跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/15 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭兆瑋
研究生(外文):Victor Kuo
論文名稱:二氧化矽之非線性光學效應的增強藉由水和鹽水條件之下
論文名稱(外文):Enhancement Of SHG In Fused Glass By Corona Poling Under Water And Salty Environments
指導教授:吳渝
指導教授(外文):A. Y. Wu
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:非線性光學
外文關鍵詞:Second Harmonic Generation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
我藉由外加水和鹽水條件,來增強SHG訊號。

We had performed some experiments on fused SiO2 glass samples . Then we used Maker Fringes method to calculate the nonlinear optical coefficients in the SiO2 samples . In our calculations , deff is about 1pm/V which is close to the values reported by other researchers [8,10,12] . And we believe that the dipole moment forms not only on the glass surface but in the bulk material near the top surface of the sample . The impurities cause some dipole moment formed near the anode of the glass (as shown in Fig 5-1 ) .
In particular , oxygen and hydrogen or other ionized impurities will obtain the energy from the corona poled process , and they are able to form another new compounds or polymers on glass surface and in the bulk .
The thickness of the depletion region or nonlinear region is about several micrometers , formed by impurities in the glass and corona poling . So we want to increase the deff value by add some outer conditions like water drops and salty water drops on the glass sample .
But , there are still many problems need to be solved , like what is the real reason of the ion effects to the glass and how to further increase the nonlinear region by another methods .

Contents
Contents I
Chapter 1 Introduction 1
1-1 Properties Of Fused Silica Glass 3
1-2 Organic Polymers 4
1-3 Defects In SiO2 5
1-4 Method Of Study 6
Chapter 2 Theoretical Analysis 7
2-1 Nonlinear Optics 7
2-2 Principle Of Optical Frequency Doubling 8
2-3 Effects Of Corona Poling In Silica Glass 12
2-3-1. Corona Poling 12
2-3-2 . Space-Charge Model 14
2-3-3 . Space-Charge Polarization In Glass 15
2-3-4 . Poling time and Speed of Depletion region formation 16
2-4 Electric Field Induced Second Harmonic Generation 17
2-5 Maker Fringes 18
2-6 Calculation of the values 20
Chapter 3 Experiment Procedure 23
3-1 Sample Preparation 23
3-2 Instrument 24
3-3 Methods Of Corona Poling 25
3-4 Electric Field Induced SHG 25
3-5 Experimental Setup 26
Chapter 4 Results And Discussion 29
4-1 Frozen-in Electric Field Or Oriented Dipole 30
4-2 Dynamics Of SHG In Fused Silica 31
4-3 32
4-3-1. NLO Effect In SiO2 Glass By Corona Poling At 2700C 32
4-3-2 . Possible Reasons For SHG In Poled Glass 35
4-3-3 . Nonbridging Oxygen Hole Center 40
4-4 41
4-4-1. NLO Effect in SiO2 Glass By Corona Poling At In 2700C In Wet Environment 41
4-4-2 . Possible Reasons For SHG Enhancement By Water In Poled Glass 42
4-5 46
4-5-1 . NLO Effect In SiO2 Glass By Corona Poling At 2700C In Salty Environment 46
4-5-2 . Possible Reasons For SHG Enhancement By Salty Water In Poled Glass 47
4-6 49
4-6-1 . Time Factor For Corona Poling 49
4-6-2 . Temperature Factor For Corona Poling 50
4-6-3 . Possible Reasons For Temperature Dependent Factor 50
Chapter 5 Conclusion 53

[1] Amnon Yariv and Pochi Yeh, “Optical waves in crystals”, Chapter 7 and 12 (1983).
[2] R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, Vol.16, p.1732, November (1991).
[3] A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides”, Applied Physics Letters, Vol.60, p. 2853, June (1992).
[4] A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Second-order optical nonlinearity in corona-poled glass films”, Journal of Applied Physics, Vol.74, p. 531, July (1993).
