跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅明山
研究生(外文):Ming Shan Lo
論文名稱:積體化CMOSOP放大、補償電路壓力感測器特性之製作及應用研究
論文名稱(外文):A Study of Fabrication and Application of A CMOS OP Amplifier and Compensation Circuit Integrated Pressure Sensors
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung Cheng Chang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:139
中文關鍵詞:壓力感測元件壓阻效應CMOS OP放大器惠斯頓電橋零點偏移電壓金氧半場效電晶體
外文關鍵詞:pressure sensorMOSFETPiezoresistive effectWheatstone bridgeoffset voltageCMOS OP amplifier
相關次數:
  • 被引用被引用:2
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
  由於半導體型壓力感測器不僅體積小、質量輕、可靠度高,同時伴隨著積體電路、資訊工業的蓬勃發展,結合了感測和訊號處理功能的壓力感測器也勢必為主流。本論文係針對傳統的惠斯頓電橋型式組成之半導體壓阻式矽質壓力感測器來進行其訊號放大、提高靈敏度、補償誤差等功能元件之製作及特性分析研究,使其更易於與其他電子電路合併,使其更具備響應速度快,更有積體化、智慧化、信號品質高、再現性卓越等等之優點。但由於壓阻式感測器之感度受薄膜之幾何形狀、半導體擴散壓阻材料、係數、表面濃度影響,其訊號輸出之穩度度、線性度及溫度效應均受到限制,因此本論文利用CMOS OP 放大來進行輸出訊號之放大提高其感度,提供穩定工作電流,抑制共模雜訊,同時加入溫度補償電路,使其受溫度之影響降低,達溫度補償之整合系統製作研究。
  本實驗採用P(100)之矽晶片來製作壓力感測器,薄膜厚度約5~20μm,面積為1.8mm*1.8mm,利用離子植入n型壓阻材料,形成半導體壓阻,製作出傳統壓阻式壓力感測器,同時利用標準之MOSFET製程技術,製作出周邊電路,藉以改善傳統壓阻式感測器之品質。
  本實驗所製作壓力感測器可獲得最大放大倍率約18.2,可將傳統感測器感度提升至55.56mV/V-Kg/cm2,利用電流鏡之外接參考電阻,可控制放大器工作電流調整零點偏移電壓,達到零點電壓補償之功能,在溫度效應方面,零點偏移電壓的溫度係數在溫度範圍為-30℃∼80℃之間可獲得接近2.5%/℃。而靈敏度的溫度係數在溫度範圍為-30℃到80℃之間可獲得接近-0.14%/℃。
關鍵字:壓力感測元件、壓阻效應、CMOS OP放大器、惠斯頓電橋、零點偏移電壓、金氧半場效電晶體

Abstract
  In this paper, A integrated pressure sensor is fabricated on p(100) silicon substrate. The integrated sensor consists of a traditional pressure sensor, CMOS OP amplifier and feedback circuit. The CMOS OP amplifier includes current mirror circuit, an input differential stage with active load followed by a common-source stage also with active load, an inverter and a frequency compensation capacitor. This circuit is designed to stabilized sensitivity, which is varied with temperature and supply voltage .
We can obtain a thin silicon membrane using KOH anisotropic solution to etch silicon substrate, the membrane thickness is about 5~20μm, and the membrane area is design 1.8 mm× 1.8 mm. The loads resistance of MOSFET can be made about 150 KΩ with control the feedback amplify rate about 18.2 of amplified circuit. The fabricated pressure sensor has the advantages of high sensitivity 55.56 mV/V-Kg/cm2 for 5 Kg/cm2 full-scale pressure range, with a nonlinearity of less than +19.3 %FS. We can adjust the loaded resistance to control the amplify rate and the working current of the OP amplifier. The quality of sensitivity and linearity of the fabricated sensor can be improved with compensation circuits. In the temperature range from -30℃ to +80℃, the shift in sensitivity is less than —0.14%/℃ and the shift in offset voltage is less than 2.5%/℃, respectively in this experiment.
