[參 考 文 獻]
1. Marine, R.E. and Iliff, K.W., SPI: Identification of Dynamic, Systems: Theory and Formulation, NASA RP 1138 (1985).
2. Box, G. and Draper, N., Empirical Model-building and Response Surfaces, New York: John Wiley & Sons (1987).
3. Hornik, K. Stinchcombe, M. and White, H.,” Multilayer Feed forward Networks are Universal Approximators,” Neural Network, 2 (5), pp. 359-366, (1989).
4. Haddara, M.R. and Hinchey, M.,” On The Use of Neural Network Techniques in The Analysis of Free Roll Decay Curves,” Int. Shipbuild. Progr. 42, No. 430, pp. 166-178 (1995).
5. Ray, T., Gokarn, R.P. and Sha, O.P.,”Neural Network Applications in Naval Architecture and Marine Engineering, ” Artificial Intelligence in Engineering, 1, pp.213-226 (1996).
6. Kodiyalam, S. and Guruumoorthy, R.,” Neural Networks with Modified Back-propagation Learning Applied to Structural Optimization,” AIAA J. Vol. 34, No. 2, pp.408-412 (1996).
7. Chen, S.Y.,” An Approach for Impact Structure Optimization Using The Robust Genetic Algorithm, ” Finite Elements in Analysis and Design, 37, pp. 431-446,(2001).
8. Curry, B. and Morgan, P.,” Neural Networks: a Need for Caution,” Omega, Int. J. Mgmt Sci., Vol. 25, No. 1, pp. 123-133 (1997).
9. Sexton, R.S. and Gupta, J. N.D.,” Comparative Evaluation of Genetic Algorithm and Back propagation for Training Neural Networks,” Information Sciences, 129, pp. 45-59 (2000).
10. Mandischer, M.,” A Comparison of Evolution Strategies and Back propagation for Neural Network Training, ” Neurocomputing 42, pp. 87-117 (2002).
11. Holland, J.H., Adaption in Natural and Artificial Systems, Univ. of Michigan Press, Ann. Arbor, Mi (1975).
12. 郭信川,王鴻鈞,”遺傳演算法在結構最佳化設計之應用”,第十屆造船暨輪機工程研討會,pp.387-398 (1997).
13. 郭信川,王鴻鈞,”遺傳演算法在最佳化設計問題之應用”,J.SNAME,R.O.C.Vol.17,NO.1,pp.39-48 (1998).
14. 郭信川,王鴻鈞,”遺傳演算法在貨櫃船扭轉強度之離散最佳化設計之應用”,J.SNAME,R.O.C,Vol.18,NO.1,pp.47-56 (1999).
15. 郭信川,遺傳演算法在船體結構多目標最佳化設計之應用, NSC-89-2611-E-019-041.(2000).
16.Michalewicz, Z., Genetic Algorithm + Data Structures=Evolution Programs, Springer, Berlin, (1992).
17. Nelder, J.A. and Mead, R.,” A Simplex Method for Function Minimization, ” Computer Journal, 7, pp. 308-313 (1965).
18.Lagarias, J.C., Reed, J.A., Wright, M.H. and Wright, P.E.,” Convergence Properties of The Nelder-Mead Simplex Method in Low Dimensions, ” SIAM J. Optim. Vol. 9, No. 1, pp. 112-147(1998)
19.Hedlund, P. and Gustavsson, A.,” Design and Evaluation of an Improved Simplex Method, ” Analytica Chimica Acta 371, pp. 9-21 (1998).
20.郭信川, 官佳慶, “改良式單純形法對結構最佳化設計之應用, ”海運研究學刊, No. 8, pp. 1-18 (1999).21.郭信川,官佳慶,“隨機搜尋法於多極值最佳化問題之應用,” J.SNAME,R.O.C, Vol.19,No.4,pp.33-40 (2000).
22. 郭信川,許凱雄, “基於單純形法之進化演算法之搜尋特性”, 第十四屆造船暨輪機工程研討會, pp.D1.1-D1.9 (2002).
23. 郭信川,陳彥名, “類神經網路於求解多極值函數之應用”, 第八屆軍鑑工程研討會, pp. 89-94 (2000).
24. Stewart, G. W. , A Modification of Davidon’s Minimization Method to Accept Diffe- rence Approximations of Derivatives JACM 14, 72-83, 1967.
25. Powell, M. J. D., An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives Comp. J. 7, 155-162, 1964.
26. Francisco J. Solis and Roger J.-B. Wets, Minimization by Random Search Tech- niques Operations Research, 19-30, 1981.
27. Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk, On the Adaptaion of Arbitrary Normal Mutation Distributions in Evolutions Strategies: The Generati- ing Set Adaptation In: L.J. Eshelman(Ed.). Proceedings of the Sixth Int. Conf. On Genetic Algorithms, 57-64, Morgan Kaufmann, 1995.
28. Deniz Yuret and ichael de la Maza, Dynamic Hillclimbing: Overcoming the Lim- itations of Optimization Techniques. In: The second Turkish Symposium on Artific- ial Intelligence and Neural Networks, 208-212, 1993.
29.葉怡成, “類神經神經網路-方法應用與實作”, 儒林圖書公司, 1995.
30.葉治宇, “船舶設計講義”, 海大系統工程暨造船系.