跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周志正
論文名稱:阿拉斯加鱈魚魚漿生產煉製品的擂潰及靜置製程之機制及最適化研究
論文名稱(外文):Optimization and mechanism studies of grinding and holding treatments in the alaska pollock fish gel manufacture
指導教授:龔鳴盛龔鳴盛引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:阿拉斯加鱈魚靜置
外文關鍵詞:Alaska Pollocksetting
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1026
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:0
本研究是探討進口冷凍水洗無鹽阿拉斯加鱈魚碎肉魚漿進行擂潰製程及靜置製程條件的最適化。
擂潰製程最適化實驗發現,旋轉圓刀細切機較三桿式研磨機擂潰效率為高。擂潰中最適水和NaCl添加量對於75%W.C.魚漿而言分別為25%及2.0%;旋轉圓刀細切機進行擂潰的最適原料負載量被證明應為其滿載容量之80%。
魚漿加鹽擂潰後之靜置處理最適化實驗發現。20℃~30℃經適當時間靜置的魚糕成品膠強度均可由未靜置的670 g-cm上昇至3200 g-cm;5℃~15℃和35℃靜置的最高魚糕成品膠強度僅分別為2450 g-cm和1600 g-cm。熱掃瞄剛性測定儀(TSRM)和示差掃瞄熱量分析儀(DSC)分析結果證實,靜置處理的促凝膠作用是由於靜置中魚漿所含的TGase催化肌凝蛋白尾部間形成轉醯胺鍵結架橋所致。
The main purpose of this research was to establish the optimized conditions of mincing and holding operations in fish-gel manufacture by using the imported frozen Alaska Pollock chopped-meat surimi.
In the study of mincing operation optimization , rotory-pan silent cutter was found to be more efficient than triple-beam grinder. The most suitable amount of water and NaCl additions were 2.5% and 2.0% to the surimi (75%W.C.). The most suitable load of surimi plus additives was found to be around 80% full-load of the rotary-pan silent cutter.
The NaCl-added surimi prepared with the optimized mincing conditions was used for holding treatment studies. It was found that most suitable holding temperature range 20 to 30℃ could bring product gel-strength from 670 g-cm (without holding) up to 3200 g-cm;5 to 15℃and 35℃ holdings could only result products of 2450 g-cm and 1600 g-cm, respectively. TSRM and DSC studies revealed the nature of gel-promoting effect occurring in holding treatment being of the inter myosin tail transamidation bounding formation induced by TGase activity existing in surimi.
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
第一章 前言…………………………………………………...1
壹、研究背景與目的……………………………………………………1
貳、文獻整理……………………………………………………………3
1. 肌肉蛋白質組成……………………………………………….…3
1.1 肌漿蛋白質…………………………………………………….3
1.2 肌原纖維蛋白質……………………...………………………..3
1.3 肌質蛋白質…………………………..………………………..5
2. 魚漿鹽溶性蛋白質之含量…………………..……………………6
3. 擂潰製程…………………………………………………………..6
