跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴伊蓮
研究生(外文):Elaine Lai
論文名稱:含硫異環化合物在不同氧化還原電位底泥中之生物分解
論文名稱(外文):Biodegratation of S-heterocyclic compounds in anoxic sediments
指導教授:劉秀美劉秀美引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:78
中文關鍵詞:含硫異環化合物去硝化狀態鐵還原狀態硫酸還原狀態甲烷產生狀態
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
石油中,含硫異環化合物佔了相當大的部分。並且時常流入環境造成污染。而燃燒含硫的石化原料,也將造成酸雨影響環境。 為了去除環境中之石油污染物,以及去除原油中的硫元素以提高 油品的價值。我們必須先瞭解,含硫異環化合物在環境中的命運, 以利更進一步的研究。
本實驗在研究淡水河口底泥在不同氧化還原電位下,分解 含硫雜環化合物(thiophene、2-methylthiophene、3- methylthiophene、2,5-dimethythiophene、2-thiophene carboxylic acid、3-thiophene carboxylic acid )的情形。分別是在:去硝化狀態、鐵還原狀態、 硫酸還原狀態、甲烷產生狀態四個不同的氧化還原電位下分解。 其中thiophene、2-methylthiophene、3- methylthiophene、2,5-dimethythiophene在此四種氧化還原狀態下沒有分解的跡象; 即使是利用經過馴化對於2-thiophene carboxylic acid或3-thiophene carboxylic acid具有分解能力之馴化土也是如此。
2-thiophene carboxylic acid 在去硝化作用下分解最快,其次是 硫酸還原狀態及甲烷產生狀態,鐵還原狀態下也有分解跡象(404天內);3-thiophene carboxylic acid 在去硝化狀態下分解最快,其次依次是硫酸還原狀態、鐵還原狀態及甲烷產生狀態。利用,甲烷產生量的測試,可以發現2-thiophene carboxylic acid,可以完全的被礦化; 而3-thiophene carboxylic acid則可能只被降解一部份。
在去硝化狀態下,對於2-thiophene carboxylic acid具分解能力之馴化土,再添加不同的電子接受者後之分解效果變差。而硫酸還原狀態下分解3-thiophene carboxylic acid之馴化土可利用sulfite做 電子供應者,但不能利用thiosulfate分解3-thiophene carboxylic acid。將馴化於鐵還原狀態下分解3-thiophene carboxylic acid之馴化土, 改由sulfate、sulfide及CO2做電子供應者仍可分解,以sulfate最快其次是sulfide及CO2。馴化於硫酸還原狀態下之底泥,對於3-thiophene carboxylic acid的分解會受到硫酸還原菌抑制劑(molybdate)之抑制;馴化於鐵還原狀態下之底泥也有似之情形。以在去硝化作用狀態下可分解90 mg / L的2-thiophene carboxylic acid分解速率達8.90 mg / L‧天。在鐵還原狀態及硫酸還原狀態下 120 mg / L的3-thiophene carboxylic acid亦可分解,分解速率為8.05 mg / L‧天及12.58 mg / L‧天。對於電子供應者的利用上同樣馴化於去硝化狀態下,3-thiophene carboxylic acid在分解時,添加電子供應者對分解有所幫助,而2-thiophene carboxylic acid則會造成分解上的競爭。從以上分解之情形我們推測:2-thiophene carboxylic acid、3-thiophene carboxylic acid是以不同之機制分解。對於2-thiophene carboxylic acid及3-thiophene carboxylic acid的實際分解路徑今後仍須更確切的研究。
S-heterocyclic compounds in the petroleum products are culprits of the acid rain. In order to upgrade the petroleum products by removing the S-heterocyclic compounds or to clean up petroleum contaminat in environments, it is necessary to understand microbial degradation pathways of the S-heterocyclic compounds.
