跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳焜銘
論文名稱:近岸及陸棚生態系中纖毛蟲對聚球藻捕食率的時空變異與其在生物碳循環中的重要性
指導教授:張正張正引用關係
學位類別:博士
校院名稱:國立海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:106
中文關鍵詞:纖毛蟲聚球藻捕食率碳循環
相關次數:
  • 被引用被引用:4
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為了瞭解近岸及陸棚海域優勢纖毛蟲族群的時空變化與在碳循環中所佔的地位,本論文研究於基隆近岸與東海陸棚中進行了一系列的實驗,除了觀察纖毛蟲數量在不同的季節與空間上的變化情形之外,並利用螢光顆粒標定法測定纖毛蟲對於聚球藻的攝食速率,藉由這些測量可以歸納出纖毛蟲的食性及族群消長的控制因子,並估測纖毛蟲對有機碳的傳輸量。在食物顆粒的大小與種類的選擇上,寡毛目纖毛蟲對於直徑2 mm的食物顆粒會表現出最高的攝食速率,而對於大小相同的食物顆粒,無論是塑膠微粒或是藻類細胞,則沒有選擇性攝食的現象。在光強度對纖毛蟲攝食速率上,單種培養的纖毛蟲Lohmanniella sp.的攝食率在光強度超過57 mEs-1m-2時,會明顯而迅速的受到光強度的抑制而與纖毛蟲本身細胞內週日行生理時鐘的控制無關。不過光強度卻沒有對於野外纖毛蟲在攝食率上造成明顯的差異。在溫度方面,纖毛蟲在15℃下沒有攝食螢光綠藻的現象,而當溫度高於20℃後,攝食率會明顯增加,這個高攝食率會一直維持到25℃及30℃,沒有明顯的改變。在近岸生態系中纖毛蟲數量有明顯的季節性變化,冬季與夏季的平均數量分別為46與230 ciliates l-1。其中寡毛目纖毛蟲的數量明顯多於類鈴蟲目。在秋季東海陸棚的生態系中,纖毛蟲的分佈是由沿岸的53 ciliates l-1,逐漸的向外海增加,在第九測站達到1632 ciliates l-1,但到了接近陸棚邊緣附近,又開始下降。寡毛目纖毛蟲的數量佔全體纖毛蟲的82% 到 100%,在陸棚的中央會出現較高的數量,然後向東西兩側遞減。寡毛目纖毛蟲的體型大小在陸棚的分布上有相當大的變異,沿岸區體長介於5 mm到15 mm的纖毛蟲較多,佔全體纖毛蟲的數量百分比可高達87%。無論在近岸及陸棚生態系中,纖毛蟲的數量與溫度之間並沒有明顯的相關存在,而是與聚球藻在數量上有明顯的正相關存在。在基隆近岸海域中,纖毛蟲的攝食率在水溫較低的冬季是受到溫度的控制,只有4 cells ciliate-1h-1左右,而在其他溫度較高的季節則是受到聚球藻濃度的控制,最高可達55 cells ciliate-1h-1。而在東海陸棚生態系中,纖毛蟲的攝食率也明顯的受到聚球藻數量變化的控制。由此已經設立一個數學模式利用水溫與聚球藻數量來推測纖毛蟲的攝食率(IR=0.0148× 0.7231×(T-15)/【1.871+(T-15)】,而在東海陸棚上,纖毛蟲攝食率的增加則是因為聚球藻的數量增加,而纖毛蟲數量則是因為本身攝食率的增加所造成的。在近岸生態系中,纖毛蟲對於聚球藻的捕食率介於0 到0.011 d-1之間,而所能夠傳輸的有機碳全年積分值為11 mg C m-3yr-1,而在陸棚生態系中,纖毛蟲對於聚球藻生物量的捕食率介於0 d-1到0.04 d-1之間,而所能夠傳輸的有機碳量只有0.1 mg C m-3d-1,顯示無論在基隆近岸或是東海陸棚上,纖毛蟲都只能夠消耗掉極少部分的聚球藻族群而無法對於聚球藻的數量造成明顯的變動。所以在微生物迴路中,聚球藻的有機碳勢必無法大量的透過纖毛蟲的捕食作用而傳遞到捕食食物鏈。對聚球藻有機碳而言,微生物迴路將會是一個沉落(sink)的途徑。
目 錄
章節 頁次
壹、第一章 緒論 1
貳、第二章 近岸海域優勢纖毛蟲攝食特性的探討
前言 9
材料與方法 13
結果 21
討論 26
參、第三章 近岸生態系中纖毛蟲對於聚球藻捕食率的季節性變化
前言 31
材料與方法 34
結果 37
討論 41
肆、第四章 陸棚生態系中纖毛蟲對於聚球藻捕食率的空間變化
前言 48
材料與方法 51
結果 53
討論 56
伍、第五章 總結 60
陸、參考文獻 63
宋微波與王梅 1997. 具湧急游虫(Strombidium sulcatum)二分裂期間的型態發生學. 自然科學發展. 7:62-65.
