跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李建興
研究生(外文):Jian-Hsing Lee
論文名稱:積體化CMOS放大器焦電薄膜紅外線感測器之製作研究與熱影像陣列之應用
論文名稱(外文):The Characterization and Fabrication of Pyroelectric Infrared Sensor with CMOS Amplifier and Application of Thermal Image Array
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung Cheng Chang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:鈦酸鉛殘餘極化量矯頑電場焦電係數電壓感度特定偵測率
外文關鍵詞:PbTiO3remanent polarizationcoercive electric fieldpyroelectric coefficientvoltage responsespecific detectivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗以射頻磁控濺鍍法沈積焦電性之鈦酸鉛薄膜於差動互補金氧半場效電晶體放大器上,製作積體化之焦電式薄膜紅外線感測元件。利用背面蝕刻技術提昇元件特性,且並依此技術製作焦電式紅外線陣列感測器,以研究熱影像分佈。
經由XRD繞射實驗得知,鈦酸鉛薄膜為鈣鈦礦的結構。特性測量方面,其殘餘極化量為20.8 C/cm2和矯頑電場為79.365 KV/cm。而焦電係數在300℃為5.112×10-4 C/m2K。
在元件特性方面,在單一感測器,於0.3Hz頻率可得最大感測元件電壓感度為600 V/W,元件最大特定偵測率為0.078×107 cmW-1。差動互補金氧半場效電晶體放大器,於0.3Hz頻率可得最大感測元件電壓感度為1178.31 V/W和最大特定偵測率為1414.21 cmW-1。
利用以上的結果,我們製作二維4 ×4 的焦電式紅外線感測元件。此影像陣列已在本實驗中用來作熱影像研究。

In this paper the integrated pyroelectric infrared sensors have been made using a Lead-Titanate (PbTiO3, PT) thin film by RF sputtering method on differential CMOS amplifier. In addition, the back etching technology is used to increase the sensitivity of the device. According as the technology, we can fabricate PIR array to study the distribution of thermal image.
According to the XRD measurement results, the PT thin film is the perovskite structure. From the hysteresis loop, its remanent polarization (Pr) is 20.8 C/cm2 and the coercive electric field is 79.365 KV/cm. Its pyroelectric coefficient is 5.112×10-4 C/m2K at 300℃.
For the PIR performance measurement, the voltage response of the single PIR sensor is 600 VW-1 and the specific detectivity is 0.078×107 cmW-1 at 0.3 Hz. The voltage response of the CMOS PIR sensor is 1178.31 VW-1 and the specific detectivity is 1414.21 cmW-1 at 0.3 Hz.
In addition, we use these results to fabricate 2-D 4x4 element PIR sensor. The sensor has been used for thermal image, test in this experiment.

Chapter 1 Preface.....................1
1-1 Introduction...................1
1-2 Research Motion..................5
1-3 Thesis Outline...................6
Chapter 2 Theories of Pyroelectric Infrared Sensor.......8
2-1 Review of Infrared.................8
2-2 Theory of Pyroelectric Coefficient.........9
2-3 The Pyroelectric Materials.............10
2-4 Pyroelectric Effect.................12
2-5 Structure and Properties of PbTiO3.........13
2-6 Amplifier Performances..............13
2-7 The Performances of PIR Sensor...........16
2-7.1 Responsivity................16
2-7.2 Noises...................19
2-7.3 Noise Equivalent Power (NEP) and Specific Detectivity (D*)..............21
2-7.4 Merit of Figures..............22
Chapter 3 The Fabrication Process of Pyroelectric Infrared Sensor 24
3-1 Fabrication Process of Differential CMOS Pyroelectric Infrared Sensor.................24
3-2 The Process of PIR Sensor Array Fabrication....26
3-3 Detection Layer..............27
Chapter 4 Experimental Measurement Results.........28
4-1 Measurement Results of the Differential CMOS Amplifier 28
4-2 Thin Film Characterization..............29
4-2.1 SEM Photograph ..............29
4-2.2 XRD Result ................29
4-3 Electric Measurement Result..............30
4-3.1 Dielectric Parameters of Thin Film...30
4-3.2 P-E Loop Hysteresis analysis ..........31
4-3.3 Pyroelectric Coefficient Measurement ......33
4-3.4 Figures of Merit Behavior..........33
4-4 The Performance of PIR Sensor ............34
Chapter 5 Application...................36
5-1 Introduction...................36
5-2 Experimental...................36
5-3 Results and Discussion...............37
Chapter 6 Conclusion...................38
Reference........................41

[1] Richard D. Hudson, JR, “infrared system engineering,” John Wiley and Sons, New York, 1969.
