrell L. W., Etlinger H. M. and Hodgins H. O. (1976). Humoral factors important in resistance of salmonid fish to bacterial disease. II. Anti-Vibrio anguillarum activity in mucus and observations on complement. Aquaculture. 7: 363-370.
Harris J. E. (1972). The immune response of a cyprinid fish to infections of acanthocephalan Pomphorhynchus laevis. International Journal for Parasitology. 2: 459-469.
Harris J. E., Watson A. and Hunt S. (1973). Histochemical analysis of mucous cells in the epidermis of brown trout Salmo trutta L. Journal of Fish Biology. 5: 345-351.
Hashimoto Y. (1979). Marine toxins and other bioactive marine metabolites. Japan Scientic Societies press, Tokyo. pp. 312-333.
Hildemann W. H. (1959). Acichlid fish, Symphysodon discus, with unique nurture habits. The American Naturalist. 93: 27-34.
Hjelmeland K., Christie M. and Raa J. (1983). Skin mucus protease from rainbow trout, Salmo gairdneri Richardson, and its biological significance. The Journal of Biological Chemistry. 23: 13-22.
Hou T. Z. (1998). Isolation and characterization of Vibrio parahaemolyticus from aquacultural waters and mollusks in Taiwan, (MS thesis, NTOU).
Hughes R. C. (1999). Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochimica et Biophysica Acta. 1473: 172-185.
Ingram G. A. (1980). Substances involved in the natural resistance of fish to infection. The Journal of Biological Chemistry. 16: 23-60.
Jakowska S. (1963). Mucus secretion in fish-a note. Annals of the New York Academy of Sciences. 159: 547-548.
Jones M. and Elliot F. C. (1969). Two rapid assays for saponin in individual alfalfa plants. Crop Science. 9: 688-698.
Kawahara I. and Kusuda R. (1988a). Lysozyme activities of staple cultured fishes. Nippon Suisan Gakkaishi. 54: 581-584.
Kawahara I. and Kusuda R. (1988b). Properties of lysozyme activities in cultured eel. Nippon Suisan Gakkaishi. 54: 965-968.
Komata, Y. (1964). Studies on the extractive component of “uni” —IV. Taste of each component in the extract. Bull. Jap. Soc. Sci. Fish. 28: 749-756.
Konosu S. and Yamaguchi K. (1987). Role of extractive components of boiled crab in producing the characteristic flavor. In “Umami: A Basic Taste”, Kawamura Y. and Kare M. R. Eds. p. 235. Marcel Dekker, Inc., New York.
Konosu S., Watanabe K. and Yamaguchi K. (1987). Acceptance effects of taste compounds, sensory analysis of taste active compounds in the adductor muscle of scallop. In “Food Acceptance and Nutrition”, Solms J. et al., Eds. p. 143. Academic Press Inc., San Diego.
Konosu S., Yamaguchi K. and Hayashi T. (1978). Studies on flavor components in boiled crabs. Amino acids and related compounds in the extracts. Bulletin of the Japanese Society of Scientific Fisheries. 41(5): 505-510.
Kubota Y., Watanabe Y., Otsuka H., Tamiya T., Tsuchiya T. and Matsumoto J. (1985). Purification and characterization of an antibacterial factor from snail mucus. Comparative Biochemistry and Physiology. Part A, Comparative Physiology. 82C: 345-348.
Lear J. D., Wasserman Z. R. and DeGrado W. F. (1988). Synthetic amphiphilic peptide models for protein ion channels. Science. 240: 1171-1181.
Lee Y. Z., Simpson B. K. and Harrd N. F. (1982). Supplementation of squid fermentation with proteolytic enzymes. Journal of Food Biochemistry. 6: 127-134.
Lehtonen A., Karkkainen J. and Haahti E. (1966). Carbohydrate components in the epithelial mucin of hagfish, Myxine glutinosa. Acta Chemica Scandinavica. 20: 1456-1462.
Lemaitre C., Orange N., Saglio P., Saint N., Gagnon J. and Molle G. (1996). Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). European Journal of Biochemistry. 240: 143-149.
Lowry O. H., Rosebrough, N. J, Farr, A. L. and Randall, R. J. (1951). Protein mesurement with the Folin phenol reagent. The Journal of Biological Chemistry. 193: 265-275.
Mackie I. M. (1974). Proteolytic enzymes in recovery of protein from fish waste. Process biochemistry. December: 12-14.
Manley C. H., McCann J. S. and Swaine R. L. (1981). The chemical bases of the taste and flavor enhancing properties of hydrolyzed protein. In “The Quality of Foods and Beveranges”. pp. 1-61. Eds. Charalambous G. and Inglett G., Academic Press, Inc., New York.