[5] Hiroyuki Nasu, Hideki Okamoto, Kiyoshi Kurashi, and Kanichi Kamiya, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions.”, Journal of Optical Society America B, Vol.12, p.644, December (1995).
[6] Leanne J. Henry and Alan D. DeVilbiss, “Effect of preannealing on the level of second-harmonic generation and defect sites achieved in poled low-water fused silica”, Journal of Optical Society America B, Vol.12, p.2037, November (1995).
[7] P. M. Lundquist, H. C. Ong, W. P. Lin, R. P. H. Chang, J.B. Ketterson, and G.K. Wong, “Large second-order optical nonlinearities in pulsed laser ablated silicon carbide thin films”, Applied Physics Letters, Vol.67, p.2919, November (1995).
[8] Leanne J. Henry, Bridget V. McGrath, Thomas G. Alley, and J. Kester, “Optical nonlinearity in fused silica by proton implantation”, Journal of Optical Society America B, Vol.13, p.827, May (1995).
[9] G. L. Harris, E.W. Jones, M.G. Spencer, and K.H. Jackson, “Second harmonic conversion in cubic silicon carbide at 1.06 m”, Applied Physics Letters, Vol. 59, p.1817, October (1991).
[10] R.A. Myers, “Large Second-Order Nonlinearity in Amorphous SiO2 Using Temperature/Electric-Field Poling.” Dissertation, The University of New Mexico (1995).
[11] M. Rothschild, D.J. Ehrlich, and D.C. Shaver “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica”, Applied Physics Letters Vol.55, p.1276 (1989).
[12] J.S. Danel, M. Dufour, F. Michel, “Application of quartz micromachining to the realization of a pressure sensor”, IEEE International Frequency Control Symposium, p.581 (1993).
[13] J.P. Stagg, “Drift mobilities of and ions in SiO2 films”, Applied Physics Letters, Vol. 31, p. 532, October (1977).
[14] T. W. Hickmott, “Thermally stimulated ionic conductivity of sodium in thermal SiO2”, Journal of Applied Physics, Vol.46, p.2583, June (1975).
[15] W. Olthuis and P. Bergveld, “On the Charge Storage and Decay Mechanism in Silicon Dioxide Electrets”, IEEE Transactions on Electrical Insulation Vol. 27, p.691, August (1992).
[16] R.A.B. Devine and C. Fiori “Thermally activated peroxy radical dissociation and annealing in vitreous SiO2”, Journal of Applied Physics, Vol.58, p.3368 (1985).
[17] R.H. Doremus, “Glass Science”, Wiley-Interscience Publication. (1994)
[18] Hilary L. Hampsch and John M. Torkelson, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing”, Journal of Applied Physics, Vol. 67, p.1037, January (1990).
[19] X.C. Long, R.A. Myers and S.R.J. Brucek, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibers”, Electronics Letters, Vol.30, p. 25, December (1994).
[20] Vince Dominic, “High-resolution map of the dc electric field in second harmonic generating glass”, Journal of Optical Society America B, Vol.11 p.2016, October (1994).
[21] H. Takebe, P.G. Kazansky and P. St. J. Russell, “Effect of poling conditions on second-harmonic generation in fused silica”, Optics Letters, Vol.21, p.468, April (1996).
[22] 肖定全, “晶體物理學”, 四川大學出版社 (1989).
[23] G. Damamme, C. Le Gressus, “ Space Charge Characterization”, IEEE Annual Report, p.8, October (1996).
[24] P.S. Weitzman, J.J. Kester and U.Osterberg, “ Electric field induced second harmonic generation in germanium doped silica planer waverguides”, Electronics Letters, Vol.30, p.697, April (1994).
[25] Kui Han, Xingze Lu, Jianhua Xu, Shihong Ma, Wencheng Wang, “Second harmonic generation investigation on molecular orientation in Langmuir-Blodgett films poled by an electric field”, Optics Communications, Vol.152 p.371 April(1998).