4. 魚漿靜置處理與凝膠作用………………………………………..6
4.1 Transglutaminase(TGase)催化反應機制及其對煉製品品質之影響…………………………………………………………………8
4.2 TGase活性測定方法…………………………………………..9
4.3 TGase活性對魚漿靜置凝膠及對煉製品品質的影響……....10
5. 示差掃瞄熱分析技術對肌肉蛋白質的研究……………………15
5.1 肌肉態熱分析的相關研究………………………………..…16
5.2 單離態熱分析的相關研究…………………………………..16
5.3 魚漿態熱分析的相關研究…………………………………..17
6. 熱掃描剛性測定儀(TSRM)對肉漿的探討…………………18
第二章 實驗材料與方法………………………………………….20
一、原料…………………………………………………………….20
二、實驗儀器設備…………………………………………….…….20
三、實驗方法……………………………………………………….20
1. pH值測定………………………….………………………….20
2. 水分含量測定…………………………….…………………..21
3. 水洗加鹽魚漿的備製……..………………………………….21
4. 魚漿凝膠製品之備製…………………………………………21
5. 魚漿凝膠製品的物性品質測定……………………………...21
6. 曲折試驗(Folding test)……………………………………….21
7. 示差掃描熱量分析(DSC)……..……………………………..22
8. 鹽溶性蛋白質之抽取………………………………………..22
9. 蛋白質定量分析……………………………………………..23
10. 魚漿靜置TSRM靜置及蒸煮熱凝膠分析………………...23
第三章 結果與討論-壹……………………………...……….25
第一節 旋轉圓刀細切機和三桿式研磨機擂潰效率之比較……………….…………………………….…………….25
1. 成品魚糕膠強度之比較…………………………………………25
2. 鹽溶性蛋白溶出率指標測試……………………………………26
3. 結論………………………………………………………………27
第二節 旋轉圓刀細切機進一步之最適化-最適負載量之建立…………………………………………………………….27
1. 魚漿負載量對魚糕成品膠強度及鹽溶性蛋白質抽出率之影響…………………………………………………………………27
2. 結論…………………………………………………………..…..28
第三節 鹽及水的最適擂潰添加量……………………………………28
1. 最適鹽添加量的測試……………………………………………29
2. 最適水份添加量的測試…………………………………………29
3. 結論………………………………………………………………30
第四節 結論……………………………………………………………30
第四章 結果與討論-貳………………………………………31
第一節 靜置處理製程之最適化-成品魚糕膠強度為指標…………..31
第二節 靜置凝膠和促凝膠機制之研究-以TSRM、DSC、和外觀測試………..……………………………………………………..33
1. TSRM……………………………………………………………33
2. DSC……………………………………..………………………35
3. 魚漿外觀………………………………………………………...37
第三節 結論……………………………………………………………37
參考文獻………………………………………………………………..39
圖 表 目 錄
圖一 鱈魚水洗碎肉魚漿(75%W.C.)加水成80%W.C.及添加2.5% NaCl後,分別以細切機和三桿式研磨機擂潰不同時間後,取樣蒸煮成魚糕成品之物性變化(5℃測試)。………………………..….50
圖二 鱈魚魚漿在添加2.5% NaCl及調整水分為80%下分別以細切機和三桿式研磨機進行擂潰中鹽溶性蛋白質抽出率之變化。…………………………….……………..…………………51
圖三(A) 細切機在不同魚漿(2.5% NaCl; 80%W.C.)負載下,擂潰效率之差異。擂潰效率是指不同負載下能完成擂潰(達最大膠強度)所需時間。………………………………………………….…..52
圖三(B) 細切機在不同魚漿(2.5% NaCl; 80%W.C.)負載下,擂潰效率之差異。擂潰效率是指不同負載下能完成擂潰(達成相同最大鹽溶性蛋白質抽出量)所需時間。……..…………………..……...53
圖四 NaCl添加量 (1.0%∼3.0%)和含水率調整 (75%∼81.5%W.C.)對阿拉斯加鱈魚魚漿擂潰效率的影響。擂潰效率是以擂潰後魚漿經25℃/8 hr靜置及85℃/30 min蒸煮所得魚糕成品膠強度來代表。………………………………………………………………54
圖五 固定1.5% NaCl添加下,不同加水量擂潰魚漿經靜置25℃8小時後所製成魚糕質感變化。……………………………………55
圖六(A) 鱈魚加鹽(2.5% NaCl)魚漿於5℃靜置下魚糕成品物性品質變化。………………………………………………………………56
圖六(B) 鱈魚加鹽(2.5% NaCl)魚漿於10℃靜置下魚糕成品物性品質變化。……………………………………………………………57
圖六(C) 鱈魚加鹽(2.5% NaCl)魚漿於15℃靜置下魚糕成品物性品質變化。…………………………………………………………….58
圖六(D) 鱈魚加鹽(2.5% NaCl)魚漿於20℃靜置下魚糕成品物性品質變化。…………………………………………………………….59
圖六(E) 鱈魚加鹽(2.5% NaCl)魚漿於25℃靜置下魚糕成品物性品質變化。……………………………………………………………60
圖六(F) 鱈魚加鹽(2.5% NaCl)魚漿於30℃靜置下魚糕成品物性品質變化。……………………………………………………………61
圖六(G) 鱈魚加鹽(2.5% NaCl)魚漿於35℃靜置下魚糕成品物性品質變化。……………………………………………………………62
圖七(A) 鱈魚水洗加鹽(2.5% NaCl)魚漿,於5℃下靜置處理中的TSRM黏彈變化。………………………………………….……63
圖七(B) 鱈魚水洗加鹽(2.5% NaCl)魚漿,於25℃下靜置處理中的TSRM黏彈變化。………………………………………….……64
圖七(C) 鱈魚水洗加鹽(2.5% NaCl)魚漿,於35℃下靜置處理中的TSRM黏彈變化。……………………………….………….……65
圖八(A) 含2.5% NaCl之鱈魚水洗魚漿在5℃靜置處理過程中的DSC圖譜變化(生溫速率:10℃/min)。……………………………….66
圖八(B) 含2.5% NaCl之鱈魚水洗魚漿在25℃靜置處理過程中的DSC圖譜變化(生溫速率:10℃/min)。………………………….67
圖九 鱈魚加鹽魚漿(2.5% NaCl)魚漿填充成魚香腸,分別在未靜置、第一階段凝膠、第二階段凝膠、及蒸煮過後所照之實際魚漿外觀。…………………………………………………………...68
表一 鱈魚魚漿被以旋轉圓刀細切機和三桿式研磨機分別添加2.5% NaCl擂潰中,其擂潰效率比較。……………………………….69
表二 阿拉斯加鱈魚加鹽(2.5% NaCl)魚漿以不同溫度靜置處理所獲得的最佳魚糕物性指標和靜置時間。…………………….……….70
表三 阿拉斯加加鹽(2.5% NaCl)魚漿在不同溫度下的二階段凝膠與所達到其凝膠階段之靜置時間。………………………………….71
吳清熊。1987。魚肉蛋白質。p. 63. 華香園出版社。台北。
吳清熊。1991。水產化學。p.43-44. 華香園出版社。台北。
孫朝棟。1999。魚漿加工技術。華香園出版社。台北。
祝永平。1993。以示差掃描熱量分析技術探討淡水吳郭魚魚漿成膠機構。國立臺灣海洋大學食品科學系碩士學位論文。
陳福隆。1993。肌肉僵直度新鑑視方法的建立─吳郭魚鈣引發肌肉收縮之示差熱分析。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
黃一菁。1993。利用熱分析技術研究肌肉/肉漿之相轉移及魷魚魚漿成膠機制。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
黃娟。1994。肌原纖維蛋白質多重組態之熱分析鑑識。國立台灣海洋大學食品科學系碩士學位論文。基隆。
林雅華。1996。青魚死後僵直及嫩化作用對肉品品質的影響。 國立臺灣海洋大學食品科學系碩士學位論文。基隆。
蘇崇文。1996。以DSC、TRM、TSRM研究魚肉及魚糕品質。國立臺灣海洋大學水產食品科學系博士學位論文。基隆。
黃壬鍵。1997。吳郭魚肉在常溫儲藏及水煮加工肉質變化。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
楊麗鳳。1998。紅甘生魚片品質指標之研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
陳怡伶。1998。吳郭魚、鱈魚及其混合魚漿之靜置促凝膠機制及品質改良。國立臺灣海洋大學食品科學研究所碩士論文。基隆。
何淇義。2000。吳郭魚魚漿之靜置處理條件對魚糕品質的影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
談啟興。2000。MTRM儀器分析法和萃取法對吳郭魚死後僵直和嫩化進程的鑑識。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
林昶宇。2001。吳郭魚魚漿擂潰條件之最適化及添加物影響魚糕品質之研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
Akahane, T., Chihara, S., Yoshida, Y., Tsuchiya, T., Noguchi, S., Ookami, H., and Matsumoto, J. J. 1981. Application of differential scanning calorimetry to food technological study of fish meat gels. Bull. Jap. Soc. Sci. Fish. 47: 105-111.
Alvarez, C., Couso, I., and Tejada, M. 1995. Sardine surimi gels as affected by salt concentration, blending, heat treatment and moisture. J. Food Sci. 60: 622-634.
Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H., and Motoki, M. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2643.
Arai, K., Hasnain, A., and Takano, Y. 1976. Species specificity of muscle proteins of fishes against thermal and urea denaturation. Bull. Jap. Soc. Sci. Fish. 42: 687-692.
Araki, H. and Seki, N. 1993. Comparison of reactivity of trans- glutaminase to various fish actomyosin. Bull. Jap. Soc. Fish. 59: 711-718.
Asagami, T., Ogiwara, M., Wakameda, A., and Noguchi, S. F. 1995. Effect of microbial transglutaminase on the quality of frozen surimi made from various kinds of fish species. Fisheries Sci. 61: 267-272.
Asghar, A., Samejima, K., and Yashi, T., 1985. Functionality of muscle proteins in gelation mechanisms of structured meat products. Crit. Rev. Food Sci. Nutr. 22: 22-27.
Atsumi, T., Wakameda, K. and Noguchi, S. F. 1995. Frozen storage of surimi containing microbial transglutaminase made from various kinds of fish species. Fisheries Sci. 61: 458-463.
Backer-Royer, C.-de, Traore, F., and Meunier, J.-C. 1992. Polymerization of meat and soybean proteins by human placental calcium-activatived factor ⅩⅢ. J. Agric. Food Chem. 40: 2052-2056.
Bensadoun A and Weinstein D. 1976. Assay of proteins in the presence of interfering materia. Anal Biochem. 70: 241-250.
Buttkus, H. 1970. The sulfhydryl content of rabbit and trout myosin in relation to protein stability. Can. J. Biochem. 49: 97-104.
Connell, J. J. 1961. the relative stabilities of the skeletal-muscle myosin of some animals. Biochem. J. 80: 503-512.
Ebashi, S. and Endo, M. 1968. Calcium and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123-135.
Ellekjær, M. R., Tormod, N., and Baardseth, P. 1996. Milk proteins affect yield and sensory quality of cooked sausages. J. Food Sci. 61: 660-670.
Folk, J. E. 1980. Transglutaminase. Annual Review Biochemistry. 49: 517-521.
Folk, J. E. and Chung. S. I. 1985. Transglutaminase. In “Method in Enzymology”, volume 113. A. Meister, Academic Press, Inc., Orlando.
Folk, J. E. and Cole, P. W. 1966. Transglutaminase: Mechanistic features of the active site as determined by kinetic and inhibitor studies. Biochim. Biophys. Acta. 122: 244-256.
Folk, J. E., Cole, P. W. and Mullooly, J. P. 1967a. Mechanism of action of guinea pig liver transglutaminase.Ⅱ: The role of metal in enzyme activation. J. Biol. Chem. 242: 1838-1845.
Folk, J. E., Cole, P. W. and Mullooly, J. P. 1967b. Mechanism of action of guinea pig liver transglutaminase.Ⅲ: The metal-dependent hydrolysis of —nitrophenyl acetate; further observations on the role of metal in enzyme activation. J. Biol. Chem. 242: 2615-2625.
Goll, D. E. and Robson, R. M. H. 1977. Muscle protein. In ”Food protein. Whitaker, J. R., and Tannenbaum, S. R. (Eds.) AVI Publishing Co., Westport, Connecticut. U. S. A.
Hastings, R. J., Rodger, G. W., Park, R., Mattews, A. D., and Andersona, E. M. 1985. Differential scanning calorimetry of fish muscle: The effect of processing and species variation. J. Food Sci. 50: 503-512.
Icekson, I. and Apelbaum, A. 1987. Evidence for transglutaminase activity in plant tissue. Plant Physiology 84: 972-981.
Ikura, K., Kometani, T., Yoshikawa, M., Sasaki, R., and Chiba, H. 1980. Crosslinking of casein components by transglutaminase. Agric. Biol. Chem. 44: 1567-1573.
Imai, C., Tsukamasa, Y., Sugiyama, M., Minegishi, Y., and Shimizu, Y. 1996. The effect of setting temperature on the relationship between e-(g-glutamyl) lysine cross-link content and breaking strength in salt-ground meat of sardine and Alaska Pollack. Nippon Suisan Gakkaishi 62: 104-115.
Ishioroshi, M., Samejima, K., and Yasui, T. 1982. Further studies on the roles of the head and tail regions of the myosin molecule in heat-induced gelation of myosin. J. food Sci. 47: 114-123.
Iso, N., Mizuno, H., Ogawa, H., Mochizuki, Y., and Masuda, N. 1991. Differential Scanning Calorimetry on fish meat paste. Nippon Suisan Gakkaishi. 62: 104-111.
Jacob, D. K. and Sebranek, J. G. 1980. Use of prerigor beef for frozen ground beef patties. J. Food Sci. 45: 648-657.
Jiang, S. T. and Lee, J. J. 1993. Purification, characterization, and utilization of pig plasma factor ⅩⅢa. J. Agric. Food Chem. 40: 1101-1107.
Joe, M. R. and Carrie, E. R. 1984. Protein functionality for food scientists. In“Food Protein Chemistry”, Joe, M. R. and Carrie, E. R. (Eds.) New York.
Joseph, D., Lanier, T. C., and Hamann, D. D. 1994. Temperature and pH effect transglutaminase-catalyzed ”Setting” of crude fish actomyosin. J. Food Sci. 59: 1018-1023.
Kamath, G. G., Lanier, T. C., Foegeding, E. A., and Hamann, D. D. 1992. Nondisulfide covalent cross-linking of myosin heavy chain in “Setting” of Alaska pollock and Atlantic croaker surimi. J. Food Biochem. 16: 151-170.
Kato, N., Nakagawa, N. and Terui, S. 1989. Change in myofibrillar protein in surimi during grounding with NaCl in relation to operating condition of a continuous mixer. Nippin Suisan Gakkaishi. 55: 1243-1251.
Kijowski, J. M. and Mast, M. G. 1988a. Effect of sodium chloride and phosphates in the thermal properties of chicken meat proteins. J. Food Sci. 53: 363-372.
Kijowski, J. M. and Mast, M. G. 1988b. Thermal properties of proteins in chicken broiler tissues. J. Food Sci. 53: 367-374.
Kimura, I., Sugimoto, M., Toyoda, K., Seki, N., Arai, K. I., and Fujita, T. 1991. A study on cross-linking reaction of myosin in kamaboko "suwari" gels. Nippon Suisan Gakkaishi 57: 1389-1394.
Klesk, K., Yongsawatdigul, J., Park, J. W., Viratchakul, S. and Virulhakul, P. 2000. Gel forming ability of tropical tilapia surimi as compared with Alaska Pollock and Pacific whiting surimi. J. Aquat. Food Prod. Technol. 9: 91-95.
Korhonen, R. W., Lanier, T. C., and Giesbrecht F. 1990. An evaluation of simple method for following rigor development in fish. J. Food Sci. 55: 346-351.
Kumazawa, Y., Nakanishi, K., Yasueda., H., and Motoki, M. 1996. Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Sci. 62: 959-969.
Lowry, O. H., Rosebriugh, N. T., Farr, A. L., and Randull, R. J. 1951. Protein measurement with folinphenol reagent. J. Biol. Chem. 193: 256-278.
Lee, C. M. 1984. Surimi process technology. Food Technol. 38: 69.
