吳清熊。1987。魚肉蛋白質。p. 63. 華香園出版社。台北。
吳清熊。1991。水產化學。p.43-44. 華香園出版社。台北。
孫朝棟。1999。魚漿加工技術。華香園出版社。台北。
祝永平。1993。以示差掃描熱量分析技術探討淡水吳郭魚魚漿成膠機構。國立臺灣海洋大學食品科學系碩士學位論文。陳福隆。1993。肌肉僵直度新鑑視方法的建立─吳郭魚鈣引發肌肉收縮之示差熱分析。國立臺灣海洋大學食品科學系碩士學位論文。基隆。黃一菁。1993。利用熱分析技術研究肌肉/肉漿之相轉移及魷魚魚漿成膠機制。國立臺灣海洋大學食品科學系碩士學位論文。基隆。黃娟。1994。肌原纖維蛋白質多重組態之熱分析鑑識。國立台灣海洋大學食品科學系碩士學位論文。基隆。
林雅華。1996。青魚死後僵直及嫩化作用對肉品品質的影響。 國立臺灣海洋大學食品科學系碩士學位論文。基隆。蘇崇文。1996。以DSC、TRM、TSRM研究魚肉及魚糕品質。國立臺灣海洋大學水產食品科學系博士學位論文。基隆。黃壬鍵。1997。吳郭魚肉在常溫儲藏及水煮加工肉質變化。國立臺灣海洋大學食品科學系碩士學位論文。基隆。楊麗鳳。1998。紅甘生魚片品質指標之研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。陳怡伶。1998。吳郭魚、鱈魚及其混合魚漿之靜置促凝膠機制及品質改良。國立臺灣海洋大學食品科學研究所碩士論文。基隆。何淇義。2000。吳郭魚魚漿之靜置處理條件對魚糕品質的影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆。談啟興。2000。MTRM儀器分析法和萃取法對吳郭魚死後僵直和嫩化進程的鑑識。國立臺灣海洋大學食品科學系碩士學位論文。基隆。林昶宇。2001。吳郭魚魚漿擂潰條件之最適化及添加物影響魚糕品質之研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。Akahane, T., Chihara, S., Yoshida, Y., Tsuchiya, T., Noguchi, S., Ookami, H., and Matsumoto, J. J. 1981. Application of differential scanning calorimetry to food technological study of fish meat gels. Bull. Jap. Soc. Sci. Fish. 47: 105-111.
Alvarez, C., Couso, I., and Tejada, M. 1995. Sardine surimi gels as affected by salt concentration, blending, heat treatment and moisture. J. Food Sci. 60: 622-634.
Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H., and Motoki, M. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2643.
Arai, K., Hasnain, A., and Takano, Y. 1976. Species specificity of muscle proteins of fishes against thermal and urea denaturation. Bull. Jap. Soc. Sci. Fish. 42: 687-692.
Araki, H. and Seki, N. 1993. Comparison of reactivity of trans- glutaminase to various fish actomyosin. Bull. Jap. Soc. Fish. 59: 711-718.
Asagami, T., Ogiwara, M., Wakameda, A., and Noguchi, S. F. 1995. Effect of microbial transglutaminase on the quality of frozen surimi made from various kinds of fish species. Fisheries Sci. 61: 267-272.
Asghar, A., Samejima, K., and Yashi, T., 1985. Functionality of muscle proteins in gelation mechanisms of structured meat products. Crit. Rev. Food Sci. Nutr. 22: 22-27.
Atsumi, T., Wakameda, K. and Noguchi, S. F. 1995. Frozen storage of surimi containing microbial transglutaminase made from various kinds of fish species. Fisheries Sci. 61: 458-463.
Backer-Royer, C.-de, Traore, F., and Meunier, J.-C. 1992. Polymerization of meat and soybean proteins by human placental calcium-activatived factor ⅩⅢ. J. Agric. Food Chem. 40: 2052-2056.
Bensadoun A and Weinstein D. 1976. Assay of proteins in the presence of interfering materia. Anal Biochem. 70: 241-250.
Buttkus, H. 1970. The sulfhydryl content of rabbit and trout myosin in relation to protein stability. Can. J. Biochem. 49: 97-104.
Connell, J. J. 1961. the relative stabilities of the skeletal-muscle myosin of some animals. Biochem. J. 80: 503-512.
Ebashi, S. and Endo, M. 1968. Calcium and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123-135.