[26] C.G. Bethea, “Electric field induced second harmonic generation in glass”, Applied Optics, Vol.14, p.2435, March (1975).
[27] D.W. Hall, M. A. Newhouse, N. F. Borelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses”, Applied Physics Letters, Vol. 54, p.1293 April (1989).
[28] J. A. Aust, N. A. Sanford, and J. Amin, “Maker Fringe Analysis of Z-cut Lithium Niobate”, IEEE, p.114, (1997).
[29] P.G. Kazansky, P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles? ”, Optics Communications, Vol.110, p.611, September (1994).
[30] Peter M. Ranon, Yongqiang Shi and William H. Steier, “Efficient poling and thermal crosslinking of randomly bonded main-chain polymers for stable second order nonlinearities”, Applied Physics Letters, Vol.62, p.2605, May (1993).
[31] Y.R. Shen, “The principles of nonlinear optic”, John Wiley and Sons (1984).
[32] P.D. Maker, R.W. Terhune, M. Nisenoff and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic”, Physical Review Letters, Vol.8, p.21, January (1962).
[33] Robert C. Miller, “Optical second harmonic generation in piezoelectric crystals”, Applied Physics Letters, Vol.5, p.17 (1964).
[34] J. Jerphagnon and S. K. Kurtz, “Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals”, Journal of Applied Physics, Vol.41, p.1667, March (1970).
[35] D.A. Kleinman, “Nonlinear dielectric polarization in optical media”, Physical Review, Vol.126, p.1977 (1962).
[36] E.H. Snow and M.E. Dumesnil, “Space-charge polarization in glass films”, Applied Physics, Vol.37, p.2123, (1966).
[37] Fumiaki Miyaji Kiyoharu Tadanaga, and Sumio Sakka, “Third harmonic generation from MOX-PbO-GaO1.5 ternary glasses”, Applied Physics Letters, Vol.60, p.2060, April (1992).
[38] P. S. Weitzman, J.J. Kester and U. Osterberg, “ Electric field induced second harmonic generation in germanium doped silica planar waveguides ”, Electronics Letters, Vol.30, p.697, April (1994).
[39] F. Bilodeau, B. Malo, J. Albert, D. C. Johnson, and K. O. Hill, “Photosensitization of optical fiber and silica-on-silicon/silica waveguides”, Optics Letters, Vol.18, p.953, June (1993).
[40] N. Mukherjee, “Dynamics of second-harmonic generation in fused silica”, Journal of Optical Society America B, Vol.11, p.665, April (1994).
[41] T. J. Driscoll and N.M. Lawandy, “Optically encoded sum-frequency generation in silica-based glass”, Optics Letters, Vol.19, p.7, January (1994).
[42] A. Le Calvez, E. Freysz and A. Ducasse, “ Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica”, Optics Letters, Vol.22, p.1547, October (1997).
[43] O. M. Bordun, “Dispersion of light in thin oxide films”, Physical and quantum optics, Vol.84, p.247, May (1998).
[44] P.M. Lundquist, W. P. Lin and G.K. Wong, “Second harmonic generation in hexagonal silicon carbide”, Applied Physics Letters, Vol.66, p.1883, April (1995).
[45] C. Dias and D.K. Das-Gupta, “Electroactive and dielectric properties of corona and thermally poled polymer-ceramic composites”, IEEE, p.495 (1991).
[46] Jae H. Kyung and N. M. Lawandy, “Direct observation of the effective χ(2) grating in bulk glasses encoded for second-harmonic generation”, Optics Letters, Vol.21, p.632, May (1996).
[47] H.W.K. Tom, T.F. Heinz, and T.R. Shen, “Second-Harmonic Reflection from Silicon Surfaces and Its Relation to Structural Symmetry”, Physical Review Letters, Vol.51, p.1983, November (1983).
