|
[1] Amnon Yariv and Pochi Yeh, “Optical waves in crystals”, Chapter 7 and 12 (1983). [2] R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, Vol.16, p.1732, November (1991). [3] A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides”, Applied Physics Letters, Vol.60, p. 2853, June (1992). [4] A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Second-order optical nonlinearity in corona-poled glass films”, Journal of Applied Physics, Vol.74, p. 531, July (1993). [5] Hiroyuki Nasu, Hideki Okamoto, Kiyoshi Kurashi, and Kanichi Kamiya, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions.”, Journal of Optical Society America B, Vol.12, p.644, December (1995). [6] Leanne J. Henry and Alan D. DeVilbiss, “Effect of preannealing on the level of second-harmonic generation and defect sites achieved in poled low-water fused silica”, Journal of Optical Society America B, Vol.12, p.2037, November (1995). [7] P. M. Lundquist, H. C. Ong, W. P. Lin, R. P. H. Chang, J.B. Ketterson, and G.K. Wong, “Large second-order optical nonlinearities in pulsed laser ablated silicon carbide thin films”, Applied Physics Letters, Vol.67, p.2919, November (1995). [8] Leanne J. Henry, Bridget V. McGrath, Thomas G. Alley, and J. Kester, “Optical nonlinearity in fused silica by proton implantation”, Journal of Optical Society America B, Vol.13, p.827, May (1995). [9] G. L. Harris, E.W. Jones, M.G. Spencer, and K.H. Jackson, “Second harmonic conversion in cubic silicon carbide at 1.06 m”, Applied Physics Letters, Vol. 59, p.1817, October (1991). [10] R.A. Myers, “Large Second-Order Nonlinearity in Amorphous SiO2 Using Temperature/Electric-Field Poling.” Dissertation, The University of New Mexico (1995). [11] M. Rothschild, D.J. Ehrlich, and D.C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica”, Applied Physics Letters Vol.55, p.1276 (1989). [12] J.S. Danel, M. Dufour, F. Michel, “Application of quartz micromachining to the realization of a pressure sensor”, IEEE International Frequency Control Symposium, p.581 (1993). [13] J.P. Stagg, “Drift mobilities of and ions in SiO2 films”, Applied Physics Letters, Vol. 31, p. 532, October (1977). [14] T. W. Hickmott, “Thermally stimulated ionic conductivity of sodium in thermal SiO2”, Journal of Applied Physics, Vol.46, p.2583, June (1975). [15] W. Olthuis and P. Bergveld, “On the Charge Storage and Decay Mechanism in Silicon Dioxide Electrets”, IEEE Transactions on Electrical Insulation Vol. 27, p.691, August (1992). [16] R.A.B. Devine and C. Fiori “Thermally activated peroxy radical dissociation and annealing in vitreous SiO2”, Journal of Applied Physics, Vol.58, p.3368 (1985). [17] R.H. Doremus, “Glass Science”, Wiley-Interscience Publication. (1994) [18] Hilary L. Hampsch and John M. Torkelson, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing”, Journal of Applied Physics, Vol. 67, p.1037, January (1990). [19] X.C. Long, R.A. Myers and S.R.J. Brucek, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibers”, Electronics Letters, Vol.30, p. 25, December (1994). [20] Vince Dominic, “High-resolution map of the dc electric field in second harmonic generating glass”, Journal of Optical Society America B, Vol.11 p.2016, October (1994). [21] H. Takebe, P.G. Kazansky and P. St. J. Russell, “Effect of poling conditions on second-harmonic generation in fused silica”, Optics