跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯奕安
研究生(外文):Hou yi an
論文名稱:冷凍阿拉斯加鱈魚魚漿所製備魚糕成品質感之評估
論文名稱(外文):Texture profile of fish-gel prepared from frozen Alaska Pollack surimi
指導教授:龔鳴盛龔鳴盛引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:阿拉斯加鱈魚魚漿魚糕物性
外文關鍵詞:Alaska Pollacksurimifish-geltexture quality
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1048
  • 評分評分:
  • 下載下載:164
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本實驗第一部份的研究是以肌動凝蛋白抽出率、硫氫基染色法、熱掃瞄剛性測定儀 (TSRM)和示差掃瞄熱分析儀 (DSC)為工具,探究市販進口冷凍阿拉斯加無鹽水洗鱈魚碎肉魚漿冷凍變性程度、製成加鹽魚漿之擂潰及靜置處理過程中的肌動凝蛋白 (actomyosin;AM)變化。實驗結果發現,冷凍鱈魚魚漿不僅鹽溶性蛋白質抽出率僅殘存66%,反映已發生相當程度的冷凍凝聚變性外,所有Myosin-head中的硫氫鍵 (SH)亦已氧化形成雙硫鍵 (SS)。加鹽擂潰可令AM的Myosin-tail充分溶出和活化,並於靜置中藉transglutaminase (TGase)催化發生M-tail彼此間的架橋,反映冷凍鱈魚魚漿的凝膠主由M-tail而非M-head的熱變性所造成。
第二部份的研究則是探討添加水和馬鈴薯澱粉等添加物進行實際生產之魚糕品質變化。實驗結果首先發現,添加物添加並不會影響最適靜置條件,添加添加物之魚漿於25℃分別靜置0小時、4.5小時、及8小時可獲得無TGase、部分TGase、及高TGase催化架橋之成品以供比較。經與市販煉製品的三類產品:優質魚板 (1.25~1.5cm)>一般魚板 (1.00~1.15 cm)>中式魚丸 (0.75~0.95 cm)相較發現,鱈魚魚漿產品之彈性皆超越中式魚丸,僅次於製造高彈性之魚板類產品。其中未靜置處理者僅能生產彈性及硬度皆遜於市販一般魚板之產品;4.5小時靜置者即可在添加水25%~80%、澱粉5%~10%下生產與市販優質魚板相同品及之產品;8小時靜置者則可在添加水40%~100%、澱粉5%~10%下生產出優於市販優質魚板之產品。
Abstract
The first part of this research was to study the nature of frozen denature of import Alaska Pollack surimi (75%W.C.) used for this study, as well as the changes of actomyosin (AM) in different stages of fish-gel preparation by combined uses of salt-soluble protein extractability, SH group analysis, DSC, and TSRM. It was found that only 66% of salt-soluble protein could be recovered by extraction, reflecting high frozen induced AM aggregation had occurred. Disappearance of SH group in surimi indicated that strong oxidative denaturation had occurred at M-head. That extremely large endothermic peak of M-tail being of the none frozen denature portion AM. The gel strength improvement achieved from the TGase induced inter-M-tail transamination crosslinking formed during holding treatments.
The second part of this research was to study the changes of fish-gel quality as effect by water, potato starch, and sucrose additions to surimi. Preliminary study proved that the same optimized holding condition could be preserved while surimi being added with additives being held at 25℃ for 0hr, 4.5hr, and 8hr to arrow none, partial, and high amount of TGase induced crosslinking to be formed. Comparison to three kinds of commercial products; Chinese fish-ball, regular kamaboko, and high-grade kamaboko, the fish-gel prepared by using above holding conditions should superior elasticity over the commercial Chinese fish-ball. Among then, fish-gel resulted from 0hr holding posses a texture of slightly weaker hardness and elasticity than commercial regular kamaboko; where as fish-gel resulted from holding for 4.5hr (water 25%~80%, starch 5%~10%) and 8hr (water 40%~100%, starch 5%~10%) could reach for even excess the quality of commercial regular-grade and high-grade kamaboko.
目 錄
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
第一章 前言…………………………………………………...1
一、研究背景與目的………………………………….…………………1
二、文獻整理………………………………………….…………………3
1. 肌肉蛋白質組成……………………………….……………….…3
1.1 肌漿蛋白質…………………………………………………….3
1.2 肌原纖維蛋白質……………………...………………………..3
1.3 肌質蛋白質…………………………..………………………...5
2. 蛋白質凝膠機制…………………………………………………..5
2.1 蛋白質之變性………………………………………………….5
2.2 凝膠形成機制………………………………………………….5
3. 影響凝膠因子………………………………..……………………6
3.1 魚種…………………………………………………………….7
3.2 魚獲後鮮度…………………………………………………….7
3.3 pH值……………………………………………………………7
3.4 魚漿加工製程………………………………………………….8
3.5 添加物………………………………………………………...11
4. 示差掃瞄熱分析技術對肌肉蛋白質的研究……………………14
4.1 肌肉態熱分析的相關研究………………………….……..…14
4.2 單離態熱分析的相關研究………………………….………..15
4.3 魚漿態熱分析的相關研究………………………….………..16
5. 熱掃描剛性測定儀(TSRM)對肉漿的探討………..…………17
6. 硫氫基染色法對M-head熱變性行為之研究………………….17
第二章 實驗材料與方法………………………………………….19
一、原料…………………………………………….……………….19
二、實驗儀器設備………………………………….……………….19
三、實驗方法……………………………………….……………….19
1. pH值測定………………………….………….……………….19
2. 水分含量測定…………………………….…………………..20
3. 鱈魚水洗加鹽魚漿的備製……..…………………………….20
4. 鹽溶性蛋白質之抽取………………………………………...20
5 示差掃描熱量分析 (DSC)……...…………………………….20
6. 硫氫基染色法之測定析……..……...………………………..21
7. 魚漿TSRM靜置及蒸煮熱凝膠分析………………………..21
8. 含水率不同的魚漿製備……….……………………………..22
9. 添加澱粉的魚漿製備………………………………………...22
10. 魚漿凝膠製品的製備…………………………………….…23
11. 魚漿凝膠製品的物性品質測定…………………………….24
12. 曲摺試驗 (Holding test)……………….……………………25
13 官能評定試驗………………………………………………..26
第三章 結果與討論-壹……………………………...……….27
第一節 進口冷凍阿拉斯加鱈魚魚漿冷凍變性和本質之分析….…...27
1. 鹽溶性蛋白質抽出率指標………………………………………27
2. 硫氫基殘留量指標………………………………………………28
3. DSC圖譜分析……………………………………………………28
第二節 加鹽擂潰和靜置操作中肌動凝蛋白質組態之變化...……….29
(1) 擂潰操作後,加鹽魚漿之本質分析…………………………..29
1. 硫氫基殘留量指標…………………………………………..…..29
2. DSC圖譜分析……………………………………………………30
(2)靜置處理後,加鹽魚漿之本質分析……………………………30
第三節 加熱蒸煮中肌動凝蛋白直熱變性與黏彈性變化的關係……31
1. 未靜置處理的加鹽魚漿.…………………………………………32
2. 靜置至第一階段的加鹽魚漿…………………………………….33
3. 靜置至第二階段的加鹽魚漿…………………………………….33
第五節 結論……………………………………………………………34
第四章 結果與討論-貳………………………………………35
第一節 不同添加物及添加量對最適靜置條件的影響……………....35
第二節 添加物綜合添加對魚糕成品質感之影響……………………36
1. 市販品之質感評估圖…..……………………………………….36
2. 添加物綜合添加對魚糕質感之影響…..……………………….36
第三節 結論……………………………………………………………39
參考文獻………………………………………………………………..40
圖 表 目 錄
圖一 (a) 進口冷凍阿拉斯加水洗無鹽鱈魚碎肉魚漿, (b) 未僵直吳郭魚肌肉, (c) 全僵直吳郭魚肌肉之DSC圖譜分析。……………53
圖二 (a) 冷凍阿拉斯加鱈魚加鹽魚漿, (b) 吳郭魚加鹽魚漿之DSC圖譜分析。……………………….……………..…………………...54
圖三 25℃靜置 (a) 0hr, (b) 4.5hr, (c) 8hr之2.5% NaCl鱈魚加鹽魚漿模擬蒸煮過程之DSC圖譜分析。………………..………………..55
圖四 25℃靜置 (a) 0hr, (b) 4.5hr, (c) 8hr之2.5% NaCl 鱈魚魚漿模擬蒸煮昇溫過程及冷卻過程之TSRM圖譜變化。………...……...56
圖五 阿拉斯加鱈魚加鹽 (2.5% NaCl)魚漿添加不同水分和馬鈴薯澱粉後,在25℃靜置過程中魚糕成品質感之變化。..…….….…57
圖六 台灣市販魚板與一般魚丸抽樣產品的質感評估圖。…….……58
圖七 阿拉斯加鱈魚魚漿 (75% W.C.)添加不同水分 (25%~100%),對其加水魚漿添加1.5% NaCl擂潰後,再添加澱粉 (0%~30%)及5%蔗糖,未靜置處理所生產的魚糕質感變化圖。..……………..…….………………………………….……59
圖八 阿拉斯加鱈魚魚漿 (75% W.C.)添加不同水分 (25%~100%),對其加水魚漿添加1.5% NaCl擂潰後,再添加澱粉 (0%~30%)及5%蔗糖,經25℃靜置4.5小時所生產的魚糕質感變化圖。..…….…….………………………………………….……60
圖九 阿拉斯加鱈魚魚漿 (75% W.C.)添加不同水分 (25%~100%),對其加水魚漿添加1.5% NaCl擂潰後,再添加澱粉 (0%~30%)及5%蔗糖,經25℃靜置8小時所生產的魚糕質感變化圖。..……….….………………………………………….……61
表一 變性指標:不同製程之阿拉斯加鱈魚魚漿鹽溶性蛋白質抽出率變化。……………………………………………………………..62
表二 冷凍變性指標:不同製程之阿拉斯加鱈魚魚漿SH基殘量變化。…………………………………..………………….………..63
表三 市販品與最適配方鱈魚魚糕之物性品質比較。……………….64
附錄一 以細切法製備之2.5% NaCl 吳郭魚魚漿在快速昇溫及降溫 (6℃/min)過程中,TSRM之黏彈性變化。……………………………………………………………….65
何淇義。2000。吳郭魚魚漿之靜置處理條件對魚糕品質的影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
林昶宇。2001。吳郭魚魚漿擂潰條件之最適化及添加物影響魚糕品質之研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
林雅華。1996。青魚死後僵直及嫩化作用對肉品品質的影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
周志正。2002。阿拉斯加鱈魚魚漿生產煉製品的擂潰及靜置製程之機制及最適化研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
孫朝棟。1999。魚漿加工技術[增修版]。P. 36,53-156. 華香園出版社。台北。
祝永平。1993。以示差掃描熱量分析技術探討淡水吳郭魚魚漿成膠機構。國立臺灣海洋大學食品科學系碩士學位論文。
許聖翰。2001。以示差掃瞄熱量分析儀、熱掃瞄剛性測定儀、體積膨脹儀和硫氫基染色法探究吳郭魚魚漿蒸煮凝膠之機制。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
陳怡伶。1998。吳郭魚、鱈魚及其混合魚漿之靜置促凝膠機制及品質改良。國立臺灣海洋大學食品科學研究所碩士論文。基隆。
陳東輝。1995。吳郭魚死後僵直中嫩化作用對肉品品質的影響。 國立臺灣海洋大學食品科學系碩士學位論文。基隆。
陳福隆。1993。肌肉僵直度新鑑視方法的建立─吳郭魚鈣引發肌肉收縮之示差熱分析。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
黃一菁。1993。利用熱分析技術研究肌肉/肉漿之相轉移及魷魚魚漿成膠機制。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
黃壬鍵。1997。吳郭魚肉在常溫儲藏及水煮加工肉質變化。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
黃娟。1994。肌原纖維蛋白質多重組態之熱分析鑑識。國立台灣海洋大學食品科學系碩士學位論文。基隆。
楊麗鳳。1998。紅甘生魚片品質指標之研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
劉馨嵐。1998。探討不同結著劑對鯖魚漿品質之影響及其製品之開發。私立中國文化大學生活應用科學研究所碩士學位論文。台北。
蘇崇文。1996。以DSC、TRM、TSRM研究魚肉及魚糕品質。國立臺灣海洋大學水產食品科學系博士學位論文。基隆。
Akahane, T., Chihara, S., Yoshida, Y., Tsuchiya, T., Noguchi, S., Ookami, H., and Matsumoto, J. J. 1981. Application of differential scanning calorimetry to food technological study of fish meat gels. Bull. Jap. Soc. Sci. Fish. 47: 105-111.
Akahane, Y., and Shimizu, Y. 1989. Effects of pH and sodium chloride on the water holding capacity of surimi and its gel. Nippon Suisan Gakkaishi 55: 1827-1832.
Alvarez, C., Couso, I., and Tejada, M. 1995. Sardine surimi gels as affected by salt concentration, blending, heat treatment and moisture. J. Food Sci. 60: 622-634.
Alvarez, C., Couso, I., and Tejada, M. 1999. Microstructure of suwari and kamaboko sardine surimi gels. J. Sci. Food Agric. 79: 839-845.
Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H., and Motoki, M. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2643.
Arai, K., Hasnain, A., and Takano, Y. 1976. Species specificity of muscle proteins of fishes against thermal and urea denaturation. Bull. Jap. Soc. Sci. Fish. 42: 687-692.
Araki, H. and Seki, N. 1993. Comparison of reactivity of trans- glutaminase to various fish actomyosin. Bull. Jap. Soc. Fish. 59: 711-718.
Asghar, A., Samejima, K., and Yashi, T., 1985. Functionality of muscle proteins in gelation mechanisms of structured meat products. Crit. Rev. Food Sci. Nutr. 22: 22-27.
Barreto, P. L. M., Beirão, L. H., Soldi, M. S., and Soldi, V. 2000. Studies on differential scanning calorimetry and thermogravimetry of tilapia (Oreochromis nilotica) surimi, surimi/starch and surimi/starch/ carrageenan systems. J. Food Sci. Technol. 37: 265-272.
Burgarella, J. C., Lanier, T. C., and Hammann, D. D. 1985. Effects of added egg white or whey protein concentrate on thermal transitions in rigidity of croaker surimi. J. Food Sci. 50: 1588-1591.
Buttkus, H. 1970. The sulfhydryl content of rabbit and trout myosin in relation to protein stability. Can. J. Biochem. 49: 97-104.
Chen, H. H., Chiu, E. M., and Hung, J. R. 1997 Color and gel-forming properties of horse mackerel (Trachurus japonicus) as related to washing regimes. J. Food Sci. 62: 985-992.
Connell, J. J. 1961. the relative stabilities of the skeletal-muscle myosin of some animals. Biochem. J. 80: 503-512.
Deng, J., Toledo, R.T., and Lillard, D.A. 1976. Effect of temperature and pH on protein-protein interaction in actomyosin solutions. J. Food Sci. 41: 273-279.
Ebashi, S. and Endo, M. 1968. Calcium and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123-135.
Ellekjær, M. R., Tormod, N., and Baardseth, P. 1996. Milk proteins affect yield and sensory quality of cooked sausages. J. Food Sci. 61: 660-670.
Folk, J. E. 1980. Transglutaminase. Annual Review Biochemistry. 49: 517-521.
Folk, J. E. and Cole, P. W. 1966. Transglutaminase: Mechanistic features of the active site as determined by kinetic and inhibitor studies. Biochim. Biophys. Acta. 122: 244-256.
Folk, J. E., Cole, P. W. and Mullooly, J. P. 1967a. Mechanism of action of guinea pig liver transglutaminase.Ⅱ: The role of metal in enzyme activation. J. Biol. Chem. 242: 1838-1845.
Folk, J. E., Cole, P. W. and Mullooly, J. P. 1967b. Mechanism of action of guinea pig liver transglutaminase.Ⅲ: The metal-dependent hydrolysis of —nitrophenyl acetate; further observations on the role of metal in enzyme activation. J. Biol. Chem. 242: 2615-2625.
Fukuda, Y., Tarakita, Z., Kawamura, M., Kakehata, K., and Arai, K. 1982. Denaturation of myofibrillar protein in chub mackerel. Bull. Jap. Soc. Sci. Fish. 48: 1627-1632.
Funatsu, Y., and Arai, K. 1991. The pH-dependence of changes in gel forming ability and myosin heavy chain of salt-ground meat from walleye pollack. Nippon Suisan Gakkaishi 57: 1973-1980.
Goll, D. E. and Robson, R. M. H. 1977. Muscle protein. In ”Food protein. Whitaker, J. R., and Tannenbaum, S. R. (Eds.) AVI Publishing Co., Westport, Connecticut. U. S. A.
Gomez-Guillén, M. C., Borderías, A. J. and Montero, P. 1996. Rheological properties of gels made from high and low quality sardine (Pilxhardus sardine) mince with added non muscle protein. J. Agric. Food Chem. 44:746-759.
Hastings, R. J., Rodger, G. W., Park, R., Mattews, A. D., and Andersona, E. M. 1985. Differential scanning calorimetry of fish muscle: The effect of processing and species variation. J. Food Sci. 50: 503-512.
Hermansson, A.M. 1978. Physico-chemical aspects of soy proteins structure formation. J. Texture Studies. 9: 33-39.
Icekson, I. and Apelbaum, A. 1987. Evidence for transglutaminase activity in plant tissue. Plant Physiology 84: 972-981.
Imai, C., Tsukamasa, Y., Sugiyama, M., Minegishi, Y., and Shimizu, Y. 1996. The effect of setting temperature on the relationship between e-(g-glutamyl) lysine cross-link content and breaking strength in salt-ground meat of sardine and Alaska Pollack. Nippon Suisan Gakkaishi 62: 104-115.
Ishioroshi, M., Samejima, K., and Yasui, T. 1982. Further studies on the roles of the head and tail regions of the myosin molecule in heat-induced gelation of myosin. J. food Sci. 47: 114-123.
Jacob, D. K. and Sebranek, J. G. 1980. Use of prerigor beef for frozen ground beef patties. J. Food Sci. 45: 648-657.
Joe, M. R. and Carrie, E. R. 1984. Protein functionality for food scientists. In“Food Protein Chemistry”, Joe, M. R. and Carrie, E. R. (Eds.) New York.
Kamath, G. G., Lanier, T. C., Foegeding, E. A., and Hamann, D. D. 1992. Nondisulfide covalent cross-linking of myosin heavy chain in “Setting” of Alaska pollock and Atlantic croaker surimi. J. Food Biochem. 16: 151-170.
Kato, N., Nakagawa, N. and Terui, S. 1989. Change in myofibrillar protein in surimi during grounding with NaCl in relation to operating condition of a continuous mixer. Nippin Suisan Gakkaishi. 55: 1243-1251.
Kijowski, J. M. and Mast, M. G. 1988a. Effect of sodium chloride and phosphates in the thermal properties of chicken meat proteins. J. Food Sci. 53: 363-372.
Kijowski, J. M. and Mast, M. G. 1988b. Thermal properties of proteins in chicken broiler tissues. J. Food Sci. 53: 367-374.
Kim, J. M. and Lee, C. M. 1985. Textural properties and structure of starch-reinforced surimi gels as affected by heat-setting. Paper No. 29, Presented at 30th Atlantic Fisheries Technological Conference. pp. 25-39. Boston, MA.
Kim, J. M. and Lee, C. M. 1987. Effect of starch of textural properties of surimi gel. J. Food Sci. 52: 722-728.
Kimura, I., Sugimoto, M., Toyoda, K., Seki, N., Arai, K. I., and Fujita, T. 1991. A study on cross-linking reaction of myosin in kamaboko "suwari" gels. Nippon Suisan Gakkaishi 57: 1389-1394.
Klesk, K., Yongsawatdigul, J., Park, J. W., Viratchakul, S. and Virulhakul, P. 2000. Gel forming ability of tropical tilapia surimi as compared with Alaska Pollock and Pacific whiting surimi. J. Aquat. Food Prod. Technol. 9: 91-95.
Korhonen, R. W., Lanier, T. C., and Giesbrecht F. 1990. An evaluation of simple method for following rigor development in fish. J. Food Sci. 55: 346-351.
Kumazawa, Y., Nakanishi, K., Yasueda., H., and Motoki, M. 1996. Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Sci. 62: 959-969.
Lanier, T. C., Lin, T. S., Liu, Y. M. and Hammann, D. D. 1982 Heat gelation properties of actomyosin and surimi prepared from Atlantic croaker. J. Food Sci. 47: 1921-1934.
Lawry, O. H., Rosebriugh, N. T., Farr, A. L., and Randull, R. J. 1951. Protein measurement with folinphenol reagent. J. Biol. Chem. 193: 256-278.
Lee, C. M. 1984. Surimi process technology. Food Technol. 38: 69.
Lee, C. M. 1985. A pilot plant study of surimi making properties of Red Hake (Urophycis chuss) in proceeding of the Intl. Sym. on Eng. Seafood Including Surimi, NFI.
Lee, C. M. 1994. Surimi processing from lean fish. In “Seafoods: Chemistry, Processing Technology and Quality”, Shahidi F. and Botta J. R. (Eds.), pp. 263-287. Blackie Academic and Professional, London.
Lo, J. R., Mochizuki, Y., Nagashima, Y., Tanaka, M., Iso, N., and Taguchi, T. 1991. Thermal transitions of myosins/subfragments from black marlin (Makaira mazara) ordinary and dark muscles. J. Food Sci. 56: 954-970.
Montejano, J. G., Hamann, D. D., and Lanier, T. C. 1984. Thermally induced gelation of selected comminuted muscle systems-Rheological changes during processing, final strengths and microstructure. J. Food Sci. 49: 1496-1504.
Montejano, J. G., Hamann, D. D., and Lanier, T.C. 1983. Final strengths and rheological changes during processing of thermally induced fish muscle gel. J. Rheology 27: 557-564.
Motoki, M. and Seguro, K. 1998. Transglutaminase and its use for food processing. Trends Food Sci. Technol. 9: 204-217.
Nakai, S. and Lin-Chan, E. 1988. Hydrophobic interaction in food systems, pp. 63-128. CRC press, Inc. Boca Raton.
Nishioka, F. 1993. Frozen surimi from sardine. Infofish International. 1: 31-45.
Niwa, E. 1975. Role of hydrophobic bonding in gelation of fish flesh paste. Bull. Jap. Soc. Sci. Fish. 41: 907-919.
Niwa, E. 1992. Chemistry of surimi gelation. In “Surimi Technology”, T. C. Lanier. and C. M. Lee (Eds.), pp. 389-427. Marcel Dekker, Inc., New York.
Niwa, E., Nowsad, A. A. and Kanoh, S. 1991a. Comparative studies on the physical parameters of kamabokos treated with the low temperature setting and high temperature setting. Nippon Suisan Gakkaishi 57: 105-121.
Niwa, E., Ogawa, N. and Kanoh, S. 1991b. Depression of elasticity of kamaboko induced by pregelatinized starch. Nippon Suisan Gakkaishi. 57: 157-167.
Niwa, E., Sato, K., Suzuki, R., Nakayama, T. and Hamada, I. 1981. Fluorometric study of setting properties of fish flesh sol. Bull. Jap. Soc. Sci. Fish. 47: 817-826.
Noguchi, S. 1974. The control of denaturation of fish muscle proteins during frozen storage. Doctoral Dissertation Sophia. Univ., Tokyo, Japan.
Noguchi, S. F. 1986. Dynamic viscoelastic changes of surimi (minced fish meat) during thermal gelation. Bull. Japan. Soc. Sci. Fish. 52: 1261-1274.
Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T., and Tsuchiya, T. 1993. a-helical structure of fish actomyosin: changes during setting. J. Food Sci. 60: 197-204.
Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T., and Tsuchiya, T. 1995. Thermal stability of fish myosin. Comp. Biochem. Physiol. 106B: 517-524.
Park, J. W. 2000. Surimi and surimi seafood. Marcel Dekker, Inc. New York.
Park, J. W. and Lanier, T. C. 1988. Calorimetric changes during development of rigor motis. J. Food Sci. 53: 1312-1327.
Park, J. W. and Lanier, T. C. 1989. Scanning calorimetric behavior of tilapia myosin and actin due to processing of muscle and protein purification. J. Food Sci. 54: 49-54.
Pearson, A. M. and Young, R. B. 1990. Muscle and Meat Biochemistry. A. M. Pearson. and R. B.Young (Eds.), pp. 66-129. Academic Press, New York.
Poulter, R. G., Ledward, D. A., Godber, S., Hall, G. and Rowwland, B. 1985. Heat stability of fish muscle protein. J. Food Technol. 20: 203-217.
Price, J. and Schweigert, B. S. 1987. The Science of Meat and Meat Products. Food & Nutrition Press, Inc. Wesport, Connetcut. U.S.A.
Quinn, J. R., Raymond, D. P. and Harwalkar, V. R. 1980. Differential scanning calorimetry of meat proteins as affected by processing treatment. J. Food Sci. 45: 1146-1157.
Ragshaw, C. R. 1993. Contractile preteins. In “ Muscle Contraction ”, C. R. Ragshaw (Ed.), pp. 33-55. Chapman & Hall, London.
Ramírez-Suárez, J. C., Pacheco-Aguilar, R. and Mazorra-Manzano, M. A. 2000. Washing effects on gelling properties and color of Monterey Sardine (Sardinops sagax caerulea) minced flesh. J. Aquat. Food Prod. Technol. 9: 55-65.
Rockower, R. K., Deng, J. C., Otwell, W. S., and Cornell, J. A. 1983. Effect of soy flour, soy protein concentrate and sodium alginate on the textural attributes of minced fish patties. J. Food Sci. 48: 1048-1064.
Samejima, K., Ishioroshi, M., and Yasui, T. 1981. Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. J. Food Sci. 26: 1412-1428.
Samejima, K., Ishioroshi, M., and Yasui, T. 1983. Scanning calorimetric studies on thermal denaturation of myosin and its subfragments. Agric. Biol. Chem. 47: 2373-2384.
Sano, T., Noguchi, S. F., Matsumoto, J. J., and Tsuchiya, T. 1988. Dynamic viscoelastic behavior of natural actomyosin and myosin during thermal gelation. J. Food Sci. 53: 924-941.
Sano, T., Noguchi, S. F., Matsumoto, J. J., and Tsuchiya, T. 1989. Role of F-actin in thermal gelation of fish actomyosin. J. Food Sci. 54: 800-815.
Sano, T., Noguchi, S. F., Matsumoto, J. J., and Tsuchiya, T. 1990. Thermal gelation characteristics of myosin subfragment. J. Food Sci. 55: 55-68.
Scott, D.N., Porter, R.W., Kudo, G., Miller, R., and Koury, B. 1988. Effect of freezing and frozen storage of Alaska pollock on the chemical and gel-forming properties of surimi. J. Food Sci. 53: 353-358.
Seguro, K., Kumazawa, Y., Ohtsuka, T., Toiguchi, S., and Motoki, M. 1995. Microbial transglutaminase and e-(g-glutamyl) lysine cross-link effects on elastic properties of kamaboko gels. J. Food Sci. 60: 305-318.
Seki, N., Uno, H., Lee, N. H., Kimura, I., Toyoda, K., Fujita, T., and Arai, K. I. 1990. Transglutaminase activity in Alaska pollack muscle and surimi and its reaction with myosin B. Nippon Suisan Gakkaishi 56: 125-134.
Shenouda, S. Y. K. 1980. Theories of protein denaturation during frozen storage. Adv. Food Res. 26: 275-284.
Shimizu, Y. 1985. Biochemical and functional properties of material fish. In “Proceeding’s of the Intl. Sym. on Eng. Seafood Including Surimi.” National Fish. Inst, Washington, D. C.
Sikorski, Z., Olley, J., and Kostuch, S. 1976. Protein changes in frozen fish. CRC Crit. Rev. Food Sci. Nutr. 74: 97-101.