[48] R. Gerhard-Multhaupt, S. Bauer, S. Bauer-Gogonea, W. Wirges, and S. Yilmaz, “ Old and new poling techniques for nonlinear optical polymer electrets”, IEEE, p.775 (1994).
[49] K.D. Singer, J.E. Sohn, and S.J. Laiama, “Second harmonic generation in poled polymer films”, Applied Physics Letters, Vol.49, p.248, August (1986).
[50] S. Horinouchi, H. Imai, G.J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films”, Applied Physics Letters, Vol.68, p.3552, June (1996).
[51] 莊達人, “VLSI製造技術”, 高立圖書有限公司, p.268 (1998).
[52] Jinhai Si and Tsuneo Mitsuyu, “ Optical poling and its application in optical storage of a polyimide film with high glass transition temperature”, Applied Physics Letters, Vol.72, p.762, February (1998).
[53] Valdas Pasiskevicius, Shunhua Wang, Jens A. Tellefsen, Fredrik Laurell, and Hakan Karisson, “Efficient Nd: YAG laser frequency doubling with periodically poled KTP”, Applied Optics, Vol.37, p.7116, October (1998).
[54] Xinhua Gu, Roman Y. Korotkov, Yujie J. Ding, Jin U. Kang, Jacob B. Khurgin, “Observation of backward sum-frequency generation in periodically-poled lithium niobate”, Optics Communications, Vol.155, p.323, October (1998).
[55] C.G. Bethea, “Electric field induced second harmonic generation in glass”, Applied Optics, Vol.14, p.2435, October (1975).
[56] G. P. Banfi P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate”, Applied Physics Letters, Vol.73, p.136, July (1998).
[57] Philip Schlup, Stuart D. Butterworth, Iain T. Mckinnie, “Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator”, Optics Communications, Vol.154, p.154, September (1998).
[58] Warren N. Herman, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials”, Journal of Optical Society America B, Vol.12, p.416, March (1995).
[59] 余樹楨, “晶體之結構與性質”, 國立編譯館, p. 284 (1987).
[60] D. Pureur, A.C. Liu, M.J. F. Digonnet, and G. S. Kino, “Absolute measurement of the second-order nonlinearity profile in poled silica”, Optics Letters, Vol.23, p.588, April (1998).
[61] P.G. Kazansky, P. St. J. Russell, L. Dong and C.N.Pannell, “Pockels effect in thermally poled silica optical fibers”, Electronics Letters, Vol.31, p.62, January (1995).
[62] Graham H. Cross, Yusuf Karakus and David Bloor, “Electro-optics in Thermopoled Polymer Films ”, IEEE Transactions on Electrical Insulation, Vol. 28, p.136, February (1993).
[63] Vince Dominic and Jack Feinberg, “Spatial shape of the dc electric field produced by intense light in glass”, Optics Letters, Vol. 18, p. 784, May (1993).
[64] Ulf Osterberg, “Experimental studies on efficient frequency doubling in glass optical fibers”, Optics Letters, Vol.12, p.57, January (1987).
[65] Hiroyuki Nishikawa, Ryuta Nakamura, Ryoichi Tohmon, and Yoshimichi Ohki, “Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silicas”, Physical Review B, Vol.41, p.7828, April (1990).
[66] L.L. Kulyuk, D. A. Shutov, and E. E. Strumban, “Second-harmonic generation by interface: influence of the oxide layer”, Optical Society of America B, Vol.8, p.1766, August (1991).
[67] T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “ Study of Si(111) Surfaces by Optical Second-Harmonic Generation: Reconstruction and Surface phase Transformation”, Physical Review Letters, Vol.54, p.63, January (1985).
[68] P. M. Lundquist, H. Zhou, D.N Hahn, J.B. Ketterson, and G.K. Wong, “Potassium titanyl phosphate thin films on fused quartz for optical waveguide applications”, Applied Physics Letters, Vol.66, p.2469, May (1995).