Letters, Vol.21, p.468, April (1996). [22] 肖定全, “晶體物理學”, 四川大學出版社 (1989). [23] G. Damamme, C. Le Gressus, “ Space Charge Characterization”, IEEE Annual Report, p.8, October (1996). [24] P.S. Weitzman, J.J. Kester and U.Osterberg, “ Electric field induced second harmonic generation in germanium doped silica planer waverguides”, Electronics Letters, Vol.30, p.697, April (1994). [25] Kui Han, Xingze Lu, Jianhua Xu, Shihong Ma, Wencheng Wang, “Second harmonic generation investigation on molecular orientation in Langmuir-Blodgett films poled by an electric field”, Optics Communications, Vol.152 p.371 April(1998). [26] C.G. Bethea, “Electric field induced second harmonic generation in glass”, Applied Optics, Vol.14, p.2435, March (1975). [27] D.W. Hall, M. A. Newhouse, N. F. Borelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses”, Applied Physics Letters, Vol. 54, p.1293 April (1989). [28] J. A. Aust, N. A. Sanford, and J. Amin, “Maker Fringe Analysis of Z-cut Lithium Niobate”, IEEE, p.114, (1997). [29] P.G. Kazansky, P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles? ”, Optics Communications, Vol.110, p.611, September (1994). [30] Peter M. Ranon, Yongqiang Shi and William H. Steier, “Efficient poling and thermal crosslinking of randomly bonded main-chain polymers for stable second order nonlinearities”, Applied Physics Letters, Vol.62, p.2605, May (1993). [31] Y.R. Shen, “The principles of nonlinear optic”, John Wiley and Sons (1984). [32] P.D. Maker, R.W. Terhune, M. Nisenoff and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic”, Physical Review Letters, Vol.8, p.21, January (1962). [33] Robert C. Miller, “Optical second harmonic generation in piezoelectric crystals”, Applied Physics Letters, Vol.5, p.17 (1964). [34] J. Jerphagnon and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals”, Journal of Applied Physics, Vol.41, p.1667, March (1970). [35] D.A. Kleinman, “Nonlinear dielectric polarization in optical media”, Physical Review, Vol.126, p.1977 (1962). [36] E.H. Snow and M.E. Dumesnil, “Space-charge polarization in glass films”, Applied Physics, Vol.37, p.2123, (1966). [37] Fumiaki Miyaji Kiyoharu Tadanaga, and Sumio Sakka, “Third harmonic generation from MOX-PbO-GaO1.5 ternary glasses”, Applied Physics Letters, Vol.60, p.2060, April (1992). [38] P. S. Weitzman, J.J. Kester and U. Osterberg, “ Electric field induced second harmonic generation in germanium doped silica planar waveguides ”, Electronics Letters, Vol.30, p.697, April (1994). [39] F. Bilodeau, B. Malo, J. Albert, D. C. Johnson, and K. O. Hill, “Photosensitization of optical fiber and silica-on-silicon/silica waveguides”, Optics Letters, Vol.18, p.953, June (1993). [40] N. Mukherjee, “Dynamics of second-harmonic generation in fused silica”, Journal of Optical Society America B, Vol.11, p.665, April (1994). [41] T. J. Driscoll and N.M. Lawandy, “Optically encoded sum-frequency generation in silica-based glass”, Optics Letters, Vol.19, p.7, January (1994). [42] A. Le Calvez, E. Freysz and A. Ducasse, “ Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica”, Optics Letters, Vol.22, p.1547, October (1997). [43] O. M. Bordun, “Dispersion of light in thin oxide films”, Physical and quantum optics, Vol.84, p.247, May (1998). [44] P.M. Lundquist, W. P. Lin and G.K. Wong, “Second harmonic generation in hexagonal silicon carbide”, Applied Physics