In this study, biodegradabity of thiophene, 2-methylthiophene, 3-methylthiophene, 2,5-dimethythiophene, 2-thiophene carboxylic acid and 3-thiophene carboxylic acid in estuary sediments were investigated under different redox potential (denitrifying, iron-reducing, sulfate-reducing and methanogenic conditions). After incubation for 400 days we found that thiophene, 2-methylthiophene, 3-methylthiophene and 2,5-dimethythiophene were not degraded under any conditions. 2-Thiophene carboxylic acid was degraded under denitrifying, sulfate reducing and methanogenic conditions, but not under iron-reducing conditions. While 3-thiophene carboxylic acid could be degraded under any conditions. Subsequent additions of these compounds to the sediment slurries after its removal enhanced its degradation rate. However, the intermediate product(s) of 2-thiophene carboxylic acid and 3-thiophene carboxylic acid under either condition were not identified. 2-Thiophene carboxylic acid-adapted sediments didn’t enhance biodrgradation of 3-thiophene carboxylic acid, thiophene or 2-methylthiophene, while degradation. 3-thiophene carboxylic acid-adapted sediments didn’t enhance biodegradation of 2-thiophene carboxylic acid, thiophene or 3-methylthiophene degradation.
From the detection of methane production we found that 2-thiophene carboxylic acid transformed (mole) and methane produced (mole) was in a stoichiometric ratio of 1:6, while 3-thiophene carboxylic acid transformed and methane produced was 1:1. It seems that 2-thiophene carboxylic acid was degraded completely to methane while only one carbon was transformed during biodegradation of 3-thiophene carboxylic acid.
2-Thiophene carboxylic acid-adapted denitrifying sediment slurries did not degrade 2-thiophene carboxylic acid when changing electron acceptor form nitrate to Fe(Ⅲ), sulfate or CO2. However, 3-thiophene carboxylic acid-adapted sediment slurries could degrade 3-thiophene carboxylic acid when changing electron acceptor from Fe(Ⅲ) to sulfate or from sulfate to sulfite and Fe(Ⅲ). Addition of molybdate (sulfate-reducing bacteria inhibitor) to inhibited biodegradation of 3-thiophene carboxylic acid in 3-thiophene carboxylic acid-adapted sulfate reducing sediment slurries. 2-Thiophene carboxylic acid-adapted denitrifying sediment slurries could degrade 90 mg / L of 2-thiophene carboxylic acid and the maximum velocity was 8.90 mg / L‧day. 3-Thiophene carboxylic acid adapted iron-reducing and sulfate-reducing sediment slurries could degraded 120 mg / L of 3-thiophene carboxylic acid and the maximum velocity was 8.05 mg / L‧day and 12.58 mg / L‧day, respectively. Based to these results, it seems that the 2-thiophene carboxylic acid-and 3-thiophene carboxylic acid was degraded under different pathway. More research is needed in the future to understand the degradation pathways of 2-thiophene carboxylic acid and 3-thiophene carboxylic acid.
