跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.251) 您好!臺灣時間:2022/08/11 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭富仁
論文名稱:快速參數鏈結法於嵌入式零樹小波影像編碼之研究
論文名稱(外文):A fast index-linked method based on embedded zerotree wavelet image coding
指導教授:張順雄張順雄引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:101
中文關鍵詞:影像壓縮快速參數鏈結法嵌入式零樹小波編碼法
外文關鍵詞:Image compressiona fast index-link methodEmbedded Zerotree Wavelet (EZW)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在資料的傳遞與儲存上影像壓縮扮演著非常重要的角色。由於以小波轉換為主的影像壓縮沒有離散餘弦轉換產生方塊效應的缺點。所以在最近幾年,越來越多的人對小波轉換型式的影像壓縮演算法感到興趣。Shapiro的嵌入式零樹小波編碼法是一個簡單而有效率的影像壓縮編碼法。然而,現行的EZW編碼仍有改進的空間。本論文中提出一快速參數鏈結法以加速編碼速度,為改進EZW編碼效率。快速參數鏈結法將四個編碼符號增加到八個,並以兩個為一組輸出,且保留先前已被找到為重要係數位置的編碼。其目的是為改善主流程(dominant pass)的編碼效率。快速參數鏈結法優點在減少編碼ZTR符號且能在最初的幾次流程及早發現ZTR符號,提高EZW在中低位元率下的編碼效率。實驗結果顯示它在中低位元率下有較好的效能並保留嵌入式零樹小波編碼法的優點。

Image compression plays a very important role on data transmission and storage. Compared with JPEG, the wavelet-based impression does not produce the blocking artifact. In recent years, there has been a growing interest in wavelet-based image compression algorithm. Shapiro’s Embedded Zerotree Wavelet coder (EZW) is a very simple and effective techinque for image impression. However, it is found that there is still room for improvement in EZW. In this paper, we proposed an improvement of EZW coding to speed up the encoder. It is a fast index-link method based on embedded zerotree wavelet image coding. The modified algorithm increases four symbols to eight symbols and preserves the position which previous found significant coefficients. The output of encoder is couple of symbols. It improves the efficiency of encoder in the dominant pass. The advantages of this algorithm are to reduce the encoding of the ZTR symbol and the ZTR symbol can be found early in the first several passes. Computer simulations show that this proposed algorithm has better performance than conventional EZW in intermediate or low bit rate. This encoding algorithm also retains most properties of EZW.

第一章 緒論 -1-
1.1 影像壓縮簡介…………………………………………… 1
1.2 研究背景與動機………………………………………… 2
1.3 各章節內容概述………………………………………… 3
第二章 小波轉換概論 -5-
2.1 時頻分析(Time-Frequency Analysis)…………………… 5
2.2 小波轉換概要 …………………………………………… 7
2.2.1 小波函數………………………………………… 7
2.2.2 小波轉換………………………………………… 8
2.3 多解析度 ……………………………………………… 12
2.3.1 多解析分析 …………………………………… 12
2.3.2 多解析空間 ……………………………………… 14
2.3.2.1 比例函數 ………………………………… 14
2.3.2.2 小波函數 ………………………………… 18
2.4 多解析轉換 ……………………………………………… 22
2.4.1 拆解處理…………………………………………… 22
2.4.2 合成處理 …………………………………………… 28
第三章 靜態影像壓縮編碼 -30-
3.1 靜態影像壓縮編碼模型 ………………………………… 30
3.2 常見的靜態影像壓縮技術 ……………………………… 32
3.2.1 靜態影像壓縮標準JPEG ………………………… 33
3.2.2 靜態影像壓縮標準JPEG2000簡介……………… 46
3.3 Embedded Zerotree Wavelet(EZW)小波影像壓縮編碼…… 47
第四章 小波影像壓縮編碼之改良與實驗結果分析 -63-
4.1 應用小波轉換之影像分解……………………………… 63
4.2 EZW編碼的改良 ……………………………………… 71
4.2.1 剩餘值傳遞法之簡化EZW影像壓縮編碼……… 71
4.2.2 快速參數鏈結法 ………………………………… 73
4.3 電腦模擬與分析 ……………………………………… 81
4.3.1 JPEG與快速參數鍊結法 ……………………… 81
4.3.2 EZW與快速參數鍊結法編碼比較 ……………… 88
第五章 結論與未來研究方向 ………………………………… 95
參考文獻 -97-

[ 1 ] Joint Photographic Experts Group, International Organization for Standardzation, Digital Compression and Coding of Continuous-tone Still Images, Part 1: Requirements and guidelines, ISO/IEC IS 10918-1, 1991