Letters, Vol.66, p.1883, April (1995). [45] C. Dias and D.K. Das-Gupta, “Electroactive and dielectric properties of corona and thermally poled polymer-ceramic composites”, IEEE, p.495 (1991). [46] Jae H. Kyung and N. M. Lawandy, “Direct observation of the effective χ(2) grating in bulk glasses encoded for second-harmonic generation”, Optics Letters, Vol.21, p.632, May (1996). [47] H.W.K. Tom, T.F. Heinz, and T.R. Shen, “Second-Harmonic Reflection from Silicon Surfaces and Its Relation to Structural Symmetry”, Physical Review Letters, Vol.51, p.1983, November (1983). [48] R. Gerhard-Multhaupt, S. Bauer, S. Bauer-Gogonea, W. Wirges, and S. Yilmaz, “ Old and new poling techniques for nonlinear optical polymer electrets”, IEEE, p.775 (1994). [49] K.D. Singer, J.E. Sohn, and S.J. Laiama, “Second harmonic generation in poled polymer films”, Applied Physics Letters, Vol.49, p.248, August (1986). [50] S. Horinouchi, H. Imai, G.J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films”, Applied Physics Letters, Vol.68, p.3552, June (1996). [51] 莊達人, “VLSI製造技術”, 高立圖書有限公司, p.268 (1998). [52] Jinhai Si and Tsuneo Mitsuyu, “ Optical poling and its application in optical storage of a polyimide film with high glass transition temperature”, Applied Physics Letters, Vol.72, p.762, February (1998). [53] Valdas Pasiskevicius, Shunhua Wang, Jens A. Tellefsen, Fredrik Laurell, and Hakan Karisson, “Efficient Nd: YAG laser frequency doubling with periodically poled KTP”, Applied Optics, Vol.37, p.7116, October (1998). [54] Xinhua Gu, Roman Y. Korotkov, Yujie J. Ding, Jin U. Kang, Jacob B. Khurgin, “Observation of backward sum-frequency generation in periodically-poled lithium niobate”, Optics Communications, Vol.155, p.323, October (1998). [55] C.G. Bethea, “Electric field induced second harmonic generation in glass”, Applied Optics, Vol.14, p.2435, October (1975). [56] G. P. Banfi P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate”, Applied Physics Letters, Vol.73, p.136, July (1998). [57] Philip Schlup, Stuart D. Butterworth, Iain T. Mckinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator”, Optics Communications, Vol.154, p.154, September (1998). [58] Warren N. Herman, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials”, Journal of Optical Society America B, Vol.12, p.416, March (1995). [59] 余樹楨, “晶體之結構與性質”, 國立編譯館, p. 284 (1987). [60] D. Pureur, A.C. Liu, M.J. F. Digonnet, and G. S. Kino, “Absolute measurement of the second-order nonlinearity profile in poled silica”, Optics Letters, Vol.23, p.588, April (1998). [61] P.G. Kazansky, P. St. J. Russell, L. Dong and C.N.Pannell, “Pockels effect in thermally poled silica optical fibers”, Electronics Letters, Vol.31, p.62, January (1995). [62] Graham H. Cross, Yusuf Karakus and David Bloor, “Electro-optics in Thermopoled Polymer Films ”, IEEE Transactions on Electrical Insulation, Vol. 28, p.136, February (1993). [63] Vince Dominic and Jack Feinberg, “Spatial shape of the dc electric field produced by intense light in glass”, Optics Letters, Vol. 18, p. 784, May (1993). [64] Ulf Osterberg, “Experimental studies on efficient frequency doubling in glass optical fibers”, Optics Letters, Vol.12, p.57, January (1987). [65] Hiroyuki Nishikawa, Ryuta Nakamura, Ryoichi Tohmon, and Yoshimichi Ohki, “Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silicas”, Physical Review