目錄
中文摘要------------------------1-3
英文摘要------------------------4-6
前言------------------------- 7-14
石化污染物的組成與特性----------------7
污染來源---------------------- 7
對環境的影響與命運------------------8
油污的處理方法--------------------9
研究目的---------------------- 14
材料方法-----------------------15-26
實驗材料---------------------- 15
實驗方法---------------------- 18
實驗設計---------------------- 21
結果-------------------------27-33
實驗品管---------------------- 27
含硫異環化合物的生物降解-------------- 28
討論-------------------------34-38
參考資料-----------------------39-47
表1本實驗所用之含硫異環化合物的物理及化學性質----- 48
表2標準品回收率與HPLC分析之滯留時間----------49
圖1 Kodama pathway------------------- 50
圖2 4S pathway----------------------51
圖3 Electron-free energy diagram---------------52
圖4各類含硫異環化合物之結構-------------- 53
圖5空白實驗之HPLC分析圖譜-------------- 54
圖6系統空白實驗之HPLC分析圖譜-------------55
圖7含硫異環化合物之HPLC分析圖譜------------56
圖8含硫異環化合物HPLC分析之檢量線-----------58
圖9電子接受者之檢量線----------------- 61
圖10 2-thiophene carboxylic acid之分解情形----------63
圖11 3-thiophene carboxylic acid之分解情形----------65
圖12改變電子接受者下之分解情形-------------67
圖13抑制劑影響分解之情形----------------70
圖14濃度影響之情形-------------------72
圖15添加電子接受者之分解情形--------------75
圖16濃度與分解速率關係圖----------------77
伍、參考資料
http://www.cpc.com.tw/classron/smallp904.asb漏油處理面面觀。
http://www.epa.gov.tw/news/en.900314.htm行政院環境保護署新聞資料。
http://home.kimo.com.tw/leon 3911/parkahome.htm 龍坑自然生態保護區。
行政院環境保署環境檢驗所。1998。淡水河底泥有機污染物探討。71-100頁。In 柳家瑞、盧永濱、王世冠、吳國傑 (Eds.) 淡水河水體環境分析及研究。行政院環境保署。台北。
Abdulrashid, N. and D.P. Clark. 1987. Isolation and genetic analysis of mutations allowing the degradation of furans and thiophenes by Escherichia coli. J. Bact., 169:1267-1271.
Adrian, N.R. and J.M. Suflita. 1994. Anaerobic biodegradation of halogenated and nonhalogenated N-, S-, and O-heterocyclic compounds in aquifer slurries. Environ. Toxicol. Chem., 13:1551-1557.
Amphlett, M.J. and A.G. Callely. 1969. The degradation of 2-thiophene carboxylic acid by a Flavobacterium species. Biochem. J., 112:12.
Annweiler, E., W. Michaelis and R.U. Meckenstock. 2001. Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Appl. Environ. Microbiol., 67:5077-5083.
Baek, S.O., R.A. Field, M.E. goldstone, P.W. Kirk, J.N. Lester and R.A. Perry. 1991. A review of atmospheric polycyclic aromatic hydrocarbons, sources, fate and behavior. Water Air Soil Pollut., 60:279-300.
Bambauer, A., F.A. Rainey, E. Stackebrandt and J. Winter. 1998. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylated-metabolizing bacterium from activated sludge. Arch. Microbiol., 169:293-302.
Beller, H.R., D. Grbic-Galic and M. Reinhard. 1992. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Appl. Environ. Microbiol., 129:123-129.
Bollag, J.M. and J.P. Kaiser. 1991. The transformation of Heterocyclic aromatic compounds and their derivatives under anaerobic conditions. Crit. Rev. Environ. Control., 21:297-329.
Bressler, D.C. and P.M. Fedorak. 2000. Bacterial metabolism of fluorine, dibenzofuran, dibenzothiophene, and carbazole. Can. J. Microbiol., 46:397-409.
Bressler, D.C. and P.M. Fedorak. 2001. Purification, stability, and mineralization of 3-hydroxy-2-formylbenzothiophene, a metabolite of dibenzothiophene. Appl. Environ. Microbiol., 67:821-826.
Coates, J.D., R.T. Anderson and D.R. Lovely. 1996a. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol., 62:1099-1101.
Coates, J.D., R.T. Anderson, J.C. Woodward, J. Allen, E.J.P. Phillips and D.R. Loverly. 1996b. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ. Sci. Technol., 30:2784-2789.
Coates, J.D., J.C. Woodward, J. Allen, E.J.P. Phillips and D.R. Lovely. 1997. Anaerobic degradation of polycyclic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol., 63:3589-3593.
Colwell, R.R. and J.D. Walker. 1977. Ecological aspects of microbial degradation of petroleum in the marine environment. Crit. Rev. Microbiol., 5:423-430.
Constanti, M., J. Giralt, A. Bordons and P.R. Norris. 1992. Interactions of thiophenes and acidophilic, thermophilic bacteria. Appl. Biochem. Biotechnol., 34:767-776.