Ellekjær, M. R., Tormod, N., and Baardseth, P. 1996. Milk proteins affect yield and sensory quality of cooked sausages. J. Food Sci. 61: 660-670.
Folk, J. E. 1980. Transglutaminase. Annual Review Biochemistry. 49: 517-521.
Folk, J. E. and Chung. S. I. 1985. Transglutaminase. In “Method in Enzymology”, volume 113. A. Meister, Academic Press, Inc., Orlando.
Folk, J. E. and Cole, P. W. 1966. Transglutaminase: Mechanistic features of the active site as determined by kinetic and inhibitor studies. Biochim. Biophys. Acta. 122: 244-256.
Folk, J. E., Cole, P. W. and Mullooly, J. P. 1967a. Mechanism of action of guinea pig liver transglutaminase.Ⅱ: The role of metal in enzyme activation. J. Biol. Chem. 242: 1838-1845.
Folk, J. E., Cole, P. W. and Mullooly, J. P. 1967b. Mechanism of action of guinea pig liver transglutaminase.Ⅲ: The metal-dependent hydrolysis of —nitrophenyl acetate; further observations on the role of metal in enzyme activation. J. Biol. Chem. 242: 2615-2625.
Goll, D. E. and Robson, R. M. H. 1977. Muscle protein. In ”Food protein. Whitaker, J. R., and Tannenbaum, S. R. (Eds.) AVI Publishing Co., Westport, Connecticut. U. S. A.
Hastings, R. J., Rodger, G. W., Park, R., Mattews, A. D., and Andersona, E. M. 1985. Differential scanning calorimetry of fish muscle: The effect of processing and species variation. J. Food Sci. 50: 503-512.
Icekson, I. and Apelbaum, A. 1987. Evidence for transglutaminase activity in plant tissue. Plant Physiology 84: 972-981.
Ikura, K., Kometani, T., Yoshikawa, M., Sasaki, R., and Chiba, H. 1980. Crosslinking of casein components by transglutaminase. Agric. Biol. Chem. 44: 1567-1573.
Imai, C., Tsukamasa, Y., Sugiyama, M., Minegishi, Y., and Shimizu, Y. 1996. The effect of setting temperature on the relationship between e-(g-glutamyl) lysine cross-link content and breaking strength in salt-ground meat of sardine and Alaska Pollack. Nippon Suisan Gakkaishi 62: 104-115.
Ishioroshi, M., Samejima, K., and Yasui, T. 1982. Further studies on the roles of the head and tail regions of the myosin molecule in heat-induced gelation of myosin. J. food Sci. 47: 114-123.
Iso, N., Mizuno, H., Ogawa, H., Mochizuki, Y., and Masuda, N. 1991. Differential Scanning Calorimetry on fish meat paste. Nippon Suisan Gakkaishi. 62: 104-111.
Jacob, D. K. and Sebranek, J. G. 1980. Use of prerigor beef for frozen ground beef patties. J. Food Sci. 45: 648-657.
Jiang, S. T. and Lee, J. J. 1993. Purification, characterization, and utilization of pig plasma factor ⅩⅢa. J. Agric. Food Chem. 40: 1101-1107.
Joe, M. R. and Carrie, E. R. 1984. Protein functionality for food scientists. In“Food Protein Chemistry”, Joe, M. R. and Carrie, E. R. (Eds.) New York.
Joseph, D., Lanier, T. C., and Hamann, D. D. 1994. Temperature and pH effect transglutaminase-catalyzed ”Setting” of crude fish actomyosin. J. Food Sci. 59: 1018-1023.
Kamath, G. G., Lanier, T. C., Foegeding, E. A., and Hamann, D. D. 1992. Nondisulfide covalent cross-linking of myosin heavy chain in “Setting” of Alaska pollock and Atlantic croaker surimi. J. Food Biochem. 16: 151-170.
Kato, N., Nakagawa, N. and Terui, S. 1989. Change in myofibrillar protein in surimi during grounding with NaCl in relation to operating condition of a continuous mixer. Nippin Suisan Gakkaishi. 55: 1243-1251.
Kijowski, J. M. and Mast, M. G. 1988a. Effect of sodium chloride and phosphates in the thermal properties of chicken meat proteins. J. Food Sci. 53: 363-372.
Kijowski, J. M. and Mast, M. G. 1988b. Thermal properties of proteins in chicken broiler tissues. J. Food Sci. 53: 367-374.
