跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭義騰
研究生(外文):Y. T. Cheng
論文名稱:鍵槽對艙口角隅應力集中現象改善之結構分析
論文名稱(外文):Structure Analysis of Stress Concentration Melioration at Hatch Corner by Using Key Groove
指導教授:王偉輝王偉輝引用關係
指導教授(外文):W. H. Wang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:97
中文關鍵詞:艙口角隅鍵槽應力集中艙口端圍緣
外文關鍵詞:Hatch CornerKey GrooveStress Concentrationend hatch coaming
相關次數:
  • 被引用被引用:5
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:1
摘要
貨櫃船由於載貨功能考量,船體須開有長大艙口。而此種結構會使得艙口角隅處出現不連續的幾何形狀,因而造成應力集中現象。也因此,疏導艙口角隅的應力集中,變成貨櫃船設計者的重要課題。
本文探討艙口角隅採用鍵槽加圓孔式設計的特性,並且與鍵孔式設計的改善效率做一比較。為了分析艙口角隅結構的應力集中,本文針對一艘採用鍵孔式(KEYHOLE)角隅設計的1092TEU貨櫃船,利用船體多巢結構應力分析程式(WARSHP)做整船分析,並配合二階段強度分析法及勞氏法規的設計負荷,以決定局部結構的邊界條件,再以ANSYS分析原船設計之鍵孔式角隅結構與鍵槽加圓孔式角隅結構的應力集中。
而對於鍵槽加圓孔式角隅的設計,本文採用六個甲板角隅設計參數來表示其幾何形狀,其參數範圍為A(起始槽寬):0.3m、0.4m、0.5m,THETA(中心圓弧角度):55°、60°、65°,CR(中心圓弧半徑):1.4m、1.5m、1.6m,r(末端圓孔半徑):0.3m、0.35m、0.4m,R1(外圓弧半徑):1.3m、1.5m、1.7m,R2(內圓弧半徑):1.3m、1.5m、1.7m。而由於鍵槽加圓孔式結構的鍵槽寬度小於鍵孔式結構的切孔寬度,而導致兩者之艙口端圍緣切孔大小有所不同。因此,在鍵槽加圓孔式結構的設計上勢必要重新決定艙口端圍緣切孔的方式。在本文中,吾人選擇了三種不同切孔方式:
(1) TYPE1:(縱軸長)/(橫軸長)=0.5的橢圓形切孔。
(2) TYPE2:(縱軸長)/(橫軸長)=1.0的圓形切孔。
(3) TYPE3:(縱軸長)/(橫軸長)=1.5的橢圓形切孔。
在上述參數範圍的分析結果中,吾人發現鍵槽加圓孔式設計不但能有效疏導應力集中,而且比鍵孔式角隅更加有效,其改善率最多達到22.8%;最少也有0.65%。而對於艙口端圍緣切孔的方式,結果顯示開孔方式不但影響艙口端圍緣的應力集中,也影響到艙口角隅的應力集中。此外,本文以應力比來表現鍵槽加圓孔式角隅相對於鍵孔式角隅的改善效率,並作成應力比曲線圖來表示。
Large hatches usually appear in containerships. However, the geometrical discontinuity induced by deck opening will cause stress concentration at hatch corners. It is a very important task for containership designers to improve the stress concentration problem.
The characteristic of key groove together with a circular hole at hatch corner is discussed in this paper. The key groove has the shape of circular arcs with different center. The ameliorative efficiencies of key groove together with a circular hole are revealed. To compare the stress concentration at the hatch corner with original keyhole design and the new alternative key groove configuration of a 1092 TEU containership, the programs, WARSHP and ANSYS are used. The boundary conditions in the local structure of a hatch corner can be determined by WARSHP. While the design load is based on the LR rules. Then the stress concentration is characterized by ANSYS.
In designing key groove together with a circular hole, six parameters are used to represent the geometry. They are: initial groove width (A); orientation angle of the center circular arc of the key groove (THETA); radius of center circular arc (CR); radius of circular hole (r); radius of outside circular arc (R1); radius of inside circular arc (R2), etc.. By systematical approach to find out the sensitivity of these parameters to the stress concentration effect, the following data are taken:
A=0.3m, 0.4m and 0.5m
THETA= , and
CR=1.4m, 1.5m and 1.6m
r= 0.3m, 0.35m and 0.4m
R1=1.3m, 1.5m and 1.7m
R2=1.3m, 1.5m and 1.7m
From the results it can be said that r, CR and R1 will cause more contribution than A, R2 and THETA on the stress ameliorative efficiencies. However, the contribution coming from THETA is still more than that coming from A and R2.
Since the width of the key groove together with a circular hole is shorter than that of a keyhole, thus the scallop sizes on end hatch coaming for these two kind designs are much different. Therefore, hole type on end hatch coaming should be taken into account for the key groove with a circular hole on deck. In this paper, three different types of end coaming hole are selected, i.e.,
(1) TYPE1: ellipse hole with (longitudinal axis)/(transverse axis) = 0.5.
(2) TYPE2: circular hole with (longitudinal axis)/(transverse axis) = 1.0.
(3) TYPE3: ellipse hole with (longitudinal axis)/(transverse axis) = 1.5.
The results reveal that the key groove with a circular hole will attain more improvement than original keyhole design for the of stress concentration. The stress improvement is between the range 0.65% ~22.8%. Besides, the stress concentration at end hatch coaming and hatch corner will be effected by different types of holes. The end coaming hole, TYPE3 has best ameliorative efficiencies, and TYPE2 has most uniform distribution according to the standard deviation of stress distribution. The stress ratio has calculated for the case of key groove together with a circular hole, and the magnitude of stress ratio is also displayed.