Key word : pressure sensor、MOSFET、Piezoresistive effect、Wheatstone bridge、offset voltage、CMOS OP amplifier。

Contents
Chapter 1 Introduction …………………………………1
1-1. Overview …………………………………………..1
1-2. Research Motivation ……………………………….3
1-3. Outline ……………………………………………..5
Chapter 2 Principle of Pressure Sensor Device………..7
2-1. Introduction .……………………………….…..7
2-2. Pressure Measurements……..……………………...…7
2-3. Principle of Piezoresistive Strain Gage ……….……..8
2-4. Piezoresistive Effect ………………………...………..11
2-5. The Factors that Affecting Resistance Value……..…13
2-6. Wheatstone Bridge Configuration…………………..15
2-7. Principle of Chemical Etching ………………………18
2-7-1. The Selection of Etching Solution …………….20
2-7-2. Orientation Etching and Membrane Area …….22
Chapter 3 Principle and Characteristic of MOSFET and CMOS OP amplifier …………………..……24
3-1. The Structure and Device Fundamentals of MOSFET Transistors ...……………………………………....24
3-1-1. Introduction ………………………….24
3-1-2. Current-Voltage Characteristics of MOS
Transistors ………………………………….25
3-1-3. Active resistor of MOS transistor …….26
3-2. The Fundamentals of Operational Amplifier …..…...27
3-2-1. The Ideal Operational Amplifier ………………27
3-2-2. Analysis of Circuit Containing Ideal OP Amps…28
3-3. Principle of The CMOS OP Amplifier ……………..32
3-3-1. Introduction ……………………………………32
3-3-2. Performances of CMOS OP Amplifier………..32
3-4. Principle of The Current Mirror ……………………34
Chapter 4 The Device Fabrication of Integrated Pressure Sensor……………………………36
4-1. Fabrication Process of Silicon Pressure Sensor Device ………………………………………………36
4-2. Process for Fabricating NMOS Inverters with NMOS Enhancement-Mode Loads …………………………..38
4-3. Fabricating of the Diaphragm Film ………….……....39
4-3-1. Back Etching of Substrate ………………………39
4-3-2. Anisotropic Silicon Etching ………………………40
Chapter 5 Measurement the Characteristic of Integrated Pressure Sensor …………………………..41
5-1. The System of Measurement Pressure ………………42
5-2. Measurement the Characteristic of MOSFET Transistor ……………………………………………42
5-3. Measurement the characteristic of the CMOS OP
Amplifier…………………………………………..…44
5-4. Experimental Result and Discussion of The Intehrated
Pressure Sensors……………………………………44
5-4-1. The Output Voltage and The Sensitivity of
Integrated Pressure Sensor…………….………..44
5-4-2 Measurement of the Output Voltage Using Different Load Resistor…………..…….………46
5-4-3 Measurement of the Offset Voltage ……..……46
5-4-4 Nonlinearity of the Pressure sensors ……..……49
5-4-5 Temperature Effects……………….……..……50
5-5. Membrane Size and Thickness Have Influence on
sensors………………………………………………..53
Chapter 6 Application---Blood Pressure Monitor…….55
6-1. Introduction………………………………………55
6-2. The Configuration and measurement of Blood Pressure System……………………………………………… 56
6-2-1. The Configuration of Blood Pressure Monitor…..56
6-2-2. The Measurement of Blood Pressure System… 57
6-3. Experimental and Results.…………………………… 58
6-4. Conclusion…………………………………………… 60
Chapter 7 Conclusion and Suggestion ………………..61
Reference ...………………………………………………...63

References
[1] W. H. Ko, J. Hynecek and S. F. Boettcher, “Development of a Miniature Pressure Transducer for Biomedical Applications,” IEEE
Trans. Electron Devices, ED-26, P1896-1904, 1979.
[2] S. Sugiyama, T. Suzuki, K. Shimaoka, M. Takigawa and I. Igarashi, “Micro-Diaphragm Pressure Sensor,” IEEE Int. Electron Devices Meting, New York, P185-187, 1986.
[3] W. G. Wolber and K. D. Wise, “Sensor Development in the Microcomputer Age,” IEEE Trans Electron Devices, ED-26, P 1863-1874, 1979.
