跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/14 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張仕朋
論文名稱:量化回授理論在自動導航上之應用研究
論文名稱(外文):Quantitative Feedback Theory for Autopilot
指導教授:張英德張英德引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:量化回授理論自動導航
外文關鍵詞:QFTAutopilot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
量化回授理論是屬於強健控制的一種,它與一般適應控制的最大不同點是當控制區間的參數在預定的範圍中變動時,QFT不須經由參數鑑別的過程來調整控制器的參數。設計者依據給定的響應規格,諸如時域中的上升時間、安定時間、超越量等,設計出適當的補償器,使得系統的輸出響應符合規格之要求。
本文描述了量化回授理論的設計步驟,不但可以設計出適當的補償器,也介紹了迴路整形的技巧,以及前置濾波器的設計,希望對於想研究量化回授理論的設計者,有很大的助益。
此外,本文還對於一個線性單輸入單輸出的飛行器,以MATLAB所提供之高階程式語言,對於此飛行器的參數未確定系統,設計出適當的補償器,最後再驗證系統在預定的範圍中變動時,不同的參數所產生的步階響應以及干擾響應,其效果相當理想。

The quantitative feedback theory is a branch of robust control theories. The main difference between the QFT and the adaptive control is that when parameters of the plant changes in expected region, we do not have to regulate parameters of controller by the process of parameter identification. In order to make the output response fitting with the request of system specifications, designers find appropriate compensator by response specifications such as rising time, settling time, and overshoot.
In this thesis, we not only describe the design steps of the quantitative feedback theory which can be used to design appropriate compensator, but also introduce the technique of loop shaping and the designing of prefilter. We hope that it is helpful to designers who get interested in studying the quantitative feedback theory.
Besides, we also use Matlab to design a proper compensator of parameter uncertainty system about a linear SISO flight vehicle. Finally, from the step tracking response and disturbance response resulted by different parameters with the system change in expected region, we can find that the effect is great.

誌謝-----------------------------------i
中文摘要------------------------------ii
英文摘要-----------------------------iii
目錄-----------------------------------v
圖目錄-------------------------------vii
表目錄--------------------------------ix
第1章 緒論-----------------------------1
1-1 研究動機----------------------1
1-2 量化回授理論回顧--------------2
1-3 內容簡介----------------------3
第2章 基本理論-------------------------4
2-1 前言--------------------------4
2-2 參數未確定系統的頻率響應------5
2-3 追蹤模式----------------------7
2-3.1 追蹤模式上界規格------------7
2-3.2 追蹤模式下界規格------------9
2-3.3 追蹤模式之修正-------------10
2-4 干擾排除模式-----------------11
2-5 受控裝置的模板---------------11
2-6 U-圍線----------------------13
第3章 設計方法與原理------------------24
3-1 追蹤性能邊界-----------------24
3-2 干擾排除性能邊界-------------27
3-3 合成邊界---------------------29
3-4 Lo(jw)與G(jw)的設計----------29
3-4.1 相位領先補償器-------------30
3-4.2 相位落後補償器-------------31
3-4.3 Lo(jw)的迴路整形-----------31
3-4.4 控制器G(jw)的決定----------32
3-5 前置濾波器的設計-------------32
第4章 模擬結果與分析------------------42
4-1 飛行器的自動導航(Autopilot)--42
4-2 規格轉換---------------------43
4-2.1 追蹤性能規格轉換-----------43
4-2.2 干擾排除性能規格轉換-------44
4-3 G(s)與F(s)的模擬分析---------45
4-4 模擬結果---------------------47
第5章 結論與未來展望------------------66
5-1 結論-------------------------66
5-2 未來展望---------------------66
參考文獻------------------------------68