Cripps, R.E. 1971. Microbial Metabolism of Aromatic Compounds Containing Sulphur. PhD Thesis. University of Warwick.
Dean, J.A. 1992. Lange’s Handbook of Chemistry. McGraw-Hill. New York. pp.1-325.
EPA. 1989. Alaskan Oil Spill Bioremediation Project. United States Environment Protection Agency. Washington. pp. 1-16.
EPA. 1990. Alaskan Oil Spill Bioremediation Project. United States Environment Protection Agency. Washington. pp. 1-20.
Ercole, C., M.P. Sulpizii, F. Vegliò, S. Bartolini, L. Toro and A. Lepidi. 1997. Desulfurization of model aromatic molecules by Pedomicrobium sp.. Fule Proce. Techno., 52:191-197.
Evans, J.S. and W.A. Venables. 1990. Degradation of thiophene-2-carboxylate, furan-2-carboxylate, pyrrole-2-carboxylate and other thiophene derivatives by the bacterium Vibrio YC1. Appl. Microbiol. Biotechnol., 32:715-720.
Folsom, B.R., D.R. Schieche, P.M. Digrazia, J. Werner and S. Palmer. 1999. Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl. Environ. Microbiol., 65:4967-4972.
Gilbert, S.C., J. Morton, S. Buchanan, C. Oldfield and A. McRoberts. 1998. Isolation of a unique benzothiophene desulfurizing bacterium: Gordona sp. strain 213E (NCIMB 40816) and characterization of the desulfurization pathway. Microbiology, 144:2543-2553.
Glazer, A.N. and H. Nikaido. 1995. Environmental applications. pp. 561-620. In A.N. Glazer, and H. Nikaido (Eds.) Microbial Bitotechnology. W. H. Freeman and Company. New York.
Grossman, M.J. M.K. Lee, R.C. Prince, K.K. Garrett, G.N. George and I.J. Pickering. 1999. Microbial desulfurization of a crude oil middle- distillate fraction analysis of the extent on remaining sulfur. Appl. Environ. Microbiol., 65:181-188.
Guerin, W.F. and G.E. Jones. 1988. Two-stage mineralization of phenanthrene by estuarine enrichment cultures. Appl. Environ. Microbiol., 54:929-936.
Kanagawa, T and D.P. Kelly. 1987. Degradation of substituted thiophenes by bacteria isolated from activated sludge. Microb. Ecol., 13:47-57.
Kargi, F. and J.M. Robinson. 1983. Microbial oxidation of dibenzothiophene by the thermophilic organism sulfolobus acidocaldarius. Biotechnol. Bioeng., 26:687-690.
Kazumi, J., M.M. Häggblom and L.Y. Young. 1995. Degradation of monochlorinated and nonchlorinated aromatic compounds under iron reducing conditions. Appl. Environ. Microbiol., 61:4069-4073.
Kim, H.Y., T.S. Kim and B.H. Kim. 1990. Degradation of organic sulfur compounds and the reduction of dibenzothiophene to biphenyl abd hydrogen sulfide by Desulfovibrio desulfuricans M6. Biotechnol. Lett., 10:761-764.
Koeing, K. and J.R. Andreesen. 1991. Aerobic and anaerobic degradation of furan-3-carboxylate by Paracoccus denitrificans strain MK33. Arch. Microbiol., 157:70-75.
Konishi, Jin, Toshimitsu Onaka, Yoshitaka Ishii and Masanori Suzuki. 2000. Demonstration of benzothiophene by thermophilic Paenibacillus sp. Strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol. Lett., 188:151-154.
Kropp, K.G., J.T. Andersson and P.M. Fedorak. 1997. Bacterial transformations of 1,2,3,4-tetrahydrodibenzothiophene and dibenzothiophene. Appl. Environ. Microbiol., 63:3032-3042.