[2] E. S. Barr, “The infrared pioneers-II. Macedonia Melloni,” Infrared Phys., 2, 67 (1962)
[3] R. M. Eisberg, Fundamentals of modern physics, John Wiley, New York, (1961)
[4] D. Long and J.L. Schmidt, “Mercury-cadmium telluride and closely related alloys,” in Semiconductors and Semimetals, Academic Press, New York, 5, 175-255 (1970).
[5] W. Parrish et.al., “Characterization of a 32x32 InSb hybrid focal plane”, IEDM Technical Digest, pp. 513-516 (Dec. 1978)
[6] R. A. Wood, “Uncooled thermal imaging with monolithic silicon focal planes,” in Infrared Technology XIX, Proc. SPIE 2020, 322-329 (1993)
[7] B. Cole, R. Horning, B. Johnson, K. Nguyen, P. W. Kruce and M. C. Foute, “High performance infrared detector arrays using thin film microstructure”, Proceeding of the Ninth IEEE International Symposium on Applications of Ferroelectrics, p653-p656, 1995.
[8] C. Ye, T. Temagawa, and D. L. Polla, “Pyroelectric PbTiO3 Thin Films for Microsensor Applications”, Proceedings of the 1991 IEEE International Conference on Rocbotics and Automation Leuven, Beigium, p.904-907, 1991.
[9] S. M. Sze., “Semiconductor Sensor”, Wiley-Interscience Publication, New York, 1994.
[10] W. Y. Chung, T. P. Sun, Y. L. Chin and Y. L. Kao, “Design of Pyroelectric IR Readout Circuit Based on LiTaO3 Detectors”, Circuits and Systems, 1996. ISCAS '96, Connecting the World, 1996 IEEE International Symposium, Atlanta, GA, USA, p. 225-228, 1996.
[1] 傅勝利,”電子材料”, 第七章,金華科技圖書公司印行, 台北
[12] 國立編譯館邱碧秀,”電子陶瓷材料”, 第十章, 徐氏基金會出版, 台北
[13] J. Huang, J. Lian and R. C. Buchanan, “Pyroelectric properties of PZT(90/10) thin film on Pt/Si substrate”, Ferroelectrics, 1996. ISAF '96, Proceedings of the Tenth IEEE International Symposium on Applications of IEEE, East Brunswick, NJ, USA, p.623-626, 1996.
[14] X. D. Quan and S. B. lang, ”Measurement Applications Based on Pyroelectric Properties of Ferroelectric Polymers”, IEEE Transaction on Electrical Insulation, p. 503-516, 1988.
[15] G. Vélu; D. Rèmiens, “Electrical properties of sputtered PZT films on stabilized platinum electrode”, Journal of the European Ceramic Society, Volume 19, Issue 11, p. 2005-2013, 1999.
[16] John David Vincent, “Fundamentals of Infrared Detector Operation & Testing.”, John Wiley & Sons, p. 453-456, 1990.
[17] J. D. Zook and S. T. Liu, “Pyroelectric effects in thin film”, J. Appl. Phys., New, York, Vol. 49, No. 8, p.4604-4606, 1978
[18] 宇左美晶,“感測器應用技術100種”,第一篇,建宏出版社,台北
[19] Wei Ren, Xiaoqing Wu, Liangying Zhang and Xi Yao, “Structure and Property of ferroelectric PbTiO3 Thin Film by Thermal Decomposition of Metallo-Organic Compounds”, Proceeding of 1991 IEEE, p.698-701, 1991.