陳佳杏 1998. 溫度對單細胞藍綠藻生長率的影響與族群大小的季節變化. 國立台灣海洋大學海洋生物研究所碩士論文.
郭敏潔 1999. 藍綠細菌(Synechococcus)東海現存量之時空分布及其在台灣東北部沿岸海域成長率季節變化之研究. 國立台灣海洋大學漁業科學系碩士論文.
林耿賢 2000. 東海中聚球藻Synechococcus spp. 的生長、被捕食速率及其控制因子. 國立台灣海洋大學海洋生物研究所碩士論文.
盧永修、黃聲蘋、陳焜銘、鍾至青、李秀萍、熊同銘與張正 2001. 台灣北部沿岸海域微小綠藻 (Nannochloris sp.) 之分離與鑑定. 台灣海洋學刊. 39:69-78.
Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.
Balczon, J.M., and J.R. Pratt. 1995. A comparison of methods for estimating short-term feeding rates of algivorous ciliated protozoa. Arch. Protistenkd. 146:49-58.
Beers, J.R., and G.L. Stewart. 1971. Microzooplanktopn in the plankton community of the upper waters of the eastern tropical Pacific. Deep-Sea Res. 18:861-883.
Beers, J.R., F.M.H. Reid, and G.L. Stewart. 1980. Microplankton population structure in Southern California nearshore waters in late spring. Mar. Biol. 60:209-226.
Beers, J.R., F.M.H. Reid, and G.L. Stewart. 1982. Seasonal abundance of the microplankton population in the North Pacific central gyre. Deep-Sea Res. 29:227-245.
Berggreen, U., B. Hanson, and T. Kiorboe. 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol. 99:341-352.
Berk, S.G., L.H. Parks, and R.S. Ting. 1991. Photoadaptation alters the ingestion rate of Paramecium bursaria, a mixtrophic ciliate. Appl. Environ. Microbiol. 57:2312-2316.
Bird, D.F., and J. Kalff. 1986. Bacterial grazing by planktonic lake algae. Science 231:493-495.
Bird, D.F., and J. Kalff. 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32:277-284.
Bogdan, K.G., and J.J. Gilbert. 1984. Body size and food size in freshwater zooplankton. Proc Natl acad Sci U.S.A. 81:6427-6431.
Buck, K.R.., F.P. Chavez, and L. Campbell. 1996. Basin-wide distributions of living carbon components and the inverted trophic pyramind of the central gyre of the North Atlantic Ocean, Summer 1993. Aquat. Microb. Ecol. 10:283-298.
Capriulo, G.M., and E.J. Carpenter. 1980. Grazing by 35 to 202 mm micro-zooplankton in Long Island Sound. Mar. Biol. 56:319-326.
Carrick, H.J., G.L. Fahnenstiel, E.F. Stoermer, and R.G. Wetzel. 1991. The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36:1335-1345.
Chang, J., C.-C. Chung, and G.-C. Gong. 1996. Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Mar. Ecol. Prog. Ser. 140:199-205.
Chen, K.-M., and J. Chang. 1999. Influence of light intensity on the ingestion rate of a marine ciliate, Lohmanniella sp.. J. Plankton Res. 21:1791-1798.
Chen, L.Y.-L.. 2000. Comparisons of primary productivity and phytoplankton size structure in the marginal region of southern East China Sea. Continental Shelf Res. 20:437-458.