[69] S. Horinouchi, H. Imai, G.J. Zhang, K. Mito, and K. Sasaki, “Optical quadratic nonlinearity in multilayer corona-poled glass films”, Applied Physics Letters, Vol.68, p.3552, June (1996).
[70] T. Bell, G. Hetherington, and K.H. Jack, Phys. Chem. Glasses , 3, 141(1962)
[71] R. W. Lee, J.Am. Phys., 38, 448(1963)
[72] S. P. Faile and D. M. Roy, Mater. Res. Bull., 5 385(1970)
[73] K. H. Beckman and N. J. Harrick, J. Electrochem. Soc., 118, 614(1971)
[74] R. H. Doremus, J. Electrochem. Soc., 115, 181(1968).
[75] H. O. Mulfinger and H. Meyer, Glastech. Ber., 36,481(1963)
[76] H. O. Mulfinger and H. Meyer, Glastech. Ber., 38, 235(1965)
[77] J. Kelen and H. O. Mulfinger, Glastech. Ber., 41,230(1968)
[78] E. L. Swarts, J. Can. Ceram. Soc., 38,155(1969).
[79] R. E. Loehman, in Treatise on Materials Science and Technology.
[80] D. R. Messier, Rev. Chem. Miner., 22,518(1985).
[81] M. Rajaram and D. E. Day, J. Am. Ceram. Soc., 70,203(1987).
[82] M. L. Pearce, J. Am. Ceram. Soc., 47, 342 (1964).
[83] C. Kroger and D. Lummerzheim, Glastech. Ber., 38,229(1965).
[84] Z. Strnad, Phys. Chem. Glasses, 12,152(1971).
[85] S. D. Stookey, U.S. Patent 3,915,720(1970).
[86]R. W. Douglas and J. O. Isard, J. Soc. Glass. Technol, 33,289T(1949)
[87] H. Scholze, Glastech. Ber., 32, 81, 142, 278(1959)
[88] A. J. Moulson and J. P.Roberts, Trans. Faraday Soc., 57,1208(1961).
[89] G. Hetherington and K. H. Jack, Phys. Chem.Glasses, 3, 129(1962).
[90] H. Franz and H. Schoze, Glastech. Ber., 36, 347(1963).
[91] J. Gotz, Glastech. Ber., 45, 14(1972).
[92] G. J. Young, J. Colloid Sci., 13, 67 (1958).
[93] V. Ya. Davydov, A. V. Kiselev, and L. T. Zhuravlev, Trans. Faraday Soc., 60, 2254 (1964).
[94] A. J. Tyler, F. H. Hambleton, and J. A. Hockey, J. Catal., 13,35 (1969).
[95] R. H. Doremus, J. Phys. Chem., 75, 3147 (1971).
[96] R. S. MacDonald, J. Phys. Chem., 62, 1168 (1958).
[97] M. L. Hair, Infrared Spectroscopy in Surface Chemistry, Marcel Dekker, New York (1967).
[98] L. H. Little, Infrared Spectra of Adsorbed Species, Academic Press, London (1966).
[99] C. G. Armistead, A. J. Tyler, F. H. Hambleton, S. A. Mitchell, and J. A. Hockey, J.Phys. Chem., 73, 3974 (1969).
[100] P. M. Dove and S. F. Elston, Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25C, Geochim. Consmochim. Acta 56, 4147 (1992).
[101] J. E. Shelby, in Treatise on Materials Science and Technology, Vol. 17, Academic Press, San Diego, 1979, p. 1.
[102] J. F. Shackelford, Ph. D. Thesis, University of California, 1971.
[103] G. S. Nakayama and J. F. Shackelford, J. Noncryst. Sollids, 126, 249 (1990).
[104] R. W. Barrer and D. E. W. Vaughn, Trans. Faraday Soc., 63, 2275(1967).
[105] J. F. Shackelford and J. S. Masaryk, J. Noncryst. Solids, 30, 127 (1978).
[106] J. F. Shackelford, J. Noncryst. Solids, 229 (1982).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top