[1] Jayasuriya,S. and Y.Zaho,“Stability of Quantitative
Feedback Designs and the Existence of Robust QFT
Controllers,”In Proceedings of Quantitative Feed-
back Theory Symposium,C.H.Houpis and P.R.Chand-
ler,editors,pp. 503-541,Wright-Patterson AFB,OH,
Aug. 1992.USAF.
[2] Nwowah,O.D.I.,R.E.Nordgren and G.S. Grewel,“Opti-
mal Loop Transmission Functions in SISO Quantita-
tive Feedback Theory,”Proceedings of the American
Control Conference,Baltimore,MD,June 1994.
[3] Bailey,F.N.J.W.Helton and O.Merino,“Alternative
Process in Frequency Domain Design of Single Loop
Feedback Systems with Plant Uncertainty,”
Proceedings of the American Control Conference,
Baltimore,MD,June 1994.
[4] Symposium On Quantitative Feedback Theory and
Other Frequency Domain Methods and Applications
Proceedings,University of Strathclyde,Glasgow,
Scotland,Aug.1997.
[5] Horowitz,I.,“Survey of Quantitative Feedback Theo-
ry(QFT)”Int. J. Control,Vol.53,pp.255-291,1991.
[6] Nwowahm,Q.,Jayasuriya,S.,and Chait,Y.,“Parametric
robust control by Quantitative Feedback Theory” J.
Guidance, Vol. 15,207-214,1992.
[7] Nwokah,O.D.I., D.F. Thompson,“Algebraic and Topo-
logical aspects of Quantitative Feedback Theory”,Int.
J. of Control,Vol.50,No.4,pp.1057-1069,1989.
[8] Kuo,B.C.,“Automatic control systems,”Prentice Hall,
1995.
[9] Becker,G,and Packard A. ,Robust performance of li-
near parametrically varying systems using parame-
trically-dependent linear feedback,Systems and Con-
troll Letters,Vol.23,1994,pp.205-215.
[10] Horowitz, I.M. ,“Advanced Control Theory and App-
lications,”The Weizmann Institute of Science,Reho-
vot,Israel,unpublished notes,1982.
[11] Horowitz, I. M.“Quantitative Feedback Theory,”Pro-
ceedings of IEE,vol. 129D,No.6,Nov.1982.
[12] C.M. Chien and B. C. Wang “An SISO uncertain sys-
tem designed by an equivalent disturbance attenu-
ation method” Control-Theory and Advanced Tech-
nology Vol.6,pp.257-271,1990.
[13] Desoer C.,and M. Vidyasagar,Feedback Systems,In-
put-Output Properties. Academic Press Inc. ,New York,1975.
[14] Chen, W. H.,and Balance,D.J.,“Plant template gener-
ation for uncertain plants in Quantitative Feedback
Theory” Journal of Dynamic Systems Measurement and
Control, 1999.
[15] Bentley, A. E., “Quantitative feedback theory with
application in welding”,Int. J. of Robust and Non-
linear Control,Vol.4,pp.119-160,1994.
[16] Polyak,B.T. ,and Kogan,J.,“Necessary and sufficient
conditions for robust stability of linear systems with
multiaffine uncertainty structure” IEEE Trans.Auto-
mat. Control, Vol.40,pp.1255-1260,1995.
[17] Ibid,“A Quantitative Inherent Reconfiguration Theo-
ry for a Class of Systems,”Int.J. of Sys. Sci. ,vol.16,
pp.1377-1390,1985.
[18] Ibid, “Stability of Quantitative Feedback Designs
and the Existence of Robust QFT Controllers,”Int.
J. of Nonlinear Control,1993.
[19] Bernstein, D. S. , “A Student’s Guide to Classical
Control,”IEEE Control Systems,Vol.17,No.4,pp.96-
98,Aug. 1997.
[20] Swift, Gerald A. Model Identification and Control
System Design for the Lambda Unmanned Research Vehicle.MS
Thesis,Air Force Institute of Technology
,Wright-Patterson AFB,OH,Sept. 1991.
[21] Cohen, N. ,Y. Chait, and C. Borghesani, “Stability
analysis using Nichols Charts”,Int.J.of Robust and
Nonlinear Control,Vol.4,pp.3-20,1994.
[22] Kailath,T.,Linear Systems,Prentice Hall,New Jersey,
1980.
[23] Doyle,J.C.,“Structured uncertainty in control system
design”,1985.
[24] Gera, A. and I. M. Horowitz, “Optimazation of the
Loop Transfer Function,” Int.J. of Control ,vol.31,
p.389,1980.
[25] Thompson,D.F.,and O.D.I.Nwokah,“Optimal Loop Synthesis
in Quantitative Feedback Theory,”Pro- ceedings,of the
American Control Conference,San Diego,CA,pp.626-631,1990.
[26] Bossert,D.E.,“Design of Pseudo-Continuous-Time
Quantitative feedback Theory Robot Controllers,”
MS Thesis,AFIT/GE/ENG/92J-04,Graduate School of
Engineering,Air Force Institute of Technology,
Wright Patterson AFB,OH,1992.
[27] Houpis,C.H.and M.Pachter,“Application of QFT to Control
System Design-An Outline for Enginners,
”Int.J. of Robust and Nonlinear Control,vol.7, pp.
515-531,June 1997.
[28] Bossert, D. E., “Design of Pseudo-Continuous-Time
Quantitative Feedback Theory Robot Controllers ,”
MS Thesis,AFIT/GE/ENG/89D-2,Graduate School
Of Engineering,Air Force Institute of Technology,
Wright-Patterson AFB,OH,Dec.1989.
[29] Francis,A.F.,and Zames,G.On -Optimal Sensi-
tivity Theory for SISO Feedback Systems,IEEE
Transactions on Automatic Control,Vol.29,no.1,
1984,pp.9-16.
[30] Helton,J.W.and O.Merino,Classical Control Using H-
infinity Methods Theory,Optimization,and De-
sign,SIAM,Philadelphia,1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top