Kuhn, E.P. and J.M. Suflita. 1989. Microbiol degradation of nitrogen, oxygen and sulfur heterocyclic compounds under anaerobic conditions: studies with aquifer samples. Environ. Toxicol. Chem., 8:1149-1158.
Kurita, Satoru, Toshikatsu Endo, Hazime Nakamura, Tatsuhiko Yagi and Nobuo Tamiya. 1971. Decomposition of some organic sulfur compounds in petroleum by anaerobic bacteria. J. Gen. Appl. Microbiol., 17:185-198.
Lide, D.R. 1993. CRC Handbook of Chemistry and Pheysics 74th Edition. CRC Press. London. pp.1-636.
Liu, S.M., W.J. Jones and J.E. Rogers. 1994. Influence of redox potential on anaerobic biotransformation of nitrogen-heterocyclic compounds in anoxic freshwater sediments. Appl. Microbiol. Biotechnol., 41:717-724.
Londry K.L. and J.M. Suflita. 1998. Toxicity effects of organosulfur compounds on anaerobic microbial metabolism. Environ. Toxicol. Chem., 17:1199-1206.
Lovley, D.R. and E.J.P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or managanese. Appl. Environ. Microbiol., 54:1472-1480.
Lovely, D.R. 2002. Dissimilatory metal reduction: from early life to bioremediation. ASM. 68:231-237.
Matsubara, Toshiyuki, Takashi Ohshiro, Yoshihiro Nishina and Yoshikazu Izumi. 2001. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol., 67:1179-1184.
Monticello, D.J. and W.R. Finnerty. 1985. Microbiol desulfurization of fossil fuels. Ann. Rev. Microbiol., 39:371-389.
Monticello, D.J. 2000. Biodesulfurization and the upgrading of petroleum distillates. Cur. Opin. Biotechnol., 11:540-546.
Neff, J.M. 1985. Polycyclic aromatic hydrocarbons, in Fundamentals of Aquatic Toxicology. In G.M. Rand, and S.R. Petrocilli (Eds.)Hemisphere. New York.
Padden, A.N., D.P. Kelly and A.P. Wood. 1998. Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch. MIcrobiol., 169:249-256.
Rhee, S.K., J.H. Chang, Y.K. Chang and H.N. Chang. 1998. Desulfurization of dibenzothiophene and diesel oils by a newly islated Gordona strain, CYKS1. Appl. Environ. Micropbiol., 64:2327-2331.
Rocken, K.J., J.C. Chee-Sanford, R.A. Sanford, B.P. Hedlund, J.T. Staley and S.E. Strand. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Micropbiol., 66:1595-1601.
Rueter, P., R. Rabus, H. Wilker, F.Aeckersberg, F.A. Rainey, H.W. Jannasch and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372:455-458.
Sagardia, F, J.J. Rigau, L.A. Martinez, F. Fuentes, C. Lopez and W. Flores. 1975. Degradation of denzothiophene and related compounds by a soil Pseudomonas in an oil-aqueous environment. Appl. Microbiol., 29:722-725.
Wang, P. and S. Krawiec. 1994. Desulfurization of dibenzothiophene to 2-hydroxybiphenyl by some newly isolated bacterial strains. Arch. Microbiol., 161:266-271.
Wislocki, D.G. and A.Y.H. Liu. 1988. Carcinogenicity and mutagenicity of proximate and ultimate carcinogens of polycyclic aromatic hydrocarbons. pp. 1-30 In S.K. Yang, and B.D. Silverman (Eds.) Polycyclic aromatic hydrocarbon carcinogensis structure-activity relationships. CRC Press. Boca Raton.
Zehnder, A.J.B. and W. Stumm. 1988. Geochemistry and biogeochemistry of anaerobic habitats. pp. 11. In A.J.B. Zehnder (Ed.) Biology of Anaerobic Microorganism. Wiley-Liss. New York.
Zhang, Xiaoming and L.Y. Young. 1997. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl. Environ. Micropbiol., 63:4759-4764.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top