Chiang, K.-P., M.-C. Kuo, J. Chang, R.-H. Wang, and G.-C. Gong. 2001. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Continental Shelf Res. 0:1-11.
Christaki, U., J.R. Dolan, S. Pelegri, and F. Rassoulzadegan. 1998. Consumption of picoplankton-size particles by marine ciliates: effects of physiological state of the ciliate and particle quality. Limnol. Oceanogr. 43:458-464.
Christaki, U., S. Jacquet, J.R. Dolan, D. Vaulot, and F. Rassoulzadegan. 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr. 44:52-61.
Curds, C.R., and A. Cockburn. 1968. Studies on the growth and feeding of Terahymena pyriformis in axenic and monoxenic culture. J. Gen. Microbiol. 54:343-358.
Dolan, J. R. 1991. Guilds of ciliate microzooplankton in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 33:137-152.
Ducklow, H.W., D.A. Purdie, P.J. Leb. Williams, and J.M. Davis. 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232:865-867.
Fenchel, T. 1980. Suspension feeding in ciliated protozoa: functional response and particle size selection. Microb. Ecol. 6:1-11.
Fenchel, T. 1982a. Ecology of heterophic microflagellates. IV. Quantitative occurrence and importance as bacterial cionsumers. Mar. Ecol. Prog. Ser. 9:35-42.
Fenchel, T. 1982b. Ecology of heterophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8:225-231.
Fenchel, T. 1987. Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists. Science Technical Publishers, Madison, WI.
Furnas, M.J. 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankton Res. 12:1117-1151.
Gifford, D.J. 1991. The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38:81-86.
Gong, G.-C., Y.-L.L. Chen, and K.-K. Liu. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Res. 16:1561-1590.
Gonzalez, J.M., E.B. Sherr, and B.F. Sherr. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56:583-589.
Guillard, R.R.L., and J.H. Ryther. 1962. Studies of marine planktonic diatoms Cyclotella nana (Hustedt) and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.
Hadas, O., and T. Berman. 1998. Seasonal abundance and vertical distribution of protozoa (flagellates, ciliates) and bacteria in Lake Kinneret, Israel. Aquat. Microb. Ecol. 14:161-170.
Hansen, B., P.K. Bjornsen, and P.J. Hansen. 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39:395-403.
Hansen, P.J., and P.K. Bjornsen. 1997. Zooplankton grazing and growth: Scaling within the 2-2,000 mm body size range. Limnol. Oceanogr. 42:687-704.
Heinbokel, J.F. 1978. Studies on the Functional Role of Tintinnids in the Southern California Bight. 1. Grazing and growth Rates in Laboratory Cultures. Mar. Biol. 47:177-189.
Hwang, S.-J., and R.T. Heath. 1997. The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. J. Plankton Res. 19:491-518.
Jakobsen, H.H. and P.J. Hansen. 1997. Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum - a comparative study. Mar. Ecol. Prog. Ser. 158:75-86.
James, M.R., and J.A. Hall. 1995. Planktonic ciliated protozoa: their distribution and relationship to environmental variables in a marine coastal ecosystem. J. Plankton Res. 17:659-683.
Joint, I.R., and A.J. Pomroy. 1983. Production of picoplankton and small nanoplankton in the Celtic Sea. Mar. Biol. 77:19-27.
Jonsson, P.R. 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 33:265-277.
Kivi, K., and O. Setala. 1995. Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 119:125-137.
Kudoh, S., J. Kanda, and M. Takahashi. Specific growth rates and grazing mortality of chroococcoid cyanobacteria Synechococcus spp. in pelagic surface waters in the sea. J. Exp. Mar. Biol. Ecol. 142:201-212.
Landry, M.R., and R.P. Hassett. 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67:283:288.
Li, W.K.W., D.V.S. Rao, W.G. Harrison, J.C. Smith, J.J. Cullen, B. Irwin, and T. Platt. 1983. Autrophic picoplankton in the tropic ocean. Science 219:292-295.
Li, W.K.W., and A.M. Wood. 1988. Vertical distribution of North Atlantic ultraplankton: analysis by flow cytometry and epifluorescence microscopy. Deep-Sea Res. 35:1615-1638.