Lee, C. M. 1985. A pilot plant study of surimi making properties of Red Hake (Urophycis chuss) in proceeding of the Intl. Sym. on Eng. Seafood Including Surimi, NFI.
Lee, C. M. 1994. Surimi processing from lean fish. In “Seafoods: Chemistry, Processing Technology and Quality”, Shahidi F. and Botta J. R. (Eds.), pp. 263-287. Blackie Academic and Professional, London.
Lee, H. G., Lanier, T. C., Hamann, D. D., and Knopp, J. A. 1997. Transglutaminase effects on low temperature gelation of fish protein sols. J. Food Sci. 62: 20-24.
Lee, N., Seki, N., kato, N., Nakagawa, N., Terui, S., and Aria, K. 1990. Gel forming ability and crossing-linking ability of myosin heavy chain in salted meat paste from threadfin bream. Nippon Suisan Gakkaishi. 56: 329-336.
Lefevre, F., Fauconneau, B., Ouali, A., and Culioli, J. 1998. Thermal gelation of brown trout myofibrils: effect of muscle type, heating rate and protein concentration. J. Food Sci. 63: 299-304.
Lo, J. R., Mochizuki, Y., Nagashima, Y., Tanaka, M., Iso, N., and Taguchi, T. 1991. Thermal transitions of myosins/subfragments from black marlin (Makaira mazara) ordinary and dark muscles. J. Food Sci. 56: 954-970.
Lowey, S., Slayter, H. S., Weeds, A. G., and Baker, H. 1969. Substructure of the myosin moleule I. Subfragments of myosin by enzymic degradation. J. Mol. Biol. 42: 1-11.
Montejano, J. G., Hamann, D. D., and Lanier, T.C. 1983. Final strengths and rheological changes during processing of thermally induced fish muscle gel. J. Rheology 27: 557-564.
Montejano, J. G., Hamann, D. D., and Lanier, T. C. 1984. Thermally induced gelation of selected comminuted muscle systems-Rheological changes during processing, final strengths and microstructure. J. Food Sci. 49: 1496-1504.
Motoki, M. and Seguro, K. 1998. Transglutaminase and its use for food processing. Trends Food Sci. Technol. 9: 204-217.
Nakai, S. and Lin-Chan, E. 1988. Hydrophobic interaction in food systems, pp. 63-128. CRC press, Inc. Boca Raton.
Nishimoto, S., Hashimoto, A., Seki, N., Kimura, I., Toyoda, K., Fujita, T., and Arai, K. 1987. Influencing factors on changes in myosin heavy chain and jelly strength of salted meat paste from Alaska pollack during setting. Nippon Suisan Gakkaishi. 55: 2011-2027.
Niwa, E. 1975. Role of hydrophobic bonding in gelation of fish flesh paste. Bull. Jap. Soc. Sci. Fish. 41: 907-919.
Niwa, E., Sato, K., Suzuki, R., Nakayama, T. and Hamada, I. 1981. Fluorometric study of setting properties of fish flesh sol. Bull. Jap. Soc. Sci. Fish. 47: 817-826.
Niwa, E. 1992. Chemistry of surimi gelation. In “Surimi Technology”, T. C. Lanier. and C. M. Lee (Eds.), pp. 389-427. Marcel Dekker, Inc., New York.
Niwa, E., Nowsad, A. A. and Kanoh, S. 1991a. Comparative studies on the physical parameters of kamabokos treated with the low temperature setting and high temperature setting. Nippon Suisan Gakkaishi 57: 105-121.
Niwa, E., Suzumura, T., Nowsad, A. AKM., and Kanoh, S. 1993. Setting of actomyosin paste containing few amount of transglutaminase. Nippon Suisan Gakkaishi. 59: 2043-2046.
Niwa, E., Yumiko, M., Nowsad, A. AKM., and Kanoh, S. 1995. Specificity of surimi gel formability of fish flesh paste in which transglutaminase was inactivated. Fisheries Sci. 61: 107-109.