McArthur C. P. (1978). Humoral antibody production by New Zealand eels, against the intestinal trematode Telogaster opisthorchis Macfarlane, 1945. Journal of Fish Diseases. 1: 377-387.
McVicar A. H. and Fletcher T. C. (1970). Serum factors in Raja radiata toxic to Acanthobothrium quadripartitum (Cestoda: Tetraphyllidea), a parasite specific to R. naevus. Parasitology. 61: 55-63.
Melo V. M. M., Duarte A. B. G., Carvalho A. F. F. U., Siebra E. A. and Vasconcelos I. M. (2000). Purification of a novel antibacterial and haemagglutinating protein from the purple gland of the sea hare, Aplysia dactylomela. Toxicon. 38:1415-1427.
Muramoto K., Kagawa D., Sato T., Ogawa T., Nishida Y. and Kamiya H. (1999). Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster. Comparative Biochemistry and Physiology Part B. 123: 33-45.
Nakagawa H., Asakawa M. and Enomoto N. (1988). Diversity in the carbohydrate moieties of mucus glycoproteins of various fishes. Nippon Suisan Gakkaishi. 54(9): 1653-1658.
Ney K. H. (1979). Bitterness of peptides: Aminoacid composition and chain leength. In “Food Taste Chemistry”. Ed. James C. B. American Chemical Society, Washington, D. C.
Nunomura N. and Sasaki M. (1986). Soy sauce. In “Legume-Base Fermented Foods”. Eds. Reddy N. R., Pierson M. D. and Slunkhe D. K., pp. 5-46. CRC Press, Boca Raton, Florida.
Pickering A. D. (1976). Synthesis of N-acetyl neuraminic acid from (14C) glucose by the epidermis of the brown trout, Salmo trutta L. Comparative Biochemistry and Physiology. 54: 325-328.
Pickering A. D. and Macey D. J. (1977). Structure, histochemistry and the effect of handling stress on the mucous cells of the epidermis of the char Salvelinus alpinus (L.). Journal of Fish Biology. 10: 505-512.
Puri S. C. and Mullen K. (1980). Multiple comparisons. In: Applied Statics for Food and Agricultural Scientists (ed. By Hall G. K.), Medcal Publishers, Bostor, MA, pp.146-162.
Rini J. M. and Lobsanov Y. D. (1999). New animal lectin structures. Current Opinion in Structural Biology. 9: 578-584.
Ronald L. and Koretz M. D. (1992). Chronic hepatitis: science and superstition. In: Current Hepatology (ed. By Gitnick G.), Mosby-Year, Chicago. 53-74.
Salak J., Roch P. and Palousova T. (1975). The gel-filtration pattern of eel serum. Separation of haemolysin(s) form haemagglutinins. Journal of Chromatography. 107: 234-238.
Schwille D., Seiz H., Sorg E. and Sommer U. (1977). Process for production of protein-containing food additives. Br. Patent 1:483-953.
Shiomi K., Tsuchiya S., and Kikuchi T. (1990). Occurrence of a proteinaceous toxin in the skin mucus of the Japanese eel. Nippon Suisan Gakkaishi. 56: 2121.
Shiomi K., Tsuchiya S., and Kikuchi T. (1992). Purification and properties of a proteinaceous toxin in the skin mucus of the Japanese eel. Nippon Suisan Gakkaishi. 58: 781-786.
Shiomi K., Uemats H., Yamanaka H. and Kikuchi T. (1989). Purification and characterzation of a galactose-binding lectin from the skin mucus of the conger eel Conger myriaster. Comparative Biochemistry and Physiology. 92B:255-261.
Shiomi K., Utsumi K., Tsuchiya S., Shimakura K. and Nagashima Y. (1994). Comparison of proteinaceous toxins in the skin mucus from three species of eels. Comparative Biochemistry Physiology. 107B: 389-394.
Smith A. C. (1977). Reactions of fish red blood cells with mucus and sera from other fish(es). California Fish and Game. 63: 52-57.
Spitzer R. H., Downing S. W., Koch E. A. and Kaplan M. A. (1976). Hemagglutinins in the mucus of Pacific hagfish Eptatretus stoutii. Comparative Biochemistry and Physiology. 54: 409-411.
Stanley D. W. (1981). Non-bitter protein hydrolysates. Canadian Institute of Food Science and Technology Journal. Journal de L'Institut Canadien de Science et Technologie Alimentaire. 14(1): 49-52.
Steiner H., Hultmark D., Engstrom A., Bennich H. and Boman H. G. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 292: 246-248.