目 錄
誌謝……………………………………………………………………..Ⅰ
中文摘要…………………………………………………………………..…II英文摘要…………………………………………………………………..…IV
目錄……………………………………………………………………..VI
圖目錄…………………………………………………………………..IX
表目錄……………………………………………………………......XIV
第一章 緒論…………………………………………………………………1
1.1研究動機與目的………………………………………………...1
1.2文獻回顧………………………………………………………...4
1.3研究方法與流程………………………………………………...5
1. 4論文架構………………………………………………………..7
第二章 大艙口船角隅結構應力分析…………………………………….8
2.1多巢薄樑理論…………………………………………………...8
2.1.1多巢薄樑彎曲應力分析………………………………………9
2.1.2多巢薄樑剪應力分析…………………………………………9
2.1.3多巢薄樑扭轉應力與變形分析………………………………11
2.2整船分段薄樑扭轉理論之解…………………………………...13
2.2.1結構理想化……………………………………………………13
2.2.2數學模式………………………………………………………14
2.2.3傳接矩陣法……………………………………………………15
2.2.4邊界條件………………………………………………………22
2.2.5解析步驟………………………………………………………22
2-3二階段強度分析法………………………………………….…..23
2-4貨櫃船整船結構應力分析……………………………………...23
2.4.1貨櫃船基本資料………………………………………………23
2.4.2勞式法規計算設計負荷………………………………………24
2.4.3貨櫃船整船結構之多巢薄樑理論數值解……………………28
第三章 三維艙口角隅結構有限元素模型建立………………………...30
3.1 貨櫃船艙口角隅結構模型……………………………………..30
3.2 艙口角隅細部設計……………………………………………..31
3.2.1鍵孔式艙口角隅結構設計……………………………………31
3.2.2鍵槽加圓孔式艙口角隅結構設計……………………………32
3.2.2.1 鍵槽加圓孔式結構設計參數配置…………………………32
3.2.2.2艙口端圍緣切孔參數選取……….…………………………34
3.3 三維有限元素分析模型元素的建立…………………………..36
3.4 邊界條件………………………………………………………..36
3.5 細網格之切取…………………………………………………..38
第四章 結果分析與討論…………………………………………………..46
4.1 鍵槽加圓孔式角隅之設計參數範圍選定……………………..46
4.2 分析結果………………………………………………………..47
4.3 改善效率比較…………………………………………………..51
4.3.1鍵孔式與鍵槽加圓孔式的比較………………………………52
4.3.2艙口端圍緣切孔方式之比較…………………………………58
4.4 參數影響改善效率之評估……………………………………..64
4.5應力比與改善率……………………………………….………..74
第五章 結論與建議………………………………………………………...83
5.1 結論……………………………………………………………..83
5.2 建議……………………………………………………………..84
參考文獻……………………………………………………………………..85
附錄A 翹曲相適基準……………………………………………………...88
附錄B 邊界條件詳細數值………………………………………………...90
參考文獻
1. 王偉輝著,”船體結構設計”,國立編譯館,1984
2. 陸明万、羅學富編著,”彈性理論基礎”,北京市,清華大學出版社,
1990
3. 航空工業部科學技術委員會編,”應力集中係數手冊”, 北京市,高 等教育出版社,1987
4. Pin Yu Chang,”Effects of Stress Concentration and Rein Forcement on the Fatigue Strength of Rectangular Openings”, Marine Technology, vol.22, NO.4 ,Oct.1985, pp.339-350
5. C. Murakami, M. Fujikubo, T. Yao, ”Influence of Opening on Elastic Buckling Strength of Rectangular Plates under Single/Combined Loads”, Proceedings of the 15th Asian Technical Exchange and Advisory Meeting on Marine Structures 15-18 October, 2001, Jochiwon, Korea
6. 陳建宏,” 套環式和磁性式連接體之覆蓋義齒光彈應力分析”, 國立台灣科技大學碩士論文,2000
7. 賴政彥,”不同樑腹材料對木質複合工字樑靜曲性質之影響”,國立屏東科技大學碩士論文,2000
8. “Considerations of Welded Hatch cover Design”, Ship Structure Committee Report SSC-37, Oct. 1952, Welding Journal, July, 1953
9. M. Williams, “Stress Concentrations at Hatch corners”, Assessment of Parabolic Shapes, Shipping World & Shipbuilder, May, 1967
10. Junro Imamasa, Kunio Terada, Kazuo Umezaki, Jiro Segawa, “Experimental Studies on the Stress Concentration of Container Ship”, 日本造船協會論文,vol.124,1968
11. 王偉輝等,”大艙口船之扭轉強度及局部強度分析”,中船季刊,第五卷,第六期,1982
12. 洪振發﹐郭信川﹐鐘崑憲,”貨櫃船甲板口角隅切孔對於強度的影響”, 第二屆造船暨輪機工程研討會, 1989, pp.107-114
13. 黃慰民,”應力集中問題之研究──艙口角隅切孔線型分析”,國立臺灣海洋大學碩士論文,1989
14. “貨櫃船的結構分析研究報告”,聯合船舶設計發展中心科技研究發展專案,1993
15. 李君平,”大艙口船強度分析新法”, 國立臺灣海洋大學碩士論文,1993
16. 王偉輝,”船體多巢形結構之應力分析研究”,海洋學報,1977
17. 王偉輝譯著,”船舶結構學”,徐氏基金會,1977
18. 王偉輝,”船舶結構設計”﹐國立台灣海洋大學造船工程學系,1992
19. J. T. Oden, “Mechanics of Elastic Structure”,1967
20. 韓壽家,”造船大意”, 大連海運學院出版社,1993
21. 詹志禹、賴世培合著,”應用統計”,國立空中大學用書,2002
22. 戴久永著,” 統計概念與方法”,三民書局,1992
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top