Noguchi, S. 1974. The control of denaturation of fish muscle proteins during frozen storage. Doctoral Dissertation Sophia. Univ., Tokyo, Japan.
Noguchi, S. F. 1986. Dynamic viscoelastic changes of surimi (minced fish meat) during thermal gelation. Bull. Japan. Soc. Sci. Fish. 52: 1261-1274.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994a. Setting of transglutaminase-free actomyosin paste prepared from Alaska Pollock surimi. Fisheries Sci. 60: 295-297.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994b. Setting of surimi paste in which transglutaminase is inactivated by p-chloromercuribenzoate. Fisheries Sci. 60: 185-188.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1995. Effect of sarcoplasmic proteins on the setting of transglutaminase-free paste. Fisheries Sci. 61: 1039-1040.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1996. Contribution of transglutaminase to the setting of fish pastes at various temperatures. Fisheries Sci. 62: 94-97.
Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T., and Tsuchiya, T. 1993. a-helical structure of fish actomyosin: changes during setting. J. Food Sci. 60: 197-204.
Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T., and Tsuchiya, T. 1995. Thermal stability of fish myosin. Comp. Biochem. Physiol. 106B: 517-524.
Park, J. W. and Lanier, T. C. 1987. Combined effects of phsophates and a sugar or polyol on protein stabilization of fish myofibrils. J. Food Sci. 52: 1509-1521.
Park, J. W. and Lanier, T. C. 1989. Scanning calorimetric behavior of tilapia myosin and actin due to processing of muscle and protein purification. J. Food Sci. 54: 49-54.
Park, J. W. Lanier, T. C., and Pilkington, D. H. 1993. Cryostabilization of functional properties of pre-rigor and post-rigor beef by dextrose polymer and/or phosphates. J. Food. Sci. 58: 467-475.
Park, J. W. 2000. Surimi and surimi seafood. Marcel Dekker, Inc. New York.
Pearson, A. M. and Young, R. B. 1990. Muscle and Meat Biochemistry. A. M. Pearson. and R. B.Young (Eds.), pp. 66-129. Academic Press, New York.
Peterson, G. L. 1979. Review of the folinb phenol protein quantitation method of lowry, rosebrough, farr, and randal. Anal. Biochem. 100: 201-215.
Quinn, J. R., Raymond, D. P. and Harwalkar, V. R. 1980. Differential scanning calorimetry of meat proteins as affected by processing treatment. J. Food Sci. 45: 1146-1157.
Ragshaw, C. R. 1993. Contractile preteins. In “ Muscle Contraction ”, C. R. Ragshaw (Ed.), pp. 33-55. Chapman & Hall, London.
Sakamoto, H., Kumazawa, Y., Toiguchi, S., Seguro, K., Soeda, T., and Motoki, M. 1995. Gel strength enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J. food sci. 60: 300-304.
Samejima, K., Ishioroshi, M., and Yasui, T. 1981. Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. J. Food Sci. 26: 1412-1428.
Samejima, K., Ishioroshi, M., and Yasui, T. 1983. Scanning calorimetric studies on thermal denaturation of myosin and its subfragments. Agric. Biol. Chem. 47: 2373-2384.
Sano, T., Noguchi, S. F., Matsumoto, J. J., and Tsuchiya, T. 1990. Thermal gelation characteristics of myosin subfragment. J. Food Sci. 55: 55-68.
Seguro, K., Kumazawa, Y., Ohtsuka, T., Toiguchi, S., and Motoki, M. 1995. Microbial transglutaminase and e-(g-glutamyl) lysine cross-link effects on elastic properties of kamaboko gels. J. Food Sci. 60: 305-318.
Seki, N., Uno, H., Lee, N. H., Kimura, I., Toyoda, K., Fujita, T., and Arai, K. I. 1990. Transglutaminase activity in Alaska pollack muscle and surimi and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-134.