Lynn, D.H., and D.J.S. Montagnes. 1991. Global production of heterotrophic planktonic ciliates, p. 281-307. In P.C. Reid, C.M. Turley, and P.H. Burkill (eds.), Protozoa and their role in marine processes. Springer Verlag, Berlin.
Maeda, M. 1997. Suborder Oligotrichina, p. 397-420. In M. Chihara and M. Murano (eds), An Illustrated Guild to Marine Plankton in Japan. Tokai University, Japan.
McManus, G.B., and J.A. Fuhrman. 1986. Bacterivory in seawater studied with the use of inert fluoresent particles. Limnol. Oceanogr. 31:420-426.
Montagnes, D.J.S., D.H. Lynn, J.C. Roff, and W.D. Taylor. 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99:21-30.
Montagnes, D.J.S. 1996. Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130:241-254.
Murphy, L.S., and E.M. Haugen. 1985. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30:47-58.
Neuer, S., and T.J. Cowles. 1994. Protist herbivory in the Oregon upwelling system. Mar. Ecol. Prog. Ser. 113:147-162.
Newell, S.Y., B.F. Sherr, E.B. sherr, and R.D. Fallon. 1983. Bacterial response to presence of eukaryote inhibitors in water from a coastal marine environment. Mar. env. Res. 10:147-157.
Nielsen, T.G., and T. Kiorboe. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39:508-519.
Pace, M.L., and M.D. Bailiff. 1987. Evaluation of a fluoresent microsphere technique for measuring grazing rates of phagotrophic microorganisms. Mar. Ecol. Prog. Ser. 40:185-193.
Peters, F. 1994. Prediction of planktonic protistan grazing rates. Limnol. Oceanogr. 39:195-206.
Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. BioScience 24:499-504.
Porter, K.G., and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943-948.
Putt, M., and D.K. Stoecker. 1989. An experimentally determined carbon: volumne ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol. Occeangr. 34:1097-1103.
Rassoulzadegan, F. 1982. Dependence of grazing rate, gross growth efficiencyand food size range on temperature in a pelagic oligotrichous ciliate Lohmaniella spiralis Leeg., fed on naturally occurring particulate matter. Ann. Inst. Oceanogr. 58:177-184.
Rassoulzadegan, F., M. Lavel-Peuto, and R.W. Sheldon. 1988. Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159:75-88.
Rivkin, R.B., L. Legendre, D. Deibel, J. -E. Tremblay, B. Klein, K. Crocker, S. Roy, N. Silverberg, C. Lovejoy, F. Mesple, N. Romero, M.R. Anderson, P. Matthews, C. Savenkoff, A. Vezina, J.-C. Therriault, J. Wesson, C. Berube, and R.G. Ingram. 1996. Vertical flux of biogenic carbon in the ocean: is there food web control? Science 272:1163-1166.
Rublee, P.A., and C.L. Gallegos. 1989. Use of fluorescently labeled algae (FLA) to estimate microzooplankton grazing. Mar. Ecol. Prog. Ser. 51:221-227.
Sheldon, R.W., P. Nival, and F. Rassoulzadegan. 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr. 31:184-188.
Sherr, E.B., B.F. Sherr, R.D. Fallon, and S.Y. Newell. 1986. Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31:177-183.
Sherr, B.F., E.B. Sherr, and R. Fallon. 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53:958:965.
Sherr, E.B., B.F. Sherr, and L.J. Albright. 1987. Bacteria: Link and sink? Science 235:88-89.
Sherr, E.B., and B.F. Sherr. 1988. Role of microbes in pelagic food weds: A revised concept. Limnol. Oceanogr. 33:1225-1227.
Sherr, B.F., E.B. Sherr, and C. Pedros-Alio. 1989. Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar. Ecol. Prog. Ser. 54:209-219.
Sherr, E.B., B.F. Sherr, and J. McDaniel. 1991. Clearance rates of <6 mm fluorescently labeled algae (FLA) by estuarine protozoa: potential grazing impact of flagellates and ciliates. Mar. Ecol. Prog. Ser. 69:81-92.
Sieburth, J., McN. V. Smetacek, and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23:1256-1263.
Simek, K., J. Bobkova, M. Macek, and J. Nedoma. 1995. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: A study at the species and community level. Limnol. Oceanogr. 40:1077-1090.
Simek, K., M. Macek, J. Pernthaler, V. Straskrabova, and R. Psenner. 1996. Can freshwater planktonic ciliates survive on a diet of picoplankton? J. Plankton Res. 18:597-613.
Sournia, E. 1978. Preservation and storage. p. 33-112. In E. Sournia. (Ed.), Phytoplankton Manual. UNESCO. Paris.
Stoecker, D.K., T.L. Cucci, E.M. Hulburt, and C.M. Yentsch. 1986. Selective feeding by Balanion sp. (Ciliata: Balanionidae) on phytoplankton that best support its growth. J. Exp. Mar. Biol. Ecol. 95:113-130.
Stockner, J. G., and N.J. Antia. 1986. Algal, picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43:2472-2503.
Stoecker, D.K., A. Taniguchi, and A.E. Michaels. 1989. Abundance of autotrophic, mixtrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50:241-254.
Strom, S.L., and N.A. Welschmeyer. 1991. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean. Limnol. Oceanogr. 36:50-63.
Strom, S.L., J.R. Postel, and B.C. Booth. 1993. Abundance, variability, and potential grazing impact of planktonic ciliates in the open subarctic Pacific Ocean. Prog. Oceanog. 32:185-203.
Suttle, C.A., and A.M. Chan. 1994. Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl. Environ. Mircol. 60:3167-3174.
Suzuki, T., N. Yamada, and A. Taniguchi. 1998. Standing crops of planktonic ciliates and nanoplankton in oceanic waters of the western Pacific. Aquat. Microb. Ecol. 14:49-58.
Taniguchi, A. 1984. Microzooplankton biomass in the arctic and subarctic Pacific Ocean in summer. Memoirs of the National Institute of Polar Research, Special issue. 32:63-76.
Theodore, L.J., C.B. Eugene, and F.J. Frances. 1979. How to know the protozoa. 2nd ed. lowa.
Throndsen, J. 1978. Preservation and storage. In E. Sournia. (Ed) Phytoplankton Manual. UNESCO. Paris. Pp. 69-74.
Turner, J.T., S.F. Bruno, R.J. Larson, R.D. Staker, and G.M. Sharma. 1983. Seasonality of plankton assemblages in a temperate estuary. Mar. Ecol. 4:81-99.
Turner, J.T., P.A. Tester, and R.L. Ferguson. 1988. The marine cladoceran Penilia avirostris and the “microbial loop” of pelagic food webs. Limnol. Oceanogr. 33:245-255.
Turley, C.M., R.C. Newell, and D.B. Robins. 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33:59-70.
Verity, P.G. 1985. Grazing on phototrophic nanoplankton by microzooplankton in Narragansett Bay, Rhode Island. Mar. Ecol. Prog. Ser. 29:105-115.
Verity, P.G. 1986. Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr. 30:1268-1282.
Verity, P.G. 1988. Chemosensory behavior in marine planktonic ciliates. Bull. Mar. Sci. 43:772-782.
Verity, P.G. 1991. Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnol. Oceanogr. 36:729-750.
Waterbury, J.B., S.W. Watson, R.R. Guillard, and L.E. Brand. 1979. Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature 277:293-294.
Waterbury, J.B., S.W. Watson, F.W. Valois, and D.G. Franks. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214:71-210.
Waterbury, J.B., and F.W. Valois. 1993. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in saewater. Appl. Environ. Microbiol. 59:3393-3399.
Watie, A.M., K.A. Safi, J.A. Hall, and S.D. Nodder. 2000. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol. Oceanogr. 45:87-97.
White, J.R., and M.R. Roman. 1992. Seasonal study of grazing by metazoan zooplankton in the mesohaline Chesapeake Bay. Mar. Ecol. Ser. 86:251-261.
Wikner, J., F. Rassoulzadegan, and A. Hagstrom. 1990. Periodic bacterivore activity balances bacterial growth in the marine environment. Limnol. Oceanogr. 35:313-324.
Wright, R.T., and R.B. Coffin. 1984. Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microb. Ecol. 10:137-149.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top