[ 2 ] Wallace, G. K. ,” The JPEG still picture compression standard,” Commun ACM, vol. 34, pp.30-44 , Apr 1991
[ 3 ] Chai, D.,and Bouzerdoum, A., “JPEG2000 image compression: an overview,” The Seventh Australian and New Zealand 2001 Intelligent Information Systems Conference, , pp. 237 —242, 2001
[ 4 ] Call for contribution for JPEG2000 (JTC 1.29.14, 15444): Image Coding S- ystem , ISO /IEC JTC1/SC29/WG1,Mar 1997
[ 5 ] Shapiro, J.M.,“ Embedded image coding using zerotrees of wavelet coefficients ,” IEEE Transactions on Signal Processing, vol. 41 Issue: 12, pp. 3445 - 3462 , Dec. 1993
[ 6 ] Shapiro, J.M.,”A fast technique for identifying zerotrees in the EZW algorithm ,“ 1996 IEEE International Conference on Speech, and Signal Processing, vol. 3, pp, 1455 —1458 ,1996
[ 7 ] Tang, Liangrui, Cai, Anni, and Sun, Jing-ao , “ An improved zerotree wavelet image compression method,” 5th International Conference on Signal Processing Proceedings, vol.2, pp. 1065 —1068, 2000
[ 8 ] Kang, E.-S., Tanaka, T., and Ko, S.-J. ,” Improved embedded zerotree wavelet coder,“ Electronics Letters , vol. 35 ,Issue: 9, pp.705 —706 , 29 April 1999
[ 9 ] Zhong, J.M., Leung, C.H.,and Tang, Y.Y. , ”An improved zerotree wavelet image coder based on significance checking in wavelet trees, “ 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4567 -4571,1998
[ 10 ] Muzaffar, T.,and Choi, T.-S. , “ Simplified EZW image coder with residual data transmission,” 2000 IEEE International Conference on Multimedia and Expo, vol. 1, pp. 111 —114, 2000
[ 11 ] Said, A.,and Pearlman, W.A., “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, Volume: 6 Issue:3 , pp. 243 —250, June 1996
[ 12 ] Strang G.,and T. Nguyen, Wavelet and Filter bank,Wellesley-Cambridge Press, Wellesley, MA, 1996
[ 13 ] Loughlin, P.J., Pitton, J.W., and Atlas, L.E. , “ Bilinear timefrequency rep- ressentation: New insight and properties,” IEEE Trans. Signal Processing , vol. 2, No.2, pp.750-767, Feb. 1993.
[ 14 ] Erdol, N. ,and Basbug, F. , “ Performance of Wavelet Transform Based Adaptive Filters and properties,” Processing, ICASSP 1993, vol. 3, pp. 500-503
[ 15 ] Raghuveer, M.R.,and Ajit, S.B., Wavelet Transform Introduction to Theory and Applications , AddisonWesley Longman, Inc.,July 1998
[ 16 ] Rioul, O. and Vetterli,an, M.,“ Wavelets and signal processing ,” IEEE SP Magazine, pp.1438, Oct. 1991.
[ 17 ] Mallat, G S. , “A theory of multiresolution signal decomposition : the wavelet representation, ” IEEE Trans. on Pattern Analysis and Machine Intlligence, vol. 11, No.7, pp.674-693,July 1989.
[ 18 ] Burrus, C.S., Gopinath, R.A., and H.Guo , Introduction to Wavelets and Wavelet Transforms, Prentice-Hall International
[ 19 ] Zhang, X. P.,and Desai, M.D., “ Nonlinear adaptive noise suppression based on wavelet transform,” Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3 , pp. 1589 -1592 , 1998
[ 20 ] Zhang, X. P.,and Desai, M.D., “Adaptive denoising based on SURE risk ,” IEEE Signal Processing Letters , vol. 5 , pp.265 —267,Issue: 10 , Oct. 1998
[ 21 ] Vaidynathan, P. P., Multirate System and Filter Banks, Prentice-Hall Intern- ational Inc.,Englewood Cliffs, NJ, 1992.
