|
[1] Jayasuriya,S. and Y.Zaho,“Stability of Quantitative Feedback Designs and the Existence of Robust QFT Controllers,”In Proceedings of Quantitative Feed- back Theory Symposium,C.H.Houpis and P.R.Chand- ler,editors,pp. 503-541,Wright-Patterson AFB,OH, Aug. 1992.USAF. [2] Nwowah,O.D.I.,R.E.Nordgren and G.S. Grewel,“Opti- mal Loop Transmission Functions in SISO Quantita- tive Feedback Theory,”Proceedings of the American Control Conference,Baltimore,MD,June 1994. [3] Bailey,F.N.J.W.Helton and O.Merino,“Alternative Process in Frequency Domain Design of Single Loop Feedback Systems with Plant Uncertainty,” Proceedings of the American Control Conference, Baltimore,MD,June 1994. [4] Symposium On Quantitative Feedback Theory and Other Frequency Domain Methods and Applications Proceedings,University of Strathclyde,Glasgow, Scotland,Aug.1997. [5] Horowitz,I.,“Survey of Quantitative Feedback Theo- ry(QFT)”Int. J. Control,Vol.53,pp.255-291,1991. [6] Nwowahm,Q.,Jayasuriya,S.,and Chait,Y.,“Parametric robust control by Quantitative Feedback Theory” J. Guidance, Vol. 15,207-214,1992. [7] Nwokah,O.D.I., D.F. Thompson,“Algebraic and Topo- logical aspects of Quantitative Feedback Theory”,Int. J. of Control,Vol.50,No.4,pp.1057-1069,1989. [8] Kuo,B.C.,“Automatic control systems,”Prentice Hall, 1995. [9] Becker,G,and Packard A. ,Robust performance of li- near parametrically varying systems using parame- trically-dependent linear feedback,Systems and Con- troll Letters,Vol.23,1994,pp.205-215. [10] Horowitz, I.M. ,“Advanced Control Theory and App- lications,”The Weizmann Institute of Science,Reho- vot,Israel,unpublished notes,1982. [11] Horowitz, I. M.“Quantitative Feedback Theory,”Pro- ceedings of IEE,vol. 129D,No.6,Nov.1982. [12] C.M. Chien and B. C. Wang “An SISO uncertain sys- tem designed by an equivalent disturbance attenu- ation method” Control-Theory and Advanced Tech- nology Vol.6,pp.257-271,1990. [13] Desoer C.,and M. Vidyasagar,Feedback Systems,In- put-Output Properties. Academic Press Inc. ,New York,1975. [14] Chen, W. H.,and Balance,D.J.,“Plant template gener- ation for uncertain plants in Quantitative Feedback Theory” Journal of Dynamic Systems Measurement and Control, 1999. [15] Bentley, A. E., “Quantitative feedback theory with application in welding”,Int. J. of Robust and Non- linear Control,Vol.4,pp.119-160,1994. [16] Polyak,B.T. ,and Kogan,J.,“Necessary and sufficient conditions for robust stability of linear systems with multiaffine uncertainty structure” IEEE Trans.Auto- mat. Control, Vol.40,pp.1255-1260,1995. [17] Ibid,“A Quantitative Inherent Reconfiguration Theo- ry for a Class of Systems,”Int.J. of Sys. Sci. ,vol.16, pp.1377-1390,1985. [18] Ibid, “Stability of Quantitative Feedback Designs and the Existence of Robust QFT Controllers,”Int. J. of Nonlinear Control,1993. [19] Bernstein, D. S. , “A Student’s Guide to Classical Control,”IEEE Control Systems,Vol.17,No.4,pp.96- 98,Aug. 1997. [20] Swift, Gerald A. Model Identification and Control System Design for the Lambda Unmanned Research Vehicle.MS Thesis,Air Force Institute of Technology ,Wright-Patterson AFB,OH,Sept. 1991. [21] Cohen, N. ,Y. Chait, and C. Borghesani, “Stability analysis using Nichols Charts”,Int.J.of Robust and Nonlinear Control,Vol.4,pp.3-20,1994. [22] Kailath,T.,Linear Systems,Prentice Hall,New Jersey, 1980. [23] Doyle,J.C.,“Structured uncertainty in control system design”,1985. [24] Gera, A. and I. M. Horowitz, “Optimazation of the Loop Transfer Function,” Int.J. of Control ,vol.31, p.389,1980. [25] Thompson,D.F.,and O.D.I.Nwokah,“Optimal Loop Synthesis in Quantitative Feedback Theory,”Pro- ceedings,of the American Control Conference,San Diego,CA,pp.626-631,1990. [26] Bossert,D.E.,“Design of Pseudo-Continuous-Time Quantitative feedback Theory Robot Controllers,” MS Thesis,AFIT/GE/ENG/92J-04,Graduate School of Engineering,Air Force Institute of Technology, Wright Patterson AFB,OH,1992. [27] Houpis,C.H.and M.Pachter,“Application of QFT to Control System Design-An Outline for Enginners, ”Int.J. of Robust and Nonlinear Control,vol.7, pp. 515-531,June 1997. [28] Bossert, D. E., “Design of Pseudo-Continuous-Time Quantitative Feedback Theory Robot Controllers ,” MS Thesis,AFIT/GE/ENG/89D-2,Graduate School Of Engineering,Air Force Institute of Technology, Wright-Patterson AFB,OH,Dec.1989. [29] Francis,A.F.,and Zames,G.On -Optimal Sensi- tivity Theory for SISO Feedback Systems,IEEE Transactions on Automatic Control,Vol.29,no.1, 1984,pp.9-16. [30] Helton,J.W.and O.Merino,Classical Control Using H- infinity Methods Theory,Optimization,and De- sign,SIAM,Philadelphia,1998.
|