Kimura, I., Sugimoto, M., Toyoda, K., Seki, N., Arai, K. I., and Fujita, T. 1991. A study on cross-linking reaction of myosin in kamaboko "suwari" gels. Nippon Suisan Gakkaishi 57: 1389-1394.
Klesk, K., Yongsawatdigul, J., Park, J. W., Viratchakul, S. and Virulhakul, P. 2000. Gel forming ability of tropical tilapia surimi as compared with Alaska Pollock and Pacific whiting surimi. J. Aquat. Food Prod. Technol. 9: 91-95.
Korhonen, R. W., Lanier, T. C., and Giesbrecht F. 1990. An evaluation of simple method for following rigor development in fish. J. Food Sci. 55: 346-351.
Kumazawa, Y., Nakanishi, K., Yasueda., H., and Motoki, M. 1996. Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Sci. 62: 959-969.
Lowry, O. H., Rosebriugh, N. T., Farr, A. L., and Randull, R. J. 1951. Protein measurement with folinphenol reagent. J. Biol. Chem. 193: 256-278.
Lee, C. M. 1984. Surimi process technology. Food Technol. 38: 69.
Lee, C. M. 1985. A pilot plant study of surimi making properties of Red Hake (Urophycis chuss) in proceeding of the Intl. Sym. on Eng. Seafood Including Surimi, NFI.
Lee, C. M. 1994. Surimi processing from lean fish. In “Seafoods: Chemistry, Processing Technology and Quality”, Shahidi F. and Botta J. R. (Eds.), pp. 263-287. Blackie Academic and Professional, London.
Lee, H. G., Lanier, T. C., Hamann, D. D., and Knopp, J. A. 1997. Transglutaminase effects on low temperature gelation of fish protein sols. J. Food Sci. 62: 20-24.
Lee, N., Seki, N., kato, N., Nakagawa, N., Terui, S., and Aria, K. 1990. Gel forming ability and crossing-linking ability of myosin heavy chain in salted meat paste from threadfin bream. Nippon Suisan Gakkaishi. 56: 329-336.
Lefevre, F., Fauconneau, B., Ouali, A., and Culioli, J. 1998. Thermal gelation of brown trout myofibrils: effect of muscle type, heating rate and protein concentration. J. Food Sci. 63: 299-304.
Lo, J. R., Mochizuki, Y., Nagashima, Y., Tanaka, M., Iso, N., and Taguchi, T. 1991. Thermal transitions of myosins/subfragments from black marlin (Makaira mazara) ordinary and dark muscles. J. Food Sci. 56: 954-970.
Lowey, S., Slayter, H. S., Weeds, A. G., and Baker, H. 1969. Substructure of the myosin moleule I. Subfragments of myosin by enzymic degradation. J. Mol. Biol. 42: 1-11.
Montejano, J. G., Hamann, D. D., and Lanier, T.C. 1983. Final strengths and rheological changes during processing of thermally induced fish muscle gel. J. Rheology 27: 557-564.
Montejano, J. G., Hamann, D. D., and Lanier, T. C. 1984. Thermally induced gelation of selected comminuted muscle systems-Rheological changes during processing, final strengths and microstructure. J. Food Sci. 49: 1496-1504.
Motoki, M. and Seguro, K. 1998. Transglutaminase and its use for food processing. Trends Food Sci. Technol. 9: 204-217.
Nakai, S. and Lin-Chan, E. 1988. Hydrophobic interaction in food systems, pp. 63-128. CRC press, Inc. Boca Raton.
Nishimoto, S., Hashimoto, A., Seki, N., Kimura, I., Toyoda, K., Fujita, T., and Arai, K. 1987. Influencing factors on changes in myosin heavy chain and jelly strength of salted meat paste from Alaska pollack during setting. Nippon Suisan Gakkaishi. 55: 2011-2027.
Niwa, E. 1975. Role of hydrophobic bonding in gelation of fish flesh paste. Bull. Jap. Soc. Sci. Fish. 41: 907-919.
Niwa, E., Sato, K., Suzuki, R., Nakayama, T. and Hamada, I. 1981. Fluorometric study of setting properties of fish flesh sol. Bull. Jap. Soc. Sci. Fish. 47: 817-826.
Niwa, E. 1992. Chemistry of surimi gelation. In “Surimi Technology”, T. C. Lanier. and C. M. Lee (Eds.), pp. 389-427. Marcel Dekker, Inc., New York.