[4] Ot. Tobita, Y. Yamamoto, M. Fukunaga, T. Kobayashi Instrument Div., Hitachi, Lid. ”Development of Very Small Differential Pressure Transmitter,” IEEE IMTC ’94 May 10-12, P1237-1240.
[5] 張希誠, 感測器的基礎與應用-工業電子篇, 第三波文化事業, 台灣, 1986.
[6] J. McDermott, “Sensors and Transducers,” Electron. Des. News, mar.20, P122-142, 1980.
[7] Tokuji Saigusa and Hideki Kuwayama, “Intelligent Differential Pressure Transmitter Using Micro-Resonators,” IEEE, P1634-1639, 1992.
[8] Bo-Na Lee, Kuu-Nyun Kim, Hyo-Derk Park, Sang-Mo Shin, “Calibration and temperature compensation of silicon pressure sensors using ion-implanted trimming resistors” Sensors and Actuators A, 72, P148-152, 1999.
[9] Yozo Kanda, “Optimum design considerations for silicon pressure sensors using a four-terminal gauge,” Sensors and Actuators, 4, P 199-206, 1983.
[10] Y. Kanda and A. Yasukawa, “Hall-effect devices as strain and pressure sensors,” Sensors and Actuators, 2, P283-296, 1982.
[11] Moon key Lee, Bo Na Lee and Young Jun Lee, “Signal conditioning circuitry for silicon pressure sensor,” IEEE Bipolar Circuit and Technology Meeting, P250-253, 1992.
[12] O. N. Tufte and E. L. Stelzer, “Piezoresistive Properties of Silicon Diffused Layers,” Journal of Applied Physics, Vol. 34, NO. 2, P 313-318, February 1963.
[13] C.Csaszar, G.Harsany and R.P.Agarwal, “Avery low-cost pressure sensor with extremely high sensitivity,” Sensors and Actuators A, 41-42, P417-420, 1994.
[14] 松井邦彥著, 杜光宗編譯, 感測器應用電路的設計製作, 建宏出版社, 81.11.
[15] W.Gopel, J.Hesse and J.N.Zemel, in H.H.Bau, N.F. de Rooij and B.Kloek (eds.), Sensors a comprehensive survey, Vol. 7, Mechanical Sensors, VCH, Weinheim and New York, P146-172, 1994.
[16] H.E.Elgamel, “Closed-form expressions for the relationships between stress, diaphgram deflection, and resistance change with pressure with pressure in silicon piezoresistive pressure sensors” Sensors and Actuators A50(1995) 17-22.
[17] C. Canali, G. Ferla, B. Morten and A. Taroni, “Piezoresistivity effects in MOS-FET useful for pressure transducers,” J. Phys. D: Appl. Phys., Vol.12, P1973-1983, 1979.
[18] C.S. Smith, “Piezoresistive effect in germanium and silicon,” Phys. Rev. 94, P42-49, 1954.
[19] Alan S. Morris, Principles of Measurement and Instrumentation, Prentice Hall International (UK) Ltd, 1988.
[20] C. C. Perry and H. R. Lissner, The strain gage primer, Mc Graw-Hill Book Company, 1962.
[21] W.G.Pfann and R.N.Thurston, “Semiconducting stress transducers utilizing the transverse and shear piezoresistive effect,” J. Appl. Phys., 32, P2008-2019, 1961.
[22] P.J.French and A.G.R.Evans, “Polysilicon strain sensors using shear piezoresistance,“ Sensors and Actuators, 15, P257-279, 1988.
[23] H. Tanigawa, T. Ishihara, M. Hirata and ak. Suzuki, “MOS integrated silicon pressure sensor,” IEEE Trans. Electron Devices, Vol.ED-32, P1191-1195, 1985.
[24] A. D. Kurtz and C. L. Gravel, “Semiconductor transducers using transverse and shear piezoresistance,” in Proc. 22nd ISA Conf., No.P4-Phymmid-67, Sept. 1967.
[25] P. J. French and A. G. R. Evans, “Polysilicon strain sensors using shear piezoresistance,” Sensors and Actuators, 15, P257-272, 1988.