B, Vol.41, p.7828, April (1990). [66] L.L. Kulyuk, D. A. Shutov, and E. E. Strumban, “Second-harmonic generation by interface: influence of the oxide layer”, Optical Society of America B, Vol.8, p.1766, August (1991). [67] T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “ Study of Si(111) Surfaces by Optical Second-Harmonic Generation: Reconstruction and Surface phase Transformation”, Physical Review Letters, Vol.54, p.63, January (1985). [68] P. M. Lundquist, H. Zhou, D.N Hahn, J.B. Ketterson, and G.K. Wong, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications”, Applied Physics Letters, Vol.66, p.2469, May (1995). [69] S. Horinouchi, H. Imai, G.J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films”, Applied Physics Letters, Vol.68, p.3552, June (1996). [70] T. Bell, G. Hetherington, and K.H. Jack, Phys. Chem. Glasses , 3, 141(1962) [71] R. W. Lee, J.Am. Phys., 38, 448(1963) [72] S. P. Faile and D. M. Roy, Mater. Res. Bull., 5 385(1970) [73] K. H. Beckman and N. J. Harrick, J. Electrochem. Soc., 118, 614(1971) [74] R. H. Doremus, J. Electrochem. Soc., 115, 181(1968). [75] H. O. Mulfinger and H. Meyer, Glastech. Ber., 36,481(1963) [76] H. O. Mulfinger and H. Meyer, Glastech. Ber., 38, 235(1965) [77] J. Kelen and H. O. Mulfinger, Glastech. Ber., 41,230(1968) [78] E. L. Swarts, J. Can. Ceram. Soc., 38,155(1969). [79] R. E. Loehman, in Treatise on Materials Science and Technology. [80] D. R. Messier, Rev. Chem. Miner., 22,518(1985). [81] M. Rajaram and D. E. Day, J. Am. Ceram. Soc., 70,203(1987). [82] M. L. Pearce, J. Am. Ceram. Soc., 47, 342 (1964). [83] C. Kroger and D. Lummerzheim, Glastech. Ber., 38,229(1965). [84] Z. Strnad, Phys. Chem. Glasses, 12,152(1971). [85] S. D. Stookey, U.S. Patent 3,915,720(1970). [86]R. W. Douglas and J. O. Isard, J. Soc. Glass. Technol, 33,289T(1949) [87] H. Scholze, Glastech. Ber., 32, 81, 142, 278(1959) [88] A. J. Moulson and J. P.Roberts, Trans. Faraday Soc., 57,1208(1961). [89] G. Hetherington and K. H. Jack, Phys. Chem.Glasses, 3, 129(1962). [90] H. Franz and H. Schoze, Glastech. Ber., 36, 347(1963). [91] J. Gotz, Glastech. Ber., 45, 14(1972). [92] G. J. Young, J. Colloid Sci., 13, 67 (1958). [93] V. Ya. Davydov, A. V. Kiselev, and L. T. Zhuravlev, Trans. Faraday Soc., 60, 2254 (1964). [94] A. J. Tyler, F. H. Hambleton, and J. A. Hockey, J. Catal., 13,35 (1969). [95] R. H. Doremus, J. Phys. Chem., 75, 3147 (1971). [96] R. S. MacDonald, J. Phys. Chem., 62, 1168 (1958). [97] M. L. Hair, Infrared Spectroscopy in Surface Chemistry, Marcel Dekker, New York (1967). [98] L. H. Little, Infrared Spectra of Adsorbed Species, Academic Press, London (1966). [99] C. G. Armistead, A. J. Tyler, F. H. Hambleton, S. A. Mitchell, and J. A. Hockey, J.Phys. Chem., 73, 3974 (1969). [100] P. M. Dove and S. F. Elston, Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25C, Geochim. Consmochim. Acta 56, 4147 (1992). [101] J. E. Shelby, in Treatise on Materials Science and Technology, Vol. 17, Academic Press, San Diego, 1979, p. 1. [102] J. F. Shackelford, Ph. D. Thesis, University of California, 1971. [103] G. S. Nakayama and J. F. Shackelford, J. Noncryst. Sollids, 126, 249 (1990). [104] R. W. Barrer and D. E. W. Vaughn, Trans. Faraday Soc., 63, 2275(1967). [105] J. F. Shackelford and J. S. Masaryk, J. Noncryst. Solids, 30, 127 (1978). [106] J. F. Shackelford, J. Noncryst. Solids, 229 (1982).
|