|
[1]E. Wigner, \On the quantum correction for thermodynamic equilibrium," Phys. Rev., vol. 40, pp. 749-759, 1932. [2] S. G. Mallat, \A theory of multiresolution signal decomposition: The wavelet representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, July 1989. [3] L. Cohen, Time-Frequency Analysis, Prentice-Hall, Englewood Clis, New Jersey, 1994. [4] L. Cohen, \Time-frequency distribution-A review," Proc. IEEE, vol. 77, no. 7, pp. 941-981, July 1989. [5] H. Choi and W. J. Williams, \Improved time-frequency representation of multicomponent signals using exponential kernels," IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 37, no. 6, pp. 862-871, June 1989. [6] J. Jeong and W. J. Williams, \Kernel design for reduced interference distributions," IEEE Trans. on Signal Processing, vol. 40, no. 2, pp. 402-412, Feb. 1992. [7] J. A. Draidi, L. M. Khadra and M. A. Khasawneh, \Generalized cone-shaped kernels for time-frequency distributions," Proc. IEEE ICASSP-95, pp. 1880- 1883, April 1995. [8] Y. Zhao, L. E. Atlas and R. J. Marks, \The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals," IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 38, no. 7, pp. 1084- 1091, July 1990. [9] Michel Loeve, Probability Theory. Van Nostrand, Princeton, New Jersey, 1995. [10] J. Ville, \Theorie et applications de la notion de signal analytique," Cables et Transmission, vol. 2, pp. 61-74, 1948. [11] B. Boashash, \Note on the use of the Wigner distribution for time-frequency signal analysis," IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 33, no.9, pp. 1518-1521, 1988. [12] F. Hlawatsch and G. F. Boudreaux-Bartels, \Linear and quadratic timefrequency signal representations," IEEE Signal Processing Mag., pp. 21-67, April 1992. [13] S. Oh and R. J. Marks, \Kernel synthesis for generalized time-frequency distributions using the method of alternating projections onto convex sets," IEEE Trans. on Signal Processing, vol. 42, no. 7, pp. 1653-1661, July 1994. [14] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, \The Wigner distribution-A tool for time-frequency signal analysis- Part I: Continuous-time signals," Phillips Jour. of Research., vol. 35, pp. 217-250, 1980. [15] L. Cohen, \Generalized phase-space distribution function," Jour. Math. Phys., vol. 7, pp. 781- 786, 1966. [16] J. Jeong and W. J. Williams, \Kernel design for reduced interference distributions," IEEE Trans. on Signal Processing, vol. 40, no. 2, pp. 402-412, Feb. 1992. [17] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, \The Wigner distribution-A tool for time-frequency signal analysis- Part III: Relation with other time-frequency signal transformations," Phillips J. Research., vol. 35, pp. 372-389, 1980. [18] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, \The Wigner distribution-A tool for time-frequency signal analysis- Part II: Discrete-time signals," Phillips J. Research., vol. 35, pp. 276-300, 1980. [19] P. Flandrin, \A time-frequency formulation of optimum detection," IEEE Trans. on Acoust., Speech, and Signal Processing, vol. 36, no. 9, pp. 1377- 1384, Sept. 1988. [20] J. Jeong and W. J. Williams, \Alias-free generalized discrete-time timefrequency distributions," IEEE Trans. on Signal Processing, vol. 40, no. 11, pp. 2757-2765, Nov. 1992. [21] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, \The aliasing problem in discrete time Wigner distribution," IEEE Trans. Acoust., Speech, Signal Processing, vol. 31, pp. 1067-1072, 1983. [22] P. J. Loughlin, J. W. Pitton and L. E. Atlas, \Bilinear time-frequency representations: New insights and properties," IEEE Trans. on Signal Processing, vol. 41, no. 2, pp. 750-767, Feb. 1993. [23] S. Oh and R. J. Marks, \Some properties of the generalized time frequency representation with cone-shaped kernel," IEEE Trans. on Signal Processing, vol. 40, no. 7, pp. 1735-1745, July 1992. [24] R. N. Czerwinski, Adaptive Time-Frequency Analysis Using a Cone-Shaped Kernel, M.S. Thesis, University of Illinois at Urbana-Champaign, January 1993. [25] R. N. Czerwinski and D.L.Jones, \Adaptive cone-kernel time-frequency analysis," IEEE Trans. on Signal Processing, vol.43, no. 7, pp. 1715-1719, July 1995. [26] R. N. Czerwinski and D.L.Jones, \An adaptive time-frequency representation using a cone-shaped kernel," Proc. IEEE ICASSP-93, vol. 4, pp. 404-407, April 1993. [27] http://www.espacotalassa.com/ [28] H. L. Van Trees, Detection Estimation and Modulation Theory, Part I, N.Y., Wiley, 1986. [29] G. H. Golub and C. F. Van Loan, Matrix Compution, Johns Hopkins University Press, 1983. [30] S. Haykin and B. V. Veen, Signal and systems, Wiley, 1999. [31] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, 1993. [32] S. Haykin, Communication Systems, 3rd. ed., Wiley, 1994. [33] Raghavan S. V. and Satish K. Tripathi, \Intergrating MultipleWeb-based geographic information systems,"IEEE Multimedia, vol. 6, no. 1,pp. 49-61,Jan.- Mar., 1999.
|