[26] C. S. Smith, “Piezoresistive effects in Si and Ge,” Phy. Rev., 94, p 42-49, 1954.
[27] J. J. Wortman and R. A. Evans, “Young’s modulus, shear modulus and Poisson’s ratio in Si and Ge,” J. Appl. Phys., 36, P153-156, 1965.
[28] D. Colman, R. T. Bate and J. P. Mize, “Mobility Anisotropy and Piezoresistance in Silicon p-Type Inversion Layers,” Journal of Applied Physics, Vol.39, No.4, P1923-1931, March 1968.
[29] M. A. Rosa, S. Dimitrijev and H. B. Harrison, “KOH Wet Etching Techniques for the Micromachining og (100) SOI Wafers,” IEEE, P 454-457, 1997.
[30] Quoc-Bao Vu, David A. Stricker, and Paul M. Zavracky, “Surface Characteristics of (100) Silicon Anisotropically Etched in Aqueous KOH,” J. Electrochem. Soc., Vol.143, No.4, P1372-1375, April 1996.
[31] Kirt R. Williams, Student Member, IEEE, and Richard S. Muller, Life Fellow, IEEE, “Etch Rates for Micromachining Processing,” Lournal of Microelectromechanical Systems, Vol.5, No.4, pp. 256-269, December 1996.
[32] John L. Vossen and Werner Kern, Thin film processes, Academic Press, INC. 1978.
[33] O. J. Glembocki, R. E. Stahlbush, and M. Tomkiewicz, “Bias-Dependent Etching of Silicon in Aqueous KOH”, J. Electrochem. Soc., P132-145, 1985.
[34] C. Y. Chang and S. M. Sze, ULSI technology, McGrow-Hill Companies, 1996.
[35] J. W. Faust and E. D. Palik, “Study of the Orientation Dependent Etching and lnitial Anodization of Si in Aqueous KOH,” J. Electrochem. Soc.: Solid-State Science and Technology, vol.130, No.6, P1413-1420, June 1983.
[36] S. M. Sze, Physics of Semiconductor Devices, Wiley Interscience Publication, United States 1981.
[37] S. Wolf, “Silicon Processing for the VLSI Era volume 2-Process Integration”, Cover design by Roy Montibon, Visionary Ary Resources, INC. 1990.
[38] R. L. Geiger, P. E. Allen and N. R. Strader, VLSI Design Techniques For Analog and Digital Circuit, McGraw-Hill Publishing Company, INC. 1990.
[39] G. N. Lu and G. Sou “A CMOS Op Amp using a regulated-cascode transimpedance building block for high-gain, low-voltage achievement” IEEE, International Symposium on Circuits and System, June 9-12, 1997.
[40] Chong-Chin Yu and Randall, Geiger “Analysis of Random Common-mode Rejection Ratio in Op-Amps” Circuits and Systems, Vol.2 P949-952,1992.
[41] Gianluca Giustolisi, Giuseppe Palmisano and Gaetano Palumbo “CMRR Frequency Response of CMOS Operational Transconductance Amplifier” IEEE Transactions on instrumentation and Measurement, Vol.49,No.1,February 2000.
[42] Gornel Stanescu and Alexandru Hanganu “Symmetrical CMOS Operational Amplifier” Semiconductor Conference, 1995.
[43] A. R. Vazquez and K. Kimura, “Some Circuit Design Techniques for Low-Voltage Analog functional Elements Using Squaring Circuits”, IEEE, Member, P559-565. 1995.
[44] Z. Czarnul, S. Takagi and N. Fujii, “Common-Mode Feedback Circuit with Differential-amplifier,” IEEE Transactions on circuits and system, Vol. 41, No. 3, March 1994.
[45] Z. Wang and W. Guggenbuhl, “Adjustable bi-directional MOS current mirror/amplifier”, IEEE Swiss Federal Institute of Technology, CH-8092, P673-675, 1989.
[46] C. G. Yu and R. L. Geiger, “An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers”, IEEE Journal of solid-state circuits, Vol. 29, No. 5, May 1994.