Niwa, E., Nowsad, A. A. and Kanoh, S. 1991a. Comparative studies on the physical parameters of kamabokos treated with the low temperature setting and high temperature setting. Nippon Suisan Gakkaishi 57: 105-121.
Niwa, E., Suzumura, T., Nowsad, A. AKM., and Kanoh, S. 1993. Setting of actomyosin paste containing few amount of transglutaminase. Nippon Suisan Gakkaishi. 59: 2043-2046.
Niwa, E., Yumiko, M., Nowsad, A. AKM., and Kanoh, S. 1995. Specificity of surimi gel formability of fish flesh paste in which transglutaminase was inactivated. Fisheries Sci. 61: 107-109.
Noguchi, S. 1974. The control of denaturation of fish muscle proteins during frozen storage. Doctoral Dissertation Sophia. Univ., Tokyo, Japan.
Noguchi, S. F. 1986. Dynamic viscoelastic changes of surimi (minced fish meat) during thermal gelation. Bull. Japan. Soc. Sci. Fish. 52: 1261-1274.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994a. Setting of transglutaminase-free actomyosin paste prepared from Alaska Pollock surimi. Fisheries Sci. 60: 295-297.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994b. Setting of surimi paste in which transglutaminase is inactivated by p-chloromercuribenzoate. Fisheries Sci. 60: 185-188.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1995. Effect of sarcoplasmic proteins on the setting of transglutaminase-free paste. Fisheries Sci. 61: 1039-1040.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1996. Contribution of transglutaminase to the setting of fish pastes at various temperatures. Fisheries Sci. 62: 94-97.
Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T., and Tsuchiya, T. 1993. a-helical structure of fish actomyosin: changes during setting. J. Food Sci. 60: 197-204.
Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T., and Tsuchiya, T. 1995. Thermal stability of fish myosin. Comp. Biochem. Physiol. 106B: 517-524.
Park, J. W. and Lanier, T. C. 1987. Combined effects of phsophates and a sugar or polyol on protein stabilization of fish myofibrils. J. Food Sci. 52: 1509-1521.
Park, J. W. and Lanier, T. C. 1989. Scanning calorimetric behavior of tilapia myosin and actin due to processing of muscle and protein purification. J. Food Sci. 54: 49-54.
Park, J. W. Lanier, T. C., and Pilkington, D. H. 1993. Cryostabilization of functional properties of pre-rigor and post-rigor beef by dextrose polymer and/or phosphates. J. Food. Sci. 58: 467-475.
Park, J. W. 2000. Surimi and surimi seafood. Marcel Dekker, Inc. New York.
Pearson, A. M. and Young, R. B. 1990. Muscle and Meat Biochemistry. A. M. Pearson. and R. B.Young (Eds.), pp. 66-129. Academic Press, New York.
Peterson, G. L. 1979. Review of the folinb phenol protein quantitation method of lowry, rosebrough, farr, and randal. Anal. Biochem. 100: 201-215.
Quinn, J. R., Raymond, D. P. and Harwalkar, V. R. 1980. Differential scanning calorimetry of meat proteins as affected by processing treatment. J. Food Sci. 45: 1146-1157.
Ragshaw, C. R. 1993. Contractile preteins. In “ Muscle Contraction ”, C. R. Ragshaw (Ed.), pp. 33-55. Chapman & Hall, London.
Sakamoto, H., Kumazawa, Y., Toiguchi, S., Seguro, K., Soeda, T., and Motoki, M. 1995. Gel strength enhancement by addition of microbial transglutaminase during onshore surimi manufacture. J. food sci. 60: 300-304.
Samejima, K., Ishioroshi, M., and Yasui, T. 1981. Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. J. Food Sci. 26: 1412-1428.
Samejima, K., Ishioroshi, M., and Yasui, T. 1983. Scanning calorimetric studies on thermal denaturation of myosin and its subfragments. Agric. Biol. Chem. 47: 2373-2384.
Sano, T., Noguchi, S. F., Matsumoto, J. J., and Tsuchiya, T. 1990. Thermal gelation characteristics of myosin subfragment. J. Food Sci. 55: 55-68.
Seguro, K., Kumazawa, Y., Ohtsuka, T., Toiguchi, S., and Motoki, M. 1995. Microbial transglutaminase and e-(g-glutamyl) lysine cross-link effects on elastic properties of kamaboko gels. J. Food Sci. 60: 305-318.