Stabursvik, E. and Martens, H. 1980. Thermal denaturation of proteins in post rigor muscle tissue as studied by differential scanning calorimetry. J. Sci. Food Agric. 31: 1034-1045.
Suzuki, T. 1981. Characteristics of fish meat and fish protein. In “Fish and Krill Protein”, Processing technology. Appl. Sci. Publishers Ltd. 1-56. London.
Suzuki, T. and Migita, M. 1962. Post-mortem change of fish myosin Some physicochemical changes with special reference to species and lethal conditions of fish. Bull. Jap. Soc. Sci. fish. 28: 61-69.
Sych, J., Lacroix, C., Adambounon, L. T. and Castaigne, F. 1990a. Cryoprotective effects of lactitol, Palatinit and polydextrose on cod surimi proteins during frozen storage. J. Food Sci. 55: 356-361.
Sych, J., Lacroix, C., Adambounon, L. T., and Castaigne, F. 1990b. Cryoprotective effects of some materials on cod surimi proteins during frozen storage. J. Foos Sci. 55: 1222-1237.
Toyohara, H., Sakata, T., Yamashita, K., Kinoshita, M., and Shimizu, Y. 1990. Degradation of oval-filefish meat gel caused by myofibrillar proteinases. J. Food Sci. 55: 364-374.
Tsai, G. J., Lin, S. M. and Jiang, S. T. 1996. Transglutaminase from Streptoverticillium ladakanum and application to minced fish meat. J. Food Sci. 61: 1235-1247.
Tsukamasa, Y., Sato, K., Shimizu, Y., Imai, C., Sugiyama, M., Minegishi, Y. and Kawabata, M. 1993. e-(g-glutamyl) lysine cross-link formation in sardine myofibril sol during setting at 25℃. J. Food Sci. 58: 785-797.
Ueda, T., Shimizu, Y. and Shimidu, W. 1964. Studies on muscle of aquatic animals. 42. Species difference in fish actomyosin (part 2). Relation between heat-denaturing point and species. Bull. Jap. Soc. Sci. Fish. 31: 352-364.
Wan, J., Kimura, I. and Seki, N. 1995. Inhibitory factors of transglutaminase in salted salmon meat paste. Fisheries Sci. 61: 968-972.
Wan, J., Kimura, I., Satake, M. and Seki, N. 1994. Effect of calcium ion concentration on the gelling properties and transglutaminase activity of walleye Pollock surimi paste. Fisheries Sci. 60: 107-113.
Wright, D. J., Leach, I. B. and Wilding, P. 1977. Differential scanning calorimetric studies of muscle and its constituent protein. J. Sci. Food Agric. 28: 557-568.
Wu, M. C., Akahane, T., Lanier, T. C. and Hamann, D. D. 1985a. Thermal transitions of actomyosin and surimi prepared from Atlantic croaker as studied by differential scanning calorimetry. J. Food Sci. 50: 10-18.
Wu, M. C., Lanier, T. C. and Hamann, D. D. 1985b. Thermal transitions of admixed starch/fish protein systems during heating. J. Food Sci. 50: 20-29.
Xiong, Y. L. and Brekke, C. J. 1989. Change in protein solubility and gelation properties of chicken myofibrils during storage. J. Food Sci. 54: 1141-1157.
Yasui, T., Ishioroshi, M. and Samejima, K. 1980. Heated-induced gelation of myosin in the presence of actin. J. Food Biochem. 4: 61-68.
Yasui, T., Ishioroshi, M. and Samejima, K. 1982. Effect actomyosin on heat-induced gelation of myosin. Agric. Biol. Chem. 46: 1049-1059.
Yasunaga, K., Abe, Y., Nishioka, F. and Arai, K. 1998. Change in quality of preheated gel and two-step heated gel from walleye pollack and chum salmon on addition of microbial transglutaminase. Nippon Suisan Gakkaishi 64: 702-716.
Ziegler, G. R. and Acton, J. C. 1984. Mechanisms of gel formation by proteins of muscle tissue. Food Technol. 38: 77-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top