[20] J. D. Vincent, “Fundamentals of infrared detector operation & testing”, Wiley-Interscience Publication, California, 1990.
[21] E. Socher, O. Degani, Y. Nemirovsky, “Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors”, Sensors and Actuators A, 71 p.107-115, 1998.
[22] M. E. MacDonald, E. N. Grossman, “Niobium microbometers for far-infrared detection”, IEEE transaction on microwave theory and techniques., Ann Arbor, MI, USA, Vol. 43 NO. 4, p.893-896,1995.
[23] Muno Lee, Seongho Bae, “Temperature-induced ” transient noise of pyroelectric thermal detector”, Photo-Optical Instrumentation Engineers, 39(11), 3076-3083, November 2000.
[24] Muno Lee, Seongho Bae, Amar S. Bhalla, “Thermal properties of a pyroelectric-ceramic infrared detector with metallic intermediate layer”, Photo-Optical Instrumentation Engineers, 37(6), 1746-1753, June 1998.
[25] J. Schieferdecker, R. Quad, E. Holzenkämpfer, M, Schulze, “Infrared thermopile sensors with high sensitivity and very low temperature coefficient”, Sensors and Actuators A, 46-47 p.422-427, 1995.
[26] A. Ignatiev, Y. Q. Xu., N. J. Wu, D. Liu, “Pyroelectric, ferroelectric and dielectric properties of Mn and Sb-doped PZT thin films for uncooled IR detectors”, Materials Science and Engineering B, 56 p191-194, 1998.
[27] Y. Chen, H. L. W. Chan and C. L. Choy, “Pyroelectric properties of PbTiO3/P(VDF-TrFE) 0-3 nanocomposite films”, Thin Solid Film, 323 p.270-274, 1998.
[28] R. B. Liu, S. W. Lin, C. F. Qu, C. H. Yao and Y. H. Jin, “Series pyroelectric ceramics used for small area IR detector”, Proceeding of the Ninth IEEE International Symposium on Application of Ferroelectrics, University Park, PA, USA, p.812-814, 1995.
[29] T. Fukuda, H Sato, F. Arai, H. Iwata and K. Itoigawa, “Parallel beam micro sensor/actuator unit using PbTiO3 thin films and its application examples”, Proceedings of the 1998 IEEE International Conference on Robotics & Automation Leuven, Beigium, p.1498-1503, 1998.
[30] G. S. Chung and S. S. Noh, “Fabrication of the Pt microheater using aluminum oxide as a medium layer and its characteristics”, Sensors and Materials, Vol. 10, No. 5, p.251-261, 1998.
[31] H. Banno, N. Sugimoto and T. Hayashi, “Preparation and properties of PZT/PbTiO3/sub3/ceramic composite”, IEEE 9th International Symposium on Electrets (ISE 9) Proceedings, East Brunswick, NJ, USA, p.523-526, 1996.
[32] S. G. Lee and Y. H. Lee, “Dielectric properties of sol-gol derived PZT(40/60)/PZT(60/40) heterolayered thin films”, Thin Solid Films, 353 p.244-248,1999.
[33] C. Ye, T. Tamagawa, and D. L. Polla, “Pyroelectric PbTiO3 thin films for microsensor applications”, Proceeding of the IEEE, vol. 72, No. 8. May 1991
[34] R. C. Ibraim, T. Sakai, T. Nishida, T. Horiuchi, T. Shiosaki and K. Matsushige, ”Fabrication and evaluation of niobium doped lead titanate thin films”, Proceeding of the IEEE, vol. 86, No. 5. January 1996
[35] K. lijima, T. Takeuchi, N. Nagao, R. Takayama and I Ueda, “Preparation and properties of Lanthanum Modified PbTiO3 thin films by rf-magnetron sputtering”, Proceeding of 1995 IEEE, p.53-58, 1995.
[36] B. Ploss and S. Bauer, “Characterization of materials for integrