跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾鑫順
研究生(外文):Shinn-Shuenn Tzeng
論文名稱:鯉魚卵巢硫氫蛋白酶抑制劑之基因選殖、大量表現及在魚漿加工上之應用
論文名稱(外文):Cloning of cDNA, Over-Expression of Carp Ovarian Cystatin and Its Application in Surimi Process
指導教授:江善宗
指導教授(外文):Shann-Tzong Jiang
學位類別:博士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:134
中文關鍵詞:鯉魚卵巢硫氫蛋白酶抑制劑大量表現大腸桿菌魚漿加工
外文關鍵詞:carp ovaryrecombinant cystatinover-expressionEscherichia colisurimi processpET-23a(+)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鯖魚(Scomber australasicus)或太平洋產鱈魚,因肌肉內生性蛋白酶所產生的蛋白質水解作用,導致肌肉較易軟化。即使製成魚漿,也有因為內生性組織蛋白酶的不易水洗去除,而在練製品加工階段引發解膠(modori or gel softening)。而且魚漿在冷凍貯藏過程,肌肉內生性組織蛋白酶仍具有活性,造成品質的下降。誘發解膠作用的內生性蛋白酶,主要為溶素體硫氫蛋白酶,包括組織蛋白酶B、L、L-like等及其他熱安定鹼性蛋白酶。蛋白酶所引發的解膠作用,經研究證實可以藉由添加抑制劑而顯著降低。但是抑制劑從天然原料中分離、純化步驟較為繁複,且產量不高,不符經濟效益。因此本實驗將利用基因轉殖,並以微生物作為蛋白質表現宿主,以取得高量可溶性重組抑制劑。實驗以鯉魚卵巢,作為硫氫蛋白酶抑制劑(cystatin)基因來源。經由無終止碼(N)與終止碼(S)引子,建構兩種融合cystatin表現質體,分別為trx-cystatin-His (cystatin N)/pET-23a(+)及trx-cystatin (cystatin S)/pET-23a(+)。轉形E. coli AD494(DE3)後,並篩選出表現量最高的兩株轉形大腸桿菌。這兩株轉形菌以IPTG誘導後,於菌體細胞質內都高量表現可溶性之重組抑制劑,cystatins N及S。重組cystatin N透過單一的親和性管柱層析Ni2+-NTA agarose即可純化;而cystatin S則由70°C熱處理5分鐘、Q-Sepahrose HP和Sephacryl S100 HR管柱層析而得到純化。純化cystatins N與S的蛋白質量為20.1、16.2 mg,純化倍數為13.9、14.7,回收率則分別為54.3與43.1%,而兩者分子量均為28000。兩抑制劑分別以enterokinase分解成融合蛋白質trx與cystatin-His (來自於cystatin N),以及trx和cystatin (來自於cystatin S),再利用Ni2+-NTA agarose與FPLC Superdex 75管柱層析,可得到純化cystatin-His (trx-free cystatin N)及重組cystatin (trx-free cystatin S)。鯉魚卵巢硫氫蛋白酶抑制劑,需以70°C熱處理5分鐘、CM Sepharose FF與Sephacryl S200 HR管柱層析得到純化,分子量為12000,其蛋白量、純化倍數和回收率分別為4.3 mg、177.1和28.9%。因此,以E. coli AD494(DE3)宿主所表現出的cystatin,需要的純化步驟較簡單、快速、回收量高,且生產上更不受限制。Cystatins N、S和His-tag、重組cystatins等抑制劑之pH安定性與蛋白酶抑制活性均與天然cystatin相近;cystatins N、S溫度安定性則稍低於天然cystatin,但60°C加熱5分鐘後之殘留活性仍在90%以上。100克鯖魚漿中添加最適量的20個活性單位cystatins N與S,能有效抑制該練製品於50°C的解膠作用,同時間膠強度也可分別提升90及69%;電泳分析發現,cystatins N及S可有效抑制魚漿蛋白質肌凝蛋白重鏈之水解現象。
Cathepsins B and L were considered to be the most active cysteine proteases and revealed high MHC-degradation activities at 40-75°C, in fillet and surimi made from chum salmon, mackerel and/or pacific whiting. They were very difficult to remove during surimi processing and also very stable on frozen storage, which consequently caused gel softening during surimi-based product process. Preincubation of surimi at 20-60°C before heating at 90°C substantially lowered the gel strength due to the degradation of myosin heavy chain by endogenous proteases. To maintain the high quality of surimi gel, the cysteine protease inhibitor (CPI) should be added during surimi process or frozen storage. But, it is very expensive to separate or purify these inhibitors from plants or animal tissues. The cDNAs encoding carp ovarian cystatin (S) and its His-tag (N) form were constructed into the thioredoxin (trx) fused expression vector, trx-pET-23a(+) as trx-cystatin/pET-23a(+) (designated as cystatin S) or trx-cystatin-His/pET-23a(+) (designated as cystatin N) and then transformed E. coli AD494(DE3) expression host. An active soluble-form cystatins S or N were expressed in the cytoplasm of E. coli induced by isopropyl-b-D-thiogalactopyranoside. The carp cystatin N was purified to electrophoretical homogeneity by a simply affinity chromatography, Ni2+-NTA agarose. While that the cystatin S was purified by 70°C heating for 5 min, Q-Sepahrose HP and Sephacryl S100 HR chromatographs. The protein amount, purification fold and recovery of cystatin N were 20.1, 13.9 and 54.3%, and those of cystatin S were 16.2 mg, 14.7 and 43.1%, respectively. Molecular masses of both cystatins were 28000 on SDS-PAGE. Cystatin N was cleaved as trx and cystatin-His, and cystatin S was as trx and cystatin, by enterokinase. The cystatin-His could be isolated through 2nd Ni2+-NTA agarose, and recombinant cystatin (trx-free cystatin S) was further purified by FPLC Superdex 75 chromatography. The purified wild-type cystatin was achieved with a 177.1 fold, by 5 min heating at 70°C, CM Sepharose FF and Sephacryl S200 HR chromatographs. Molecular mass of carp ovarian cystatin was 12000 with a 28.9% recovery and 4.3 mg protein content. Accordingly, the cystatin produced by E. coli AD494(DE3) was more rapid and ease to purified than that from carp ovary. Inhibition abilities and pH stabilities of cystatins N, S and their trx-free cystatins were similar to wild-type one. Although the thermal stability of cystatin N was slightly weaker than other cystatins, it still remained more than 90% of origin activity after 60°C heating for 5 min. The expressed cystatin may be considered a useful inhibitor for gel softening of fish mince. The maximal addition of cystatins N or S was 20 units inhibitory activity/100 g mackerel surimi. The inhibitors effectively prevented the gel softening of mackerel surimi, which set at 50°C for 90 min, meanwhile significantly increased the gel strengths by 90 and 69% with cystatins S and N. According to the SDS-PAGE, the proteolysis of myosin heavy chain caused by gel softening was obviously inhibited by the addition of the recombinant cystatins. As expected, the recombinant cystatins, compared with wild type one, were capable of employing on surimi process for preventing the gel softening.
目 錄 頁數
名詞縮寫………………………………………………………………… VII
中文摘要………………………………………………………………… VIII
英文摘要………………………………………………………………… X
研究動機與目的………………………………………………………… XII
實驗大綱……………………………………………………………………XIII
第一章 文獻整理…………………………………………………………… 1
一、硫氫蛋白酶之分類…………………………………………………… 3
二、硫氫蛋白酶的分佈與存在位置……………………………………… 3
A、溶素體硫氫蛋白酶…………………………………………………… 3
B、鈣肰酶…………………………………………………………… 4
三、組織蛋白酶L之基質特異性………………………………………… 5
A、組織蛋白酶L水解肌肉蛋白質…………………………………………5
B、組織蛋白酶L對胜肰鍵之選擇性水解………………………… 6
四、蛋白酶對煉製品膠強度之影響……………………………………… 7
五、抑制劑對魚漿解膠之影響…………………………………………… 8
A、絲胺酸蛋白酶(serine proteinase)抑制劑…………………………8
B、硫氫蛋白酶(cysteine proteinase)抑制劑…………………………8
六、組織蛋白酶B及L之特異性合成抑制劑………………………… 10
七、硫氫蛋白酶天然抑制劑………………………………………………10
A. Cystatins………………………………………………… 11
I. Stefins…………………………………………………………… 12
II. Cystatins………………………………………………………… 13
III. Kininogens……………………………………………………… 14
IV. Phytocystatins……………………………………………………15
V. 其他………………………………………………………………… 16
B. Calpastatins……………………………………………………16
八、硫氫蛋白酶天然抑制劑之生化特性…………………………………17
第二章 鯉魚卵巢硫氫蛋白酶抑制劑(carp ovarian cystatin)之基因選殖、大腸桿菌[Escherichia coli AD494(DE3)]之大量表現及在魚漿加工上之應.......................................................24
第一部份:硫氫蛋白酶抑制劑融合蛋白質(trx-cystatin, cystatin S)質體構築、大腸桿菌表現及在魚漿加工上之應用……………………… 24
壹、摘要………………………………………………………………… 24
Abstract…………………………………………………………… 25
貳、前言………………………………………………………………… 26
參、實驗設計…………..……………………………………………… 35
肆、實驗材料…………………………………………………………… 35
一、載體及菌種…………………………………………………………35
二、原料…………………………………………………………………… 36
三、藥品…………………………………………………………………… 36
四、儀器…………………………………………………………………… 37
伍、實驗方法…………………………………………………………… 39
一、鯉魚卵巢硫氫蛋白酶抑制劑基因選殖………………………… 39
1、鯉魚卵巢總RNA萃取…………………………………………… 39
2、反轉錄作用(reverse transcription)………………………… 39
二、含終止碼硫氫蛋白酶抑制劑引子…………………………………40
三、聚合酶鏈鎖反應(polymerase chain reaction, PCR)…………40
四、重組鯉魚卵巢硫氫蛋白酶抑制劑…………………………………41
1、去氧核醣核酸電泳……………………………………………… 41
2、含終止碼之硫氫蛋白酶抑制劑基因純化……………………… 41
3、TA選殖(TA cloning)………………………………………………42
4、大腸桿菌通透細胞之製備…………………………………………42
5、重組之選殖質體轉形大腸桿菌通透細胞…………………………42
6、重組質體DNA的抽取……………………………………………… 43
(1) 少量質體抽取(Mini-preparation)……………………………43
(2) 大量質體的製備(Midi-preparation)…………………………43
7、限制酶作用……………………………………………………… 44
8、酚-氯仿(phenol-chloroform)萃取………………………………44
9、接合作用(ligation)………………………………………………45
10、重組質體轉形通透細胞………………………………………… 45
11、基因定序分析…………………………………………………… 45
五、大量表現重組含終止碼硫氫蛋白酶抑制劑………………………45
六、重組含終止碼硫氫蛋白酶抑制劑之純化…………………………46
1、抽取重組含終止碼硫氫蛋白酶抑制劑……………………………46
2、加熱處理……………………………………………………………46
3、Q-Sepharose HP管柱層析…………………………………………46
4、Sephacryl S-100 HR管柱層析……………………………………47
5、融合蛋白質之分離…………………………………………………47
七、鯉魚卵巢硫氫蛋白酶抑制劑之純化………………………………47
1、抽取硫氫蛋白酶抑制劑……………………………………………47
2、加熱處理……………………………………………………………48
3、CM Sepharose Fast Flow管柱層析………………………………48
4、Sephacryl S200 High Resolution管柱層析……………………48
八、抑制劑活性測定……………………………………………………48
1、硫氫蛋白酶有效濃度之評估………………………………………48
2、抑制劑活性測定……………………………………………………49
九、安定性評估…………………………………………………………49
1、pH安定性……………………………………………………………50
2、溫度安定性…………………………………………………………50
十、抑制鯖魚漿解膠之評估……………………………………………50
1、鯖魚漿製備……………………………………………………… 50
2、添加重組抑制劑對魚漿練製品膠強度之影響………………… 50
3、鯖魚漿蛋白質之電泳分析……………………………………… 51
十一、蛋白質定量………………………………………………………51
陸、結果與討論………………………………………………………… 52
一、含終止碼鯉魚卵巢硫氫蛋白酶抑制劑基因選殖…………………52
二、含終止碼鯉魚卵巢硫氫蛋白酶抑制劑之表現……………………53
三、重組cystatin S之純化……………………………………………54
四、鯉魚卵巢硫氫蛋白酶抑制劑之純化………………………………56
五、重組cystatin S與天然硫氫蛋白酶抑制劑之安定性比較………57
1、pH安定性……………………………………………………………57
2、溫度安定性…………………………………………………………57
六、重組cystatin S與天然硫氫蛋白酶抑制劑之抑制活性比較……58
七、抑制鯖魚漿解膠之影響……………………………………………59
1、鯖魚漿練製品膠強度變化…………………………………………59
2、電泳分析……………………………………………………………59
八、結論…………………………………………………………………61
第二部份: His-tag硫氫蛋白酶抑制劑融合蛋白質(trx-cystatin-His, cystatin N)質體構築、大腸桿菌表現及在魚漿加工上之應用…………63
壹、摘要…………………………………………………………………63
Abstract……………………………………………………………64
貳、實驗設計……………………………………………………………65
參、實驗材………………………………………………………………65
一、載體及菌種……………………………………………………… 65
二、原料……………………………………………………………………65
三、藥品……………………………………………………………………65
四、儀器……………………………………………………………………65
肆、實驗方法……………………………………………………………65
一、鯉魚卵巢硫氫蛋白酶抑制劑基因選殖………………………… 65
二、無終止碼硫氫蛋白酶抑制劑引子……………………………… 65
三、聚合酶鏈鎖反應(polymerase chain reaction, PCR)……… 66
四、重組鯉魚卵巢硫氫蛋白酶抑制劑…………………………… 66
五、大量表現重組無終止碼硫氫蛋白酶抑制劑…………………… 66
六、重組無終止碼硫氫蛋白酶抑制劑之純化……………………… 67
1、抽取重組無終止碼硫氫蛋白酶抑制劑………………………… 67
2、親和性管柱層析………………………………………………… 67
3、融合蛋白質之分離……………………………………………… 67
七、鯉魚卵巢硫氫蛋白酶抑制劑之純化…………………………… 67
八、抑制劑活性測定………………………………………………… 67
九、安定性評估……………………………………………………… 68
十、抑制鯖魚漿解膠之影響………………………………………… 68
1、鯖魚漿製備……………………………………………………… 68
2、添加重組抑制劑對魚漿練製品膠強度之影響………………… 68
3、鯖魚漿蛋白質之電泳分析……………………………………… 68
十一、蛋白質定量…………………………………………………… 68
伍、結果與討論…………………………………………………………69
一、無終止碼鯉魚卵巢硫氫蛋白酶抑制劑基因選殖……………… 69
二、His-tag硫氫蛋白酶抑制劑融合蛋白質(cystatin N)在轉形菌之表現…….....................................................70
三、His-tag硫氫蛋白酶抑制劑融合蛋白質(cystatin N)之純化……….....................................................72
四、重組cystatin N與天然硫氫蛋白酶抑制劑之安定性比較………… 73
1、pH安定性………………………………………………………… 73
2、溫度安定性……………………………………………………… 74
五、重組cystatin N與天然硫氫蛋白酶抑制劑之安定性比較…… 74
六、抑制鯖魚漿解膠之影響………………………………………… 75
1、鯖魚漿練製品膠強度變化……………………………………… 75
2、電泳分析………………………………………………………… 76
七、結論……………………………………………………………… 77
陸、綜合討論……………………………………………………………78
參考文獻…………………………………………………………………… 79
表 目 錄
表1. Escherichia coli AD494(DE3)轉形菌所表現重組cystatin S之純化…………………………………………………………………………… 95
表2. 鯉魚卵巢硫氫蛋白酶抑制劑之純化…………………………………96
表3. 重組cystatin S對鯖魚漿練製品解膠作用之影響…………………97
表4. Escherichia coli AD494(DE3)轉形菌所表現重組cystatin N之純化…………………………………………………………………………… 98
表5. 重組cystatin N對鯖魚漿練製品解膠作用之影響…………………99
圖 目 錄
圖1. 含終止碼鯉魚卵巢硫氫蛋白酶抑制劑引子PCR產物之洋菜膠電泳.100
圖2. 含終止碼鯉魚卵巢硫氫蛋白酶抑制劑基因選殖流程圖……………101
圖3. 含終止碼鯉魚卵巢硫氫蛋白酶抑制劑選殖質體經限制內切酶作用之洋菜膠電泳分析…………………………………………………………… 102
圖4. 含終止碼鯉魚卵巢硫氫蛋白酶抑制劑之融合蛋白質表現質體構築流程圖………………………………………………………………………… 103
圖5. 含終止碼鯉魚卵巢硫氫蛋白酶抑制劑之融合蛋白質表現質體構造104
圖6. 以引子PCR確認cystatin S表現質體轉形菌之洋菜膠電泳分析 105
圖7. 含終止碼硫氫蛋白酶抑制劑融合蛋白質之核酸及胺基酸序列……106
圖8. 轉形大腸桿菌表現cystatin S之電泳分析…………………………107
圖9. 重組cystatin S之Q-Sepharose HP管柱層析圖……………………108
圖10. 重組cystatin S之Sephacryl S-100 HR管柱層析圖………….. 109
圖11. 經enterokinase水解cystatin S之FPLC Superdex 75管柱層析圖…………………………………………………………………………… 110
圖12. 經enterokinase水解cystatin S之電泳分析…………………… 111
圖13. 鯉魚卵巢硫氫蛋白酶抑制劑之Sephacryl S-200 HR管柱層析圖 112
圖14. Cystatin S、重組與天然來源cystatins之pH安定性比較………113
圖15. Cystatin S、重組與天然來源cystatins之溫度安定性比較……114
圖16. Cystatin S、重組與天然來源cystatins抑制硫氫蛋白酶之比較116
圖17. 重組鯉魚卵巢cystatin S對鯖魚漿解膠作用之影響………… 117
圖18. 無終止碼鯉魚卵巢硫氫蛋白酶抑制劑引子PCR產物之洋菜膠電泳118
圖19. 無終止碼鯉魚卵巢硫氫蛋白酶抑制劑基因選殖流程圖………… 119
圖20. 無終止碼鯉魚卵巢硫氫蛋白酶抑制劑選殖質體經限制內切酶作用之洋菜膠電泳分析…………………………………………………………… 120
圖21. 無終止碼鯉魚卵巢硫氫蛋白酶抑制劑之融合蛋白質表現質體構築流程…………………………………………………………………………… 121
圖22. 無終止碼鯉魚卵巢硫氫蛋白酶抑制劑融合蛋白質表現質體之構築…………………………………………………………………………… 122
圖23. 以引子PCR確認His-tag硫氫蛋白酶抑制劑融合蛋白質表現質體轉形菌之洋菜膠電泳分析圖………………………………………………… 123
圖24. His-tag硫氫蛋白酶抑制劑融合蛋白質之核酸及胺基酸序列… 125
圖25. His-tag硫氫蛋白酶抑制劑融合蛋白質與鯉魚卵巢抑制劑之電泳分析…………………………………………………………………………… 126
圖 26. His-tag硫氫蛋白酶抑制劑融合蛋白質之親和性管柱層析圖… 127
圖27. 經enterokinase水解cystatin N之親和性管柱層析圖………… 128
圖28. His-tag硫氫蛋白酶抑制劑融合蛋白質與重組cystatin-His之電泳分析………………………………………………………………………… 129
圖29. Cystatin N、His-tag與天然來源cystatins之pH安定性比較… 130
圖30. Cystatin N、His-tag與天然來源cystatins之溫度安定性比較 131
圖31. Cystatin N、His-tag與天然來源cystatins抑制硫氫蛋白酶之比較…………………………………………………………………………… 133
圖32. 重組鯉魚卵巢cystatin N對鯖魚漿解膠作用之影響…………… 134
Abe, K. and Arai, S. 1985. Purification of a cysteine proteinase inhibitor from rice, Oryza sativa L. Japonica. Agric. Biol. Chem. 49: 3349-3350.
Abe, M., Abe, K., Domoto,C., and Arai, S. 1995. Two distinct species of corn cystatin in corn kernels. Biosci. Biotechnol. Biochem. 59: 756-758.
Abe, K., Emori, Y., Kondo, H., Arai, S., and Suzuki, K. 1988. The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of cystatin superfamily. J. Biol. Chem. 236: 7655- 7659.
Abe, K., Emori, Y., Kondo, H., Suzuki, K., and Arai, S. 1987a. Molecular cloning of a cysteine proteinase inhibitor of rice (Oryzacystatin). J. Biol. Chem. 262: 16793-16797.
Abe, K., Hiroto, K., and Arai, S. 1987b. Purification and characterization of a rice cysteine proteinase inhibitor. Agric. Biol. Chem. 51: 2763-2765.
Abe, K., Kondo, H., Watanabe, H., Emori, Y., and Arai, S. 1991. Oryzacystatins as the first well-defined cystatins of plant origin and their target proteinases in rice seeds. Biomed. Biochim. Acta 50: 637-641.
Abe, M., Arai, S., Kato, H., and Fujimaki, M. 1980. Thiol-protease inhibitors occurring in endosperm of corn. Agric. Biol. Chem. 44: 685-686.
Abe, M., Domoto, C., Watanabe, H., Abe, K., and Arai, S. 1996. Structural organization of the gene encoding corn cystatin. Biosci. Biotechnol. Biochem. 60: 1173-1175.
Abrahamson, M. 1994. Cystatins. Methods Enzymol. 244: 685-700.
Abrahamson, M., Barrett, A. J., Salvesen, G., and Grubb, A. 1986. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentratios in biological fluids. J. Biol. Chem. 261: 11281-11289.
Abrahamson, M., Grubb, A., Olafsson, I., and Lundwall, A. 1987a. Molecular cloning and sequence analysis of cDNA coding for the precursor of the human cysteine proteinase inhibitor cystatin C. FEBS Lett. 216: 229-233.
Abrahamson, M., Ritonja, A., Brown, M. A., Grubb, A., Machleidt, W., and Barrett, A. J. 1987b. Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J. Biol. Chem. 262: 9688-9694.
Abrahamson, M., Mason, R. W., Hansson, H., Buttle, D. J., Grubb, A., and Ohlsson, K. 1991. Human cystatin C. Role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem. J. 273: 621-626.
Abrahamson, M., Olafsson, I., Palsdottir, A., Ulvsback, M., Lundwall, A., Jensson, O., and Grubb, A. 1990. Structural and expression of the human cystatin C gene. Biochem. J. 268: 287-294.
Akers, C. P. and Hoff, J. E. 1980. Simultaneous formation of chymopapain inhibitor activity and cubical crystals in tomato leaves. Can. J. Bot. 58: 1000-1003.
Al-Hashimi, I., Dickinson, D. P., and Levine, M. J. 1988. Purification, molecular cloning, and sequencing of salivary cystatin SA-I. J. Biol. Chem. 263: 9381-9387.
An, H., Seymour, T. A., Wu, J. W., and Morrissey, M. T. 1994a. Assay systems and characterization of Pacific whiting (Merluccius productus) protease. J. Food Sci. 59: 277-281.
An, H., Weerasinghe, V., Seymour, T. A. and Morrissey, M. T. 1994b. Cathepsin degradation of Pacific whiting surimi proteins. J. Food Sci. 59: 1013-1017 & 1033.
Anastasi, A., Brown, M. A., Kembhavi, A. A., Nicklin, M. J. H., Sayers, C. A., Sunter, D. C., and Barrett, A. J. 1983. Cystatin, a protein inhibitor of cysteine proteinase. Improved purification from egg white, characterization, and detection in chicken serum. Biochem. J. 211: 129-138.
Aranishi, F., Hara, K., and Ishihara, T. 1992. Purification and characterization of cathepsin H from hepatopancreas of carp Cyprinus carpio. Comp. Biochem. Physiol. B 102: 499-505.
Asada, K., Ishino, Y., Shimada, M., Shimojo, T., Endo, M., Kimizuka, F., Kato, I., Maki, M., Hatanaka, M., and Murachi, T. 1989. cDNA cloning of human calpastatin: structure comparison between human, pig, and rabbit calpastatins. J. Enzyme Inhibition 3: 49-56.
Ashiuchi, M., Yoshimura, T., Kitamura, T., Kawata, Y., Nagai, J., Gorlatov, S., Esaki, N., and Soda, K. 1995. In vivo effect of GroESL on the folding of glutamate racemase of Escherichia coli. J. Biochem. 117: 495-498.
Azaryan, A. and Galoyan, A. 1987. Human and bovine brain cathepsin L and cathepsin H: Purification, physico-chemical properties, and specificity. Neurochem. Res. 12: 207-213.
Bando, Y., Kominami, E., and Katunuma, N. 1986. Purification and tissue distribution of rat cathepsin L. J. Biochem. 100: 35-42.
Baricos, W. H., Zhou, Y., Mason, R. W., and Barrett A. J. 1988. Human Kidney cathepsin B and L. Characterization and potential role in degradation of glomerular basement membrane. Biochem. J. 252: 301-304.
Barrett, A. J. 1973. Purification and some properties of the enzyme. Biochem. J. 131: 809-822.
Barrett, A. J. 1981. Cystatin, the egg white inhibitor of cysteine proteinases. Methods Enzymol. 80: 771-778.
Barrett, A. J. 1987. The cystatins: a new class of peptidase inhibitors. Trends Biochem. Sci. 12: 193-196.
Barrett, A. J., Fritz, H., Grubb, A., Isemura, S., Jarvinen, M., Katunuma, N., Machleidt, W., Muller-Esterl, W., Sasaki, M., and Turk, V. 1986a. Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem. J. 236: 312.
Barrett, A. J. and Kirschke, H. 1981. Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol. 80(part C): 535-561.
Barrett, A. J., Rawlings, N. D., Davies, M. E., Machleidt, W., Salvesen, G., and Turk, V. 1986b. Cysteine proteinase inhibitors of the cystatin superfamily, In “Proteinase Inhibitors”, Barrett, A. J. and Salvesen, G. Eds, pp. 515-569, Elsevier, Amsterdam.
Barrett, A. J., Kembhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. H., Tamai, M., and Hanada, K. 1982. L-trans-eopxysuccinyl-leucylamido(4- guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 201: 189-198.
Baudry, M. and Lynch, G. 1980. Regulation of hippocampal glutamate receptors: evidence for involvement of a calcium-activated protease. Proc. Natl. Acad. Sci. USA 77: 2298-2302.
Baudry, M., Bundman, M. C., Smith, E. K., and Lynch, G. S. 1981. Micromolar calcium stimulates proteolysis and glutamate binding in rat synaptic membranes. Science 212: 937-938.
Baumgartner, B. and Chrispeels, M. J. 1976. Partial characterization of a protease inhibitor which inhibits the major endopeptidase present in the cytoledons of mung bean. Plant Physiol. 58: 1-6.
Bedi, G.S., Zhou, T., and Bedi, S. K. 1998. Production of rat salivary cystatin S variant polypeptides in Escherichia coli. Arch. Oral. Biol. 43: 173-182.
Berri, M., Venien, A., Levieux, D., and Ouali. A. 1996. Tissue distribution and characterization of a 30kDa cysteine proteinase inhibitor from bovine skeletal muscle. Comp. Biochem. Physiol. B 113: 275-279.
Berti, P. J. and Storer, A. C. 1994. Local pH-dependent conformational changes leading to proteolytic susceptibility of cystatyin C. Biochem. J. 302: 411-416.
Bjork, I., Brieditis, I., Raub-Segall, E., Pol, E., Håkansson, K., and Abrahamson, M. 1996. The importance of the second hairpin loop of cystatin C for proteinase binding. Characterization of the interaction of Trp-106 variants of the inhibitor with cysteine proteinases. Biochemistry 35: 10720-10726.
Blackwell, J. R. and Horgan, R. 1991. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 295: 10- 12.
Bobek, L. A., Aguirre, A., and Levine, M. J. 1991. Human salivary cystatin S. Biochem. J. 278: 627-635.
Bobek, L. A., Ramasubbu, N., Wang, X., Weaver, T. R., and Levine, M. J. 1994. Biological activities and secondary structures of variant forms of human salivary cystatin SN produced in Escherichia coli. Gene 151: 303-308.
Bode, W., Brzin, J., and Turk, V. 1985. Crystallization of chicken egg white cystatin, a low molecular weight protein inhibitor of cysteine proteinases, and preliminary X-ray diffraction data. J. Mol. Biol. 181: 331-332.
Bode, W., Engh, R., Musil, D., Laber, B., Stubbs, M., Huber, R., and Turk, V. 1990. Mechanism of interaction of cysteine proteinases and their protein inhibitors as compared to the serine proteinase-inhibitor interaction. Biol. Chem. Hoppe-Seyler. 371: 111-118
Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. 1988. The 2.0 Å X-ray crystal structure of chicken egg white aystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7: 2593-2599.
Bond, J. S. and Butler, P. E. 1987. Intracellular proteases. Ann. Rev. Biochem. 56: 333-364.
Bonete, M. J., Manjon, A., Llorca, F., and Iborra, J. L. 1984. Acid proteinase activity in fish I. Comparative study of extraction of cathepsin B and D from Mujil aratus. Comp. Biochem. Physiol. B 78: 203-206.
Boulter, D. and Harvey, P. J. 1985. Accumulation, structure and utilization of tuber storage proteins with particular reference to Dioscorea rotundata. Physiol. Veg. 23: 61-74.
Bowden, G. A. and Georgiou, G. 1990. Folding and aggregation of beta-galactosidase in the periplasmic space of Escherichia coli. J. Biol. Chem. 265: 16760-16766.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72: 248-254.
Brzin, J., Kopitar, M., and Turk, V. 1983. Protein inhibitors of cysteine proteinases I. Isolation and characterization of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphnuclear granulocytes. Hoppe-Seyler Z. Biol. Chem. 364: 1475-1478.
Brzin, J., Popovic, T., and Turk, V. 1984. Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem. Biophys. Res. Commun. 118: 103-109.
Brzin, J., Ritonja, A., Popovic, T., and Turk, V. 1990. Low molecular mass protein inhibitor of cysteine proteinases from soybean. Biol. Chem. Hoppe-Seyler Suppl. 371: 167-170.
Calkins, C. C. and Sloane, B. F. 1995. Mammalian cysteine protease inhibitors: Biochemical properties and possible roles in tumor progression. Biol. Chem. Hoppe-Seyler 376: 71-80.
Caspers, P., Stieger, M., and Burn, P. 1994. Overproduction of bacterial chaperones improves the solubility of recombinant protein tyrosin kinases in Escherichia coli. Cell Mol. Biol. 40: 635-644.
Chen, G. H., Tang, S. J., Chen, C. S., and Jiang, S. T. 2000. Overexpression of the soluble form of chicken cystatin in Escherichia coli and its purification. J. Agric. Food Chem. 48: 2602-2607.
Clausen, J. A. and Blest, A. D. 1996. A cysteine proteinase inhibitor on crab retina crystalline cones: purification and immunohistochemical localisation. Comp. Biochem. Physiol. B 113: 511-523.
Colella, R., Sakaguchi, Y., Nagase, H., and Bird, J. W. 1989. Chicken egg white cystatin. Molecular cloning, nucleotide sequence, and tissue distribution. J. Biol. Chem. 264: 17164-17169.
Dalet-Fumeron, V., Guinec, N., and Pagano, M. 1991. High-performance liquid chromatographic method for the simultaneous purification of cathepsin B, H and L from human liver. J. Chromatogr. 568: 55-68.
Dayton W. R. Schollmeyer, J. V. 1980. Localization of a Ca2+-activated neutral protease in skeletal muscle. J. Cell Biol. 87: 267.
Dayton, W. R., Schollmeyer, J. F., and Lepley, R. A. 1981. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease. Bichim. Biophys. Acta 659: 48-61.
DeMartino, G. N. 1981. Calcium-dependent proteolytic activity in rat liver: Identification of two proteases with different calcium requirement. Arch. Biochem. Biophys. 211: 253-257.
Derman, A. I., Prinz, W. A., Belin, D., and Beckwith, J. 1993. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262: 1744-1747.
Dolenc, I., Turk, B., Kos, J., and Turk, V. 1996. Interaction of human cathepsin C with chicken cystatin. FEBS Lett. 392: 277-280.
Domingues, H., Peters, J., Schneider, K. —H., Apeler, H., Sebald, W., Oschkinat, H., and Serrano, L. 2000. Improving the refolding yield of interleukin-4 through the optimization of local interactions. J. Biotechnol. 84: 217—230
Dufour, E., Obled, A., Valin, C., and Bechet, D. 1987. Purification and amino acid sequence of chicken liver cathepsin L. Biochemistry 26: 5689-5695.
Esnard, F., Esnard, A., Faucher, D., Capony, J., Derancourt, J., Brillard, M., and Gauthier, F. 1990. Rat ctstatin C: the complete amino acid sequence reveals a site for N-glycosylation. Biol. Chem. Hoppe-Seyler Suppl. 371: 161- 166.
Evans, H. J. and Barrett, A. J. 1987. A cystatin-like cysteine proteinase inhibitor from venom of the African puff adder (Bitis arietans). Biochem. J. 246: 795-797.
Fong, G. and Bridger, W. A. 1992. Folding and assembly of the Escherichia coli succinyl-CoA synthetase heterotetramer without participation of molecular chaperones. Biochemistry 31: 5661-5664.
Funaki, J., Abe, K., Hayabuchi, H., and Arai, S. 1991. Modulating the conditioning of meat by the use of oryzacystatin, a cysteine proteinase inhibitor of rice seed origin. J. Food Biochem. 15: 253-262.
Gabrijelcic, D., Gollwitzer, R., Popovic, T., and Turk, V. 1988. Proteolytic cleavage of human fibrinogen by cathepsin B. Biol. Chem. Hoppe-Seyler Suppl. 369: 287-292.
Gauthier, F., Moreau, T., Lalmanach, G., Brillard-Bourdet, M., Martino, M. F. D., and Juliano, L. 1993. A new, sensitive fluorogenic substrate for papain based on the sequence of the cystatin inhibitory site. Arch. Biochem. Biophys. 306: 304-308.
Gerhartz, B., Ekiel, I., and Abrahamson, M. 1998. Two stable unfolding intermediates of the disease-causing L68Q variant of human cystatin C. Biochemistry 37: 17309-17317.
Green, G. D. J. and Shaw, E. 1981. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J. Biol. Chem. 25: 1923-1928.
Green, G. D. J., Kembhavi, A. A., Davies, M. E., and Barrett, A. J. 1984. Cystatin-like cysteine proteinase inhibitors from human liver. Biochem. J. 218: 939-946.
Grubb, A. and Lofberg, H. 1982. Human g-trace, a basic microprotein: Amino acid sequence and presence in the adenohypophysis. Proc. Natl. Acad. Sci. USA 79: 3024-3027.
Grubb, A., Lofberg, H., and Barrett, A. J. 1984. The disulphide bridge of human cystatin C (g-trace) and chicken cystatin. FEBS Lett. 170: 370-374.
Haard, N. F. 1990. Enzymes from food myosystems. J. Muscle Foods 1: 292.
Haard, N. F. 1992. A review of proteolytic enzymes from marine organisms and their application in the food industry. J. Aquatic Food Product Tech. 1: 17-35.
Halfon, S., Ford, J., Foster, J., Dowling, L., Lucian, L., Sterling, M., Xu, Y., Weiss, M., Ikeda, M., Liggett, D., Helms, A., Caux, C., Lebecque, S., Hannum, C., Menon, S., McClanahan, T., Gorman, D., and Zurawski, G. 1998. Leukocystatin, a new class II cystatin expressed selectively by hematopoietic cells. J. Biol. Chem. 273: 16400-16408.
Hanada, K., Tamai, M., Yamagushi, M., Ohmura, S., Sawada, J., and Tanaka, I. 1978. Isolation and characterization of E-64, a new thiol protease inhibitor. Agric. Biol. Chem. 42: 523-528.
Hara, K., Suzumatsu, A., and Ishihara, T. 1988. Purification and characterization of cathepsin B from carp ordinary muscle. Nippon Suisan Gakkaishi 54: 1243-1252.
Hardy, M. and Pennington, R. J. T. 1979. Separation of cathepsin B1 and related enzymes from rat skeletal muscle. Biochim. Biophys. Acta 577: 253- 266.
Hill, P. A., Buttle, D. J., Jones, S. J., Boyde, A., Murata, M., and Reynolds, J. J. 1994. Inhibition of bone resorption by selective inactivators of cysteine proteinase. J. Cell Biochem. 56: 118-130.
Hirao, T., Hara, K., and Takahashi, K. 1984. Purification and characterization of cathepsin B from monkey skeletal muscle. J. Biochem. 95: 871-879.
Hirashiki, I., Ogata, F., Yoshida, N., Makisumi, S., and Ito, A. 1990. Purification and complex formation analysis of a cysteine proteinase inhibitor (cystatin) from seeds of Wisteria floribunda. J. Biochem. 108: 604-608.
Ho, M. L., Chen, G. H., and Jiang, S. T. 2000. Effects of mackerel cathepsins L and L-like, and calpain on the degradation of mackerel surimi. Fish. Sci. 66: 558-568.
Hockney, R. C. 1994. Recent developments in heterologous protein production in Escherichia coli. TIB TECH 12: 456-463.
Ii, K., Hizawa, K., Nonaka, I., Sugita, H., Kominami. E., and Katunuma, N. 1986. Abnormal increases of lysosomal cysteine proteinases in rimmed vacuoles in the skeletal muscle. Am. J. Pathol. 122: 193-198.
Im, B., Kominami, E., Grube, D., and Uchiyama, Y. 1989. Immunocyto- chemical localization of cathepsins B and H in human pancreatic endocrine cells and insulinoma cells. Histochemistry. 93: 111-118.
Inubushi, T., Kakegawa, H., Kishino, Y., and Katunuma, N. 1994. Specific assay method for the activities of cathepsin L-type cysteine proteinases. J. Biochem. 116: 282-284.
Isemura, S., Saitoh, E., Ito, S., Isemura, M., and Sanada, K. 1984a. Cystatin S: A cysteine proteinase inhibitor of human saliva. J. Biochem. 96: 1311-1314.
Isemura, S., Saitoh, E., and Sanada, K. 1984b. Isolation and amino acid sequence of SAP-1, and acidic protein of human whole saliva, and sequence homology with human g-trace. J. Biochem. 96: 489-498.
Isemura, S., Saitoh, E., and Sanada, K. 1987. Characterization and amino acid sequence of a new acidic cysteine proteinase inhibitor (Cystatin SA) structurally closely related to cystatin S, from human whole saliva. J. Biochem. 102: 693-704.
Ishida, M., Sugiyama, N., Sato, M., and Nagayama, F. 1995. Two kinds of neutral serine proteinases in salted muscle of anchovy, Engraulis japonica. Biosci. Biotech. Biochem. 59: 1107.
Ishiura, S., Sugita, H., Nonaka, I., and Imahori, K. 1980. Calcium-activated neutral protease. Its localization in the myofibril, especially at the Z-band. J. Biochem. 86: 579-581.
Jarvinen, M. 1978. Purification and some characteristics of the human epidermal SH-protease inhibitor. J. Invest. Dermatol. 72: 114-118.
Jarvinen, M., Rasanen, O., Rinne, A. 1978. The low-molecular-weight SH- protease inhibitor in rat skin is epidermal. J. Invest. Dermatol. 71: 119-121.
Jarvinen, M. and Rinne, A. 1982. Human spleen proteinase inhibitor. Purification, fractionation into isoelectric variants and some properties of the variants. Biochim. Biophys. Acta 708: 210-217.
Jiang, S. T., Lee, B. L., Tsao, C. Y., and Lee, J. J. 1997. Mackerel cathepsins B and L effects on thermal degradation of surimi. J. Food Sci. 62: 310-315.
Jiang, S. T., Lee, J. J., and Chen, H. C. 1994. Purification and characterization of cathepsin B from ordinary muscle of mackerel (Scomber australasicus). J. Agri. Food Chem. 42: 1073-1079.
Kakegawa, H., Nikawa, T., Tagami, K., Kamioka, H., Sumitani, K., Kawata, T., Drobnic-K, M., Lenarcic, B., Turk, V., and Katunuma, N. 1993. Participation of cathepsin L on bone resorption. FEBS Lett. 321: 247-250.
Kamphuis, I. G., Drenth, J., and Baker, E. N. 1985. Thiol proteases, comparative studies based on the high resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J. Mol. Biol. 182: 317-329.
Kargel, H. J., Dettmer, R., Etzold, G., Kirschke, H., Bohley, P., and Langner, J. 1980. Action of cathepsin L on the oxidized B-chain of bovine insulin. FEBS Lett. 114: 257-260.
Kartasova, T., Cornelissen, B. J. C., Belt, P., and Van de Putte, P. 1987. Effects of UV, 4-NQQ and TPA on gene expression in cultured human epidermal kerationcytes. Nucl. Acids Res. 15: 5945-5962.
Kato, H., Nagasawa, S., and Iwanaga, S. 1981. HMW and LMW kininogens. Meth. Enzymol. 80: 172-198.
Katunuma, N., Towatari, T., Tamai, M., and Hanada, K. 1983. Use of new synthetic substrates for assays of cathepsin L and cathepsin B. J. Biochem. 93: 1129-1135.
Kawasaki, H., Emori, Y., Imajoh, S., Minami, Y., and Suzuki, K. 1989. Identification and characterization of inhibitory sequences in four repeating domains of the endogenous inhibitor for calcium-dependent protease. J. Biochem. 106: 274-281.
Keilova, H. and Tomasek, V. 1974. Effect of papain inhibitor from chicken egg white on cathepsin B1. Biochim. Biophys. Acta 334: 179-186.
Kirschke, H, Langner, J., Wiederanders, B., Ansorge, S., and Bogley, P. 1977. Cathepsin L: A new proteinase from rat liver lysosomes. Eur. J. Biochem. 74: 293-301.
Kirschke, H. and Barrett, A. J. Chemistry of lysosomal proteases, in “Lysosomes: Their role in protein breakdown”, 1987, pp. 193-238, Glaumann H. and Ballard F. J. eds. Academic Press, London.
Kirschke, H., Kembhavi, A. A., Bohley, P., and Barrett, A. J. 1982. Action of rat liver cathepsin L on collagen and other substrates. Biochem. J. 201: 367-372.
Kishimoto, A., Kajikawa, N., Shiota, M., and Nishizuka, Y. 1983. Proteolytic activation of calcium-activated phospholipid-dependent protein kinase by calcium-dependent neutral protease. J. Biol. Chem. 258: 1156-1164.
Kishimoto, A., Kajikawa, N., Tabuchi, H., Shiota, M., and Nishizuka, Y. 1981. Calcium-dependent neutral proteases, widespread occurrence of a species of a protease active at lower concentration of calcium. J. Biochem. 90: 889-892.
Kominami, E. K., Tsukahara, T., Hara, K., and Katunuma, N. 1988. Biosyntheses and processing of lysosomal cysteine proteinases in rat macrophages. FEBS Lett. 231: 225-228.
Kominami, E., Bando, Y., Ii, K., Hizawa, K., and Katunuma, N. 1984. Increases in cathepsin B and L and thiol proteinase inhibitors in muscle of dystrophic hamsters. Their localization in invading phagocytes. J. Biochem. 96: 1941-1948.
Kominami, E., Ii, K., and Katunuma, N. 1987. Activation of the intramyofibral autophagic-lysosomal system in muscular dystrophy. Am. J. Pathol. 127: 461-466.
Kondo, H., Abe, K., Emori, Y., and Arai, S. 1991. Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett. 278: 87-90.
Kondo, H., Abe, K., Nishimura, I., Watanabe, H., Emori, Y., and Arai, S. 1990. Two distinct cystatin species in rice seeds with different specificities against ctateine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin-II J. Biol. Chem. 265: 15832-15837.
Korant, B., Towatari, T., Kelley, M., Brzin, J., Lenarcic, B., and Turk, V. 1988. Interactions between a viral protease and cystatins. Biol. Chem. Hoppe- Seyler Suppl. 369: 281-286.
Kouzuma, Y., Kawano, K., Kimura, M., Yamasaki, N., Kadowaki, T., and Yamamoto, K. 1996. Purification, characterization, and sequencing of two cysteine proteinase inhibitors, Sca and Scb, from sunflower (Helianthus annuus) seeds. J. Biochem. 119: 1106-1113.
Krieger, T. J. and Hook, V. Y. H. 1991. Purification and characterization of a novel thiol protease involved in processing of the enkephalin precursor. J Biol. Chem. 266: 8376-8383.
Kumazawa, Y., Nakanishi, K., Yasueda, H., and Motoki, M. 1996. Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Sci. 62: 959-964.
Lah, T. A., Kokalj-Kunovar, M., and Turk, V. 1990. Cysteine proteinase inhibitors in human cancerous tissues and fluids. Biol. Chem. Hoppe-Seyler Suppl. 371: 199-203.
LaVallie, E. R. and McCoy, J. M. 1995. Gene fusion expression systems in Escherichia coli. Curr. Opin. Biotechnol. 6: 501-506.
LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., and McCoy, J. M. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/technology 11: 187-193.
Lee, J. J., Chen, H. C., and Jiang, S. T. 1993. Purification and characterization of proteinases identified as cathepsin L and L-like (58 kDa) from mackerel (Scomber australasics). Biosci. Biotech . Biochem. 57: 1470-1476.
Lee, J. J., Tzeng, S. S., Jiang, S. T. 2000a. Purification and characterization of low molecular weight kininogen from pig plasma. J. Food Sci. 65: 81-86.
Lee, J. J., Tzeng, S. S., Wu, J., Jiang, S. T. 2000b. Inhibition of thermal degradation of mackerel surimi by pig plasma protein and L-kininogen. J. Food Sci. 65: 1124-1129.
Lenarcic, B., Ritonja, A., Dolenc, I., Stoka, V., Berbic, S., Pungercar, J., Strukelj, B., and Turk, V. 1993. Pig leukocyte cysteine proteinase inhibitor (PLCPI), a new member of the stefin family. FEBS Lett. 336: 289-292.
Lenarcic, B., Ritonja, A., Turk, B., Dolenc, I., and Turk, V. 1992. Characterization and structure of pineapple stem inhibitor of cysteine proteinases. Biol. Chem. Hoppe-Seyler 373: 459-464.
Leonardi, A., Turk, B., and Turk, V. 1996. Inhibition of bovine cathepsins L and S by stefins and cystatins. Biol. Chem. Hoppe-Seyler 377: 319-321.
Li, F., An, H., Seymour, T. A., and Barnes, D. W. 2000. Rainbow trout (Oncorhynchus mykiss) cystatin C: expression in Escherichia coli and properties of the recombinant protease inhibitor. Comp. Biochem. Physiol. 125B: 493-502.
Li, F., An, H., Seymour, T. A., Bradford, S., Morrissey, M. T., Bailey, G. S., Helmrich, A., and Barnes, D. W. 1998. Molecular cloning, sequence analysis and expression distribution of rainbow trout (Oncorhynchus mykiss) cystatin C. Comp. Biochem. Physiol. 121B: 135-143.
Liang, C., Brookhart, G., Feng, G. H., Reeck, G. R., and Kramer, K. J. 1991. Inhibition of digestive proteinases of stored grain coleoptera by oryzacystatin, a cysteine proteinase inhibiotr from rice seed. FEBS Lett. 278: 139-142.
Lindahl, P., Ripoll, D., Abrahamson, M., Mort, J. S., and Storer, A. C. 1994. Evidence for the interaction of valine-10 in cystatin C with the S2 subsite of cathepsin B. Biochemistry 33: 4384-4392.
Liu, D., Kanoh, S., and Niwa, E. 1996a. Effect of cysteine protease inhibitor on the setting of Alaska pollack surimi paste. Nippon Suisan Gakkaishi 62: 275- 280.
Liu, D., Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1996b. Effect of serine protease inhibitor on the setting of Alaska pollack surimi paste. Nippon Suisan Gakkaishi 62: 791-796.
Machleidt, W., Thiele, U., Laber, B., Assfalg-Machleidt, I., Esterl, G. W., Kos, J., Turk, V., and Bode, W. 1989. Mechanism of inhibition of papain by chicken egg white cystatin: Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. FEBS Lett. 243: 234-238.
Machleidt, W., Thiele, U., Machleidt, I. A., Forger, D., and Auerswald, E. A. 1991. Molecular mechanism of inhibition of cysteine proteinases by their protein inhibitors: Kinetic studies with natural and recombinant variants of cystatins and stefins. Biomed. Biochim. Acta 50: 613-620.
Maki, M., Takano, E., Osawa, T., Ooi, T., Murachi, T., and Hatanaka, M., Analysis of structure-function relationship of pig calpastatin by expression of mutated cDNAs in Escherichia coli. J. Biol. Chem. 1988: 263: 10254-10261.
Makinodan, Y., Toyohara, H., and Niwa, E. 1985. Implication of muscle alkaline protease in the textural degradation of fish meat gel. J. Food Sci. 50: 1351-1355.
Marks, N. and Berg, M. J. 1987. Rat brain cathepsin L: characterization and differentiation from cathepsin B utilizing opioid peptides. Arch. Biochem. Biophys. 259: 131-143.
Mason, R, W., Green, G. D. J., and Barrett, A. J. 1985. Human liver cathepsin L. Biochem. J. 226: 233-241.
Mason, R. W., Taylor, M. A. J., and Etherington D. J. 1984. The purification and properties of cathepsin L from rabbit liver. Biochem. J. 217: 209-217.
Matsukura, U., Okitani, A., Nishimuro, T., and Kato, H. 1981. Mode of degradation of myofibrillar proteins by an endogenous protease, cathepsin L. Biochem. Biophys. Acta 662: 41-47.
Matsumiya, M., Mochizuki, A., and Otake, S. 1989. Purification and characterization of cathepsin B from ordinary muscle of common mackerel Scomber japonicus. Nippon Suisan Gakkaishi 55: 2185-2190.
Mellgren, R. L. 1980. Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium. FEBS Lett. 109: 129- 133.
Menard, R., Carmona, E., Plouffe, C., Dieter, B., Konishi, Y., Lefebvre, J., and Storer, A. C. 1993. The specificity of the S1’ subsite of cysteine proteases. FEBS Lett. 328: 107-110.
Mikami, M., Whiting, A. H., Taylor, M. A. J., Maciewicz, R. A., and Etherington, D. J. 1987. Degradation of myofibrils from rabbit, chicken and beef by cathepsin L and lysosomal lysates. Meat Sci. 21: 81-97.
Moore, J. T., Uppal, A., Maley, F., and Maley, G. F. 1993. Overcoming inclusion body formation in a high-level expression system. Prot. Expr. Purif. 4: 160-163.
Moreau, T., Gutman, N., Faucher, D., and Gauthier, F. 1989. Limited proteolysis of T-kininogen. J. Biol. Chem. 264: 4298-4303.
Morrissey, M. T., Wu, J. W., Lin, D., and An, H. 1993. Protease inhibitor effects on torsion measurements and autolysis of Pacific whitiing surimi. J. Food Sci. 58: 1050-1054.
Muller-Esterl, W., Fritz, H., Kellermann, J., Lottspeich, F., Machleidt, W., and Turk, V. 1985. Genealogy of mammalian cysteine proteinases inhibitors. Common evolutionary origin of stefins, cystatins and kininogens. FEBS Lett. 191: 221-226.
Mullins, D. E. and Rohrlich, S. T. 1983. The role of proteinase in cellular invasiveness. Biochim. Biophys. Acta 695: 177-214.
Murachi, T. 1983a. Calpain and calpastatin. Trends Biochem. Sci. 8: 167-169.
Murachi, T. 1983b. Intacellular Ca protease and its inhibitor protein: Calpain and calpastatin, in “Calcium and Cell Function, Vol. IV” pp. 337-410. Cheung, W. Y. Eds, Academic Press, London.
Murachi, T., Tanaka, K., Hatanaka, M., and Murakami, T. 1981. Intracellular Ca-dependent protease (calpain) and its high molecular weight endogenous inhibitor (calpastatin). Adv. Enzyme Regul. 19: 407-424.
Murakami, T., Hatanaka, M. and Murachi, T. 1981. The cytosol of human erythrocytes contains a highly Ca-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin). J. Biochem. 90: 1809-1816.
Murasugi, A. and Tohma-Aiba, Y. 2001. Comparison of three signals for secretory expression of recombinant human midkine in Pichia pastoris. Biosci. Biotech. Biochem. 65: 2291-2293.
Musil, D., Zucic, D., Turk, D., Engh, R. A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., and Katunuma, N. 1991. The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10: 2321-30.
Nawa, H., Kitamura, N., Hirose, T., Asai, M., Inayama, S., and Nakanishi, S. 1983. Primary structure of bovine liver low molecular weight kininogen precursors and their two mRNAs. Proc. Natl. Acad. Sci. USA 80: 90-94.
Neurath, H. 1984. Evolution of proteolytic enzymes. Science 224: 350-357.
Neurath, H. 1989. Proteolytic processing and physiological regulation. Trend. Biochem. Sci. 14: 268-271.
Ni, J., Abrahamson, M., Zhang, M., Fernandez, M. A., Grubb, A., Su, J., Yu, G. L., Li, Y., Parmelee, D., Xing, L., Coleman, T. A., Gentz, S., Thotakura, R., Nguyen, N., Hesselberg, M., and Gentz, R. 1997. Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J. Biol. Chem. 272: 10853-10858.
Ni, J., Fernandez, M. A., Danielsson, L., Chillakuru, R. A., Zhang, J., Grubb, A., Su, J., Gentz, R., and Abrahamson, M. 1998. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J. Biol. Chem. 273: 24797-24804.
Nicklin, M. J. and Barrett, A. J. 1984. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem. J. 223: 245-253.
Nishiura, I., Tanaka, K., Yamato, S., and Murachi, T. 1978. The occurrence of an inhibitor of Ca2+ dependent neutral protease in rabit liver. J. Biochem. 84: 1657-1659.
Nomura, A., Itoh, Y., Nishikawa, S., and Obatake, A. 1994. The gel strengthening effect of two-step heating on the meat pastes from different fish in modori-inducing conditions. Nippon Suisan Gakkaishi 60: 667.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994a. Setting of surimi paste in which transglutaminase is inactivated by p-chloromercuri-benzoate. Fisheries Sci. 60: 185-188.
Nowsad, A. AKM., Kanoh, S., and Niwa, E. 1994b. Setting of surimi paste in which transglutaminase is inactivated by N-ethylmaleimide. Fisheries Sci. 60: 189-192.
Oka, C. Tanaka, M., Muraki, M., Harata, K., Suzuki, K., and Jigami, Y. 1999. Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci. Biotech. Biochem. 63: 1977-1983.
Okada, Y., Teno, N., Itoh, N., and Okamoto, H. 1985. Significant effects of synthetic Gln-Val-Val-Ala-Gly and their derivatives, common sequences of thiol proteinase inhibitors, on thiol proteinase. Chem. Pharm. Bull. 33: 5149- 5152.
Okitani, A., Matsuishi, M., Matsumoto, T., Kamoshida, E., Sato, M., Matsukura, U., Watanabe, M., Kato, H., and Fujinaki, M. 1988. Purification and some properties of cathepsin B from rabbit skeletal muscle. Eur. J. Biochem. 171: 377-381.
Okitani, A., Matsukura, U., Kato, H., and Fujimaki, M. 1980. Purification and some properties of a myofibrillar protein-degrading protease, cathepsin L, from rabbit skeletal muscle. J. Biochem. 87: 1133-1143.
Olsson, S. L., Ek, B., Wilm, M., Broberg, S., Rask, L., and Bjork, I. 1997. Molecular cloning and N-terminal analysis of bovine cystatin C. Identification of a full-length N-terminal region. Biochim. Biophys. Acta 1343: 203-210.
Pagano, M. and Engler, R. 1982. Inhibition of human liver cathepsin L by a-thiol proteinase inhibitor. FEBS Lett. 138: 307-310.
Pfaff, A. W., Schulz-Key, H., Soboslay, P. T., Taylor, D. W., MacLennan, K., Hoffmann, W. H. 2002. Litomosoides sigmodontis cystatin acts as an immunomodulator during experimental filariasis. Int. J. Parasitol. 32: 171- 178.
Pike, R. N. and Dennison, C. 1989. A high yield method for isolation of sheep’s liver cathepsin L. Prep. Biochem. 19: 231-245.
Pike, R. N., Coetzer, T. H. T., and Dennison, C. 1992. Proteolytic active complexes of cathepsin L and a cysteine proteinase inhibitor. Purification and demonstration of their formation in vitro. Arch. Biochem. Biophys. 294: 623-629.
Price, N. C. and Stevens, L. Enzymes in cell, in “Fundamentals of Enzymoloty”. 1989, pp. 365-422. Price, N. C. and Stevens, L. eds. Oxford University Press, New York.
Rasmussen, H. and Goodman, D. B. P. 1977. Relationships between calcium and cyclic nucleoties in cell activation. Physiol. Rev. 57: 421-509.
Rawlings, N. D. and Barrett, A. J. 1990. Evolution of proteins of cystatin superfamily. J. Mol. Evol. 30: 60-71.
Rich, D. H., Brown, M. A., and Barrett, A. J. 1986. Purification of cathepsin B by a new form of affinity chromatography. Biochem. J. 235: 731-734.
Ritonja, A., Kopitar, M., Jerala, R., and Turk, V. 1989. Primary structure of a new cysteine preteinase inhibitor from pig leucocytes. FEBS Lett. 255: 211- 214.
Rodis, P. and Hoff, J. E. 1984. Naturally occurring protein crystals in the potato. Inhibitor of papain, Chymopapain, and ficin. Plant Physiol. 74: 907-911.
Rowan, A. D., Brzin, J., Buttle, D. J., and Barrett, A. J. 1990. Inhibition of cysteine proteinases by a protein inhibitor from potato. FEBS Lett. 269: 328-330.
Rozhin, J., Wade, R., Honn, K. V., and Slonane, B. F. 1989. Membrane- associated cathepsin L: A role in metastasis of melanomas. Biochem. Biophys. Res. Commun. 164: 556-561.
Saeki, H., Iseya, Z., Sugiura, S., and Seki, N. 1995. Gel forming characteristics of frozen surimi from chum salmon in the presence of protease inhibitors. J. Food Sci. 60: 917-921, 928.
Sakon, M., Kambayashi, J., Ohno, H., and Kosaki, G. 1981. Two forms of Ca-activated neutral protease in platelets. Thrimb. Res. 24: 207-214.
Salvesen, G., Parkes, C., Abrahamson, M., Grubb, A., and Barrett, A. J. 1986. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem. J. 234: 429-434.
Sambrook, J. and Russell, D. W. 2001. Expression of cloned genes in Escherichia coli using the bacteriophage T7 promoter, in Molecular cloning, a laboratory manual, Chapter 15, 3rd edn., vol. 3, pp. 15-21. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Sharma, A., O’Connell, B. C., Tabak, L. A., and Bedi, G. S. 1995. Expression of a functional rat salivary cystatin S polypeptide in Escherichia coli. Arch. Oral. Biol. 40: 639-644.
Sato, N., Horiuchi, T., Hamno, M., Sekine, H., Chiba, S., Yamamoto, H., Yoshioka, T., Kimura, I., and Satake, M. 1996. Kojistatin A, a new cysteine protease inhibitor produced by Aspergillus oryzae. Biosci. Biotech. Biochem. 60: 1747-1748.
Sato, N., Ishidoh, K., Uchiyama, Y., and Kominami, E. 1990. Molecular cloning and sequencing of cDNA for rat cystatin b. Nucl. Acids Res. 18: 6698.
Sato, N., Ishidoh, K., Uchiyama, Y., and Kominami, E. 1992. Structure organization of the gene encoding rat cystatin b. Gene 114: 257-260.
Schein, C. H. and Noteborn, M. H. M. 1988. Optimization of the solubilization and renaturation of human interferon-a2 produced by Escherichia coli. Bio/Technology 6: 291-294.
Schwartz, W. and Barrett, A. J. 1980. Human cathepsin H. Biochem. J. 191: 487-497.
Schwartz, W. N. and Bird, J. W. C. 1977. Degradation of myofibrillar proteins by cathepsins B and D. Biochem. J. 167: 811-820.
Sherekar, S. V., Gore, M. S., and Ninjoor, V. 1988. Purification and characterization of cathepsin B from the skeletal muscle of fresh water fish, Tilapia mossambica. J. Food Sci. 53: 1018-1023.
Sloane, B. F., Rozhin, J., Robinson, D., and Honn, K. V. 1990. Role for cathepsin B and cystatins in tumor growth and progression. Biol. Chem. Hoppe-Seyler Suppl. 371: 193-198.
Song, I., Taylor, M., Baker, K., and Bateman, Jr. R. C. 1995. Inhibition of cysteine proteinases by Carica papaya cystatin produced in Escherichia coli. Gene 162: 221-224.
Sotiropouplou, G., Anisowicz, A., and Sager, R. 1997. Identification, cloning, and characterization of cystatin M. A novel cysteine proteinase inhibitor, down-regulated in breast cancer. J Biol. Chem. 272: 903-910.
Sugimoto, S., Yokoo, Y., Hatakeyama, N., Yotsuji, A., Teshiba, S., and Hagino, H. 1991. Improved procedure for a high-yield recovery of recombinant salmon growth hormone from Escherichia coli. Biotechnol. Lett. 13: 385-388.
Suzuki, K., Tsuji, S., and Ishiura, S. 1981a. Autolysis of calcium-activated neutral protease of chicken skeletal muscle. FEBS Lett. 136: 119-122.
Suzuki, K., Tsuji, S., Kubota, S., Kimura, Y., and Imahori, K. 1981b. Limited autolysis of Ca2+-activated neutral proteas (CANP) changes its sensitivity to Ca ions. J. Biochem. 90: 275-278.
Takahashi, H., Cease, K. B., and Berzofsky, J. A. 1989. Identification of proteases that process distinct epitopes on the same protein. J. Immunol. 142: 2221-2229.
Takahashi, M., Tezuka, T., and Katunama, N. 1994. Inhibition of growth and cysteine proteinase activity of Staphylococcus aureus V8 by phosphorylated cystatin a in skin cornified envelope. FEBS Lett. 355: 275-278.
Takio, K., Kominami, E., Bando, Y., Katunuma, N., and Titani, K. 1984. Amino acid sequence of rat epidermal thiol proteinase inhibitor. Biochem. Biophys. Res. Commun. 121: 149-154.
Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., Elliston, K. O., Ayala, J. M., Casano, F J., Chin, J., Ding, G. J.F., Egger, L. A., Gaffney, E. P., Limjuco, G., Palyha, O. C., Raju, S. M., Rolando, A. M., Salley, J. P., Yamin, T. T., Lee, T. D., Shively, J. E., MacCross, M., Mumford, R. A., Schmidt, J. A., and Tocci, M. J. 1992. A novel heterodimeric cysteine protease is required for interleukin-1b processing in monocytes. Nature 356: 768-774.
Towatari, T. and Katunuma, N. 1983. Selective cleavage of peptide bonds by cathepsins L and B from rat liver. J. Biochem. 93: 1119-1128.
Towatari, T., Tanaka, K., Yoshikawa, D., and Katunuma, N. 1978. Purification and properties of a new cathepsin from rat liver. J. Biochem. 84: 659-671.
Toyohara, H., Makinodan, Y., and Ikeda, S. 1985a. Detection of calpain and calpastatin in carp eggs. Bull. Japan. Soc. Sci. Fish. 51: 1281-1286.
Toyohara, H., Makinodan, Y., and Ikeda, S. 1985b. Detection and some properties of calpain II (high-Ca2+-requiring form of calpain) in carp (Cyprinus carpio) erythrocytes. Comp. Biochem. Physiol. B 81: 583-586.
Tsai, Y. J., Chang, G. D., Huang, C. J., Chang, Y. S., and Huang, F. L. 1996. Purification and molecular cloning of carp ovarian cystatin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113: 573-580.
Tsui, F. W., Tsui, H. W., Mok, S., Mlinaric, I., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and Siminovitch, K. A. 1993. Molecular characterization and mapping of murine genes encoding three members of the stefin family of cysteine proteinase inhibitors. Genomics 15: 507-514.
Tsushima, H. 1993. Isolation of cysteine proteinase inhibitor, cystatin A, from human nails. Arch. Dermatol. Res. 285: 418-422.
Tsushima, H., Mine, H., Hoshika, K., Kawakami, Y., Hyodoh, F., and Ueki, A. 1992. Candida albicans produces a cystatin-type cysteine proteinase inhibitor. J. Bacteriol. 174: 4807-4810.
Turk, B., Dolenc, I., Turk, V., and Bieth, J. G. 1993. Kinetics of the pH-induced inactivation of human cathepsin L. Biochemistry 32: 375-380.
Turk, V. and Bode, W. 1991. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 285: 213-219.
Van Noort, J. M. and Van der Drift, A. C. M. 1989. The selectivity of cathepsin D suggests and involvement of the enzyme in the generation of T-cell epitopes. J. Biol. Chem. 264: 14159-14164.
Wall, J. G. and Pluckthun, A. 1995. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 507-516.
Walsh, T. A. and Strickland, J. A. 1993. Proteolysis of the 85-Kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains. Plant Physiol. 103: 1227-1234.
Wasson, D., Babbitt, J. K., and French, J. S. 1992b. Characterization of a heat stable protease from arrowtooth flounder; Atheresthes stomias. J. Aquat. Food Prod. Technol. 1: 167-182.
Waxman, L. and Kerbs, E. G. 1978. Identification of two protease inhibitors from bovine cardic muscle. J. Biol. Chem. 253: 5888-5891.
Wiederanders, B., Bromme, D., Kirschke, H., Figura, K. V., Schmidt, B., and Peters, C. 1992. Phylogenetic conservation of cysteine proteinases, cloning and expression of a cDNA coding for human cathepsin S. J. Biol. Chem. 267: 13708-13713.
Yagel, S., Warner, A. H., Nellans, H. N., Lala, P. K., Waghorne, C., and Denhardt, D. T. 1989. Suppression by cathepsin L inhibitors of the invasion of amnion membranes by murine cancer cells. Cancer Res. 49: 3553-3557.
Yamashita, M. and Konagaya, S. 1990a. High activities of cathepsins B, D, H and L in the muscle of chum salmon in spawning migration. Comp. Biochem. Physiol. B 95: 149-152.
Yamashita, M. and Konagaya, S. 1990b. Partipation of Cathepsin L into extensive softening of the muscle of chum salmon caught during spawning migration. Nippon Suisan Gakkaishi 56: 1271-1277.
Yamashita, M. and Konagaya, S. 1990c. Purification and characterization of cathepsin L from the white muscle of chum salmon, Oncrohynchus Keta. Comp. Biochem. Physiol. B 96: 733-737.
Yamashita, M. and Konagaya, S. 1991. Hydrolytic action of salmon cathepsins B and L to muscle structural proteins in respect of muscle softening. Nippon Suisan Gakkaishi 57: 1917-1922.
Yamashita, M., Henmi, H., Ueda, T., Obara, M., Taro, T., Nishioka, F., and Konagaya, S. 1996. Marked proteolysis occurring during thermal gel formation of the mined meat from matured chum salmon and restraining effect of protease inhibitor on gel-degradation. Nippon Suisan Gakkaishi 62: 934-938.
Zhou, Z., Zhu, Z., Chen, R., Liu, C., and Li, X. 1996. High level expression of oryzacystatin in Escherichia coli. Chin. J. Biotechnol. 12: 17-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top