Stabursvik, E. and Martens, H. 1980. Thermal denaturation of proteins in post rigor muscle tissue as studied by differential scanning calorimetry. J. Sci. Food Agric. 31: 1034-1045.
Suzuki, T. 1981. Characteristics of fish meat and fish protein. In “Fish and Krill Protein”, Processing technology. Appl. Sci. Publishers Ltd. 1-56. London.
Suzuki, T. and Migita, M. 1962. Post-mortem change of fish myosin Some physicochemical changes with special reference to species and lethal conditions of fish. Bull. Jap. Soc. Sci. fish. 28: 61-69.
Sych, J., Lacroix, C., Adambounon, L. T. and Castaigne, F. 1990a. Cryoprotective effects of lactitol, Palatinit and polydextrose on cod surimi proteins during frozen storage. J. Food Sci. 55: 356-361.
Sych, J., Lacroix, C., Adambounon, L. T., and Castaigne, F. 1990b. Cryoprotective effects of some materials on cod surimi proteins during frozen storage. J. Foos Sci. 55: 1222-1237.
Tsai, G. J., Lin, S. M. and Jiang, S. T. 1996. Transglutaminase from Streptoverticillium ladakanum and application to minced fish meat. J. Food Sci. 61: 1235-1247.
Tsukamasa, Y., Sato, K., Shimizu, Y., Imai, C., Sugiyama, M., Minegishi, Y. and Kawabata, M. 1993. e-(g-glutamyl) lysine cross-link formation in sardine myofibril sol during setting at 25℃. J. Food Sci. 58: 785-797.
Ueda, T., Shimizu, Y. and Shimidu, W. 1964. Studies on muscle of aquatic animals. 42. Species difference in fish actomyosin (part 2). Relation between heat-denaturing point and species. Bull. Jap. Soc. Sci. Fish. 31: 352-364.
Wright, D. J., Leach, I. B. and Wilding, P. 1977. Differential scanning calorimetric studies of muscle and its constituent protein. J. Sci. Food Agric. 28: 557-568.
Wu, M. C. 1992. Manufacture of surimi-products. In “Surimi Technology”, T. C. Lanier, and C. M. Lee (Eds.), pp. 245-272. Marcel Dekker, Inc., New York.
Wu, M. C., Akahane, T., Lanier, T. C. and Hamann, D. D. 1985a. Thermal transitions of actomyosin and surimi prepared from Atlantic croaker as studied by differential scanning calorimetry. J. Food Sci. 50: 10-18.
Wu, M. C., Lanier, T. C. and Hamann, D. D. 1985b. Thermal transitions of admixed starch/fish protein systems during heating. J. Food Sci. 50: 20-29.
Xiong, Y. L. and Brekke, C. J. 1989. Change in protein solubility and gelation properties of chicken myofibrils during storage. J. Food Sci. 54: 1141-1157.
Yamamoto, J. 1977. Report. Fish Neriseihin Tech. Res. Assoc. 3: 21-29.
Yamazawa, M. 1990. Effect of heating temperature on structure and gel-reinforcing ability of starch granules in kamaboko-gel. Nippon Suisan Gakkaishi. 56: 505-510.
Yasui, T., Ishioroshi, M. and Samejima, K. 1980. Heated-induced gelation of myosin in the presence of actin. J. Food Biochem. 4: 61-68.
Yasui, T., Ishioroshi, M. and Samejima, K. 1982. Effect actomyosin on heat-induced gelation of myosin. Agric. Biol. Chem. 46: 1049-1059.
Yasunaga, K., Abe, Y., Nishioka, F. and Arai, K. 1998. Change in quality of preheated gel and two-step heated gel from walleye pollack and chum salmon on addition of microbial transglutaminase. Nippon Suisan Gakkaishi 64: 702-716.
Yokoyama, M. 1969. Studies on adhesion of fish meat products on casing in fish sausage and Kamaboko -Ⅱ. Effect of different species of fish and their grade of freshness on the rate of adhesion. Bull. Jap. Soc. Sci. Fish. 35: 199-207.
Ziegler, G. R. and Acton, J. C. 1984. Mechanisms of gel formation by proteins of muscle tissue. Food Technol. 38: 77-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top