[47] Yicai Sun, Xinyu Sun, Bing Sun and Qianhou Mehg, “Electric drift of the bridge offset for pressure sensors and its utilization,” Sensors and Actuators A, 58, P249-256, 1997.
[48] 莊達人, VLSI 製造技術,高立圖書有限公司, 87.10.
[49] R. Timothy Edwards, “Microfabrication Lab Profect Report:A Simple CMOS Pressure Sensor”, December, 1994.
[50] Andre Preumont, Vibration Control of Active Structures, Kluwer Academic Publishers, Netherlands 1997.
[51] Ernest Bassous, “Fabrication of Novel Three-Dimensional Microstruvtures by the Anisotropic Etching of (100) and (110) Silicon,” IEEE, Transactions on Electron Devices, Vol.ED-25, No.10, P1178-1185, October 1978.
[52] Hermann Sandmaier and Karl Kuhl, “A Square-Diaphragm Piezoresistive Pressure Sensor with a Rectangular Central Boss for Low-Pressure Range,” IEEE Transations on Electron Devices, Vol.40, No.10, P1754-1759, October 1993.
[53] Kenneth E. Bean, ”Anisotropic Etching of Silicon,” IEEE Transactions on Electron Devices, Vol.ED-25, No.10, P1185-1192, October 1978.
[54] H. E. Elgamel, “Closed-form expressions for the relationships between stress, diaphragm deflection, and resistance change with pressure in silicon piezoresistive pressure sensors,” Sensors and Actuators A, 50, P17-22, 1995.
[54] O. N. Tufte, P. W. Chapman and Donald Long, “Silicon Diffused-Element Piezoresistive Diaphragms,” Journal of Applied Physics, Vol.33, No.11, P3322-3327, November 1962.
[55] Duane Tandeske, Pressure sensors, Marcel Dekker, INC, 1991
[56] Kazuji Yamada, Motohisa Nishihara, Satoshi Shimasa, Masanori Tanabe, Michitaka Shimazoe, and Yoshitaka Matsuoka, “Nonlinearity of the Piezoresistance Effect of p-Type Silicon Diffused Layers,” IEEE Transcations on Electron Devices, Vol.ED-29, No.1, pp. 71-77, January 1982.
[57] Theresa Maudie and Lohn Wertz, “Pressure Sensor Performance and Reliability,” IEEE Industry Applications Magazine, pp. 37-43, May/June 1997.
[58] Cheng Gui Hou, “A Pressure Sensor Made of Two Piezoresistive Bridges,” IEEE Instrumentation and Measurement Technology Conference, P506-512, 1996.
[59] S. K. D. Wise and J. B. Angell, “An IC piezoresistive pressure sensor for biomedical instrumentation,” IEEE Trans., BME-20, P101-109, 1973.
[60] H. Chau and K.Wise, “An ultraminiature solid-state pressure sensor for a cardiovascular catheter”, IEEE Trans. Elec. Dev. Vol. 35(12), p. 2355, 1988.
[61]M. A. de Samber , T.P.L. and Ho-Tran “Evaluation of the fabrication of pressure sensors using bulk micromachining before IC processing”, Sensors and Actuators A 46-47 1995.
[62] Qu Hongwei, Yao Suying, Zhang Rong, Mao Ganru and Zhang Weixin “Polysilicon piezoresistive pressure sensor and temperature compensation” Solid-State and Integrated Circuit Technology, 1998.
[63] J. Dziuban , A. Gorecka-Drzazga and U. Lipowicz, “Silicon pressure sensor for biomedicine applications”, SPIE Vol. 1783 Intenational Conference of Microelectronics, P322.328, 1992,.
[64] G. B. Mukartihal, S. Make and S. Shnha “Innovations in medical instrumentation” IEEE, P137-140, May 1993.
[65] M.Wang and Peter W.Cheung “Non-invasive continuous blood pressure monitoring by the unloading of vascular wall” Proceedings of the Annual International Conference of the IEEE Engineering , vol.5 P1417 -1418, 1989.
[66] M. Kandler, Y.Manoli and W.Mokwa “A CMOS sensor and signal conversion chip for monitoring arterial blood pressure and temperature” IEEE International , P126 -127, 264, 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