Seki, N., Uno, H., Lee, N. H., Kimura, I., Toyoda, K., Fujita, T., and Arai, K. I. 1990. Transglutaminase activity in Alaska pollack muscle and surimi and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-134.
Stabursvik, E. and Martens, H. 1980. Thermal denaturation of proteins in post rigor muscle tissue as studied by differential scanning calorimetry. J. Sci. Food Agric. 31: 1034-1045.
Suzuki, T. 1981. Characteristics of fish meat and fish protein. In “Fish and Krill Protein”, Processing technology. Appl. Sci. Publishers Ltd. 1-56. London.
Suzuki, T. and Migita, M. 1962. Post-mortem change of fish myosin Some physicochemical changes with special reference to species and lethal conditions of fish. Bull. Jap. Soc. Sci. fish. 28: 61-69.
Sych, J., Lacroix, C., Adambounon, L. T. and Castaigne, F. 1990a. Cryoprotective effects of lactitol, Palatinit and polydextrose on cod surimi proteins during frozen storage. J. Food Sci. 55: 356-361.
Sych, J., Lacroix, C., Adambounon, L. T., and Castaigne, F. 1990b. Cryoprotective effects of some materials on cod surimi proteins during frozen storage. J. Foos Sci. 55: 1222-1237.
Toyohara, H., Sakata, T., Yamashita, K., Kinoshita, M., and Shimizu, Y. 1990. Degradation of oval-filefish meat gel caused by myofibrillar proteinases. J. Food Sci. 55: 364-374.
Tsai, G. J., Lin, S. M. and Jiang, S. T. 1996. Transglutaminase from Streptoverticillium ladakanum and application to minced fish meat. J. Food Sci. 61: 1235-1247.
Tsukamasa, Y., Sato, K., Shimizu, Y., Imai, C., Sugiyama, M., Minegishi, Y. and Kawabata, M. 1993. e-(g-glutamyl) lysine cross-link formation in sardine myofibril sol during setting at 25℃. J. Food Sci. 58: 785-797.
Ueda, T., Shimizu, Y. and Shimidu, W. 1964. Studies on muscle of aquatic animals. 42. Species difference in fish actomyosin (part 2). Relation between heat-denaturing point and species. Bull. Jap. Soc. Sci. Fish. 31: 352-364.
Wan, J., Kimura, I. and Seki, N. 1995. Inhibitory factors of transglutaminase in salted salmon meat paste. Fisheries Sci. 61: 968-972.
Wan, J., Kimura, I., Satake, M. and Seki, N. 1994. Effect of calcium ion concentration on the gelling properties and transglutaminase activity of walleye Pollock surimi paste. Fisheries Sci. 60: 107-113.
Wright, D. J., Leach, I. B. and Wilding, P. 1977. Differential scanning calorimetric studies of muscle and its constituent protein. J. Sci. Food Agric. 28: 557-568.
Wu, M. C., Akahane, T., Lanier, T. C. and Hamann, D. D. 1985a. Thermal transitions of actomyosin and surimi prepared from Atlantic croaker as studied by differential scanning calorimetry. J. Food Sci. 50: 10-18.
Wu, M. C., Lanier, T. C. and Hamann, D. D. 1985b. Thermal transitions of admixed starch/fish protein systems during heating. J. Food Sci. 50: 20-29.
Xiong, Y. L. and Brekke, C. J. 1989. Change in protein solubility and gelation properties of chicken myofibrils during storage. J. Food Sci. 54: 1141-1157.
Yasui, T., Ishioroshi, M. and Samejima, K. 1980. Heated-induced gelation of myosin in the presence of actin. J. Food Biochem. 4: 61-68.
Yasui, T., Ishioroshi, M. and Samejima, K. 1982. Effect actomyosin on heat-induced gelation of myosin. Agric. Biol. Chem. 46: 1049-1059.
Yasunaga, K., Abe, Y., Nishioka, F. and Arai, K. 1998. Change in quality of preheated gel and two-step heated gel from walleye pollack and chum salmon on addition of microbial transglutaminase. Nippon Suisan Gakkaishi 64: 702-716.
Ziegler, G. R. and Acton, J. C. 1984. Mechanisms of gel formation by proteins of muscle tissue. Food Technol. 38: 77-86.