[ 22 ] Clarke, R. J. , Transform Coding of Image, Academic Press,London, 1985
[ 23 ] Pratt, W. K.,Digital Image Processing, Wiley-Interscience, New York, 1978
[ 24 ] Langdon, G. G., “An Introduction to Arithemtic Coding,” IBM J. Res. De., 28(2),135-149, 1985
[ 25 ] Wallace , G. K., “Overview of The JPEG (ISO/CITT) Still image compres- sion stardard ,” SPIE Conference On Visual Communcition and Image Processing ,pp. 1-14,1989
[ 26 ] Pennebaker, W. B., and Mitchell, J. L., JPEG Still Image Data Compression Stardard, VAN NOSTARD , New York.
[ 27 ] Huang, J. S. ,and Kan., K. S. , “The stardard of still color image Coding JPEG and the application,” Telecoms. Lab. Technical Journal, vol. 23,no. 5,Oct. 1993
[ 28 ] Kan, Kou-sou ,and Jeng, BorShenn., “Digital image coding and compress- ion based on discrete cosine transform approach,” Telecoms Technical Quartery, vol. 11,no. 1,pp. 80-93,Aug ,1991
[ 29 ] Natarajan A. T. and Rao K. R., “ On Image processing and discrete cosine transform ,“ IEEE Trans. Computers C-23 ,pp. 90-93, Jan. ,1974
[ 30 ] 戴顯權,資料壓縮,高雄市:紳藍出版社,中華民國九十年七月
[ 31 ] Ang, P. H. , Ruetz, P. A. and Auld, D., “Video compression makes big gain,” IEEE Spectrum, pp. 16-19, Oct. 1991
[ 32 ] Arerbuch, A., Lazar, D., and Israeli, M., “Image Compression Using Wavelet Transform and Mutiresulation Decomposition.” IEEE Trans. Image Processing , vol. 5, no. 1, pp.4-15, 1996
[ 33 ]楊雅筑,抗錯性漸進式小波轉換影像壓縮編碼技術,國立中央大學電機工程學系碩士學位論文,中華民國八十六年六月
[ 34 ]繆紹綱,數位影像處理活用-Matlab,台北市,全華科技圖書股份有限公司,中華民國八十八年11月
[ 35 ] Antonini, M., Barlaud, M., Mathieu, P.,and Daubechies, I. ,“Image coding using wavelet transform,” IEEE Transactions on Image Processing, vol. 1 Issue: 2 , pp. 205 —220,April 1992
[ 36 ]楊曜承,多頻帶影像切割與壓縮技術之研究,國立台灣海洋大學電機工程碩士學位論文,中華民國八十九年六月
[ 37 ] Tan, R.H.G., Zhang, T.J.F., Morgan, R.,and Greenwood, A., “Still image compression based on 2D discrete wavelet transform,” Electronics Letters , vol. 35 Issue: 22 ,pp. 1934 -1935 28 Oct. 1999
[ 38 ] Usevitch, B.E. ,“A tutorial on modern lossy wavelet image compression: foundations of JPEG 2000,” IEEE Signal Processing Magazine , vol. 18,Issue: 5 ,pp. 22-35 Sept. 2001
[ 39 ]王慈德,重疊區塊小波轉換於數位影像壓縮之應用,國立台灣海洋大學電機工程碩士學位論文,中華民國八十七年十二月
[ 40 ]連惠琪,小波收縮應用於適應性雜訊濾除,國立台灣海洋大學電機工程碩士學位論文,中華民國九十年六月
[ 41 ] Akansu, A. and Haddad, R. ,Mutiresolation Signal Deposition : Transform , Subband , and Wavelat.,Boston,MA:Academic,1992
[ 42 ]陳同孝,張真誠,黃國峰,數位影像處理技術,台北市,松崗電腦圖書資料股份有限公司,中華民國九十年一月
[ 43 ] Rafael C. Gonzalez and Richard E. Woods,Digital Image Processing, Tom Robbins,2002

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top