Suzuki Y. (1985). Hemolysin and hemagglutinin in skin mucus of the Japanese eel, Anguilla japonica. Bulletin of the Japanese Society of Scientific Fisheries. 51: 2083.
Suzuki Y. and Kaneko. T.(1986). Demonstration of the mucous hemagglutinin in the club cells of eel skin. Developmental and Comparative Immunology. 10: 509-518.
Suzuki Y. and Otake T. (2000). Skin lectin and the lymphoid tissue in the leptocephalus larvae of the Japanese eel Anguilla japonica. Fisheries Science. 66: 636-643.
Tesch F. W. (1977). The eel-biology and management of Anguilla eels. Chapman and Hall press, London. pp. 81-132.
Vinot C., Bouchez P. and Durand P. (1989). Extraction and purfication of peptides from fish protein hydrolysates. In “Current Topices in Marine Biotechnology”. pp. 361-364. Eds. Miyachi S., Karube I. And Ishida Y., Tokyo.
Weir G. S. D. (1986). Protein hydrolysates as flavorings. In “Development in Food Protein”. pp. 175-217.
Wold J. K. and Selset R. (1977). Glycoproteins in the skin mucus of the char (Salmo aloinus L.). Comparative Biochemistry and Physiology. 56: 215-218.
Yousif A. N., Albright L. J. and Evelyn T. P. T. (1995). Interaction of coho salmon Oncorhynchus kisutch egg lectin with the the fish pathogen Aeromonas salmonicida. Disease of Aquatic Organisms. 21: 193-199.
安元健、神谷久男 (1987). 海產有用生理活性物質。恆星社厚生閣版,東京。
何敏夫 (1997). 臨床生化學。合記圖書出版社。台北。
李棟樑、何碧月、張秀娘、廖一久 (1989). 在相同養殖條件下四種蝦類可溶性抽出物成分的比較。台灣省水產學會刊 16: 293-302。
李聰岳 (2001). 馬兜鈴酸在中藥材和中藥製劑之檢測及對大白鼠之毒理作用探討。國立台灣海洋大學食品科學系碩士論文,基隆。
邱毅、李武忠 (1993). 衰退性產業的競爭策略分析-以鰻魚產業為例。財團法人中華經濟研究院經濟專論(144),台北市。
徐毓呈 (2001). 嘉義產玉螺類暨兩種新種河豚之毒性學探討。國立台灣海洋大學食品科學系碩士論文,基隆。
張為憲 (1988). 蝦類加工廢棄物之處理與利用,食品工廠廢棄物之處理與利用。食品工廠之處理與利用研討會論文集。pp. 64-76,農委會。
許俊堯 (1998). 重組鰻魚生長激素之表現、純化與生物活性測定。國立台灣海洋大學水產養殖學系碩士論文,基隆。
郭河 (1994). 養鰻透視。水產出版社。
野口玉雄 (1979). 血球凝集素、血壓降下物質。書名:海洋的生化資源(日本水產學會編),恆星社厚生閣版,東京。pp. 197-151.
陳秀蓮 (1993). 常用調味料中的蛋白質水解液。食品工業。25(6): 33-43。
陳幸臣 (1993). 水產微生物實驗法。pp.51-52.
陳泰源 (1999). 養殖虎河豚Takifugu rubripes一般組成、風味成分和蛋白質電泳特性之探討。國立台灣海洋大學食品科學系碩士論文,基隆。
黃登福 (1999). 海洋生物毒和生理活性物質。中醫藥雜誌,10,pp.23-50。
黃登福、鄭森雄 (1985). 以蝦類廢棄物製造蝦溶漿和蝦粉養殖淡水大蝦之效果。台灣水產學會刊。12(1): 74-81。
黃耀宜、柯珍珍 (1990). 臨床生化檢驗技術手冊。黎明書店。新竹。
漁業署 (1991). 中華民國台灣地區漁業年報。農委會漁業署,台北市。
漁業署 (1999). 中華民國台灣地區漁業年報。農委會漁業署,台北市。
蔡慧君 (1996). 蝦廢棄物蛋白質水解物及其有用成分之探討。國立台灣海洋大學食品科學系碩士論文,基隆。
賴永順 (1989). 水產加工廢棄物利用之研究 -(3)由烏賊內臟抽取溶菌脢製造魚溶漿及利用之研究。農委會漁業特刊第二十號-水產加工研究計畫成果彙集。p. 51.
錢阜甯 (1994). 魚肉蛋白之酵素水解。食品工業。26(8): 27-35。
鐘秋燕 (2001). 葡萄胺糖對大白鼠之毒性探討。國立台灣海洋大學食品科學系碩士論文,基隆。
鹽見一雄、長島裕二 (1997). 海洋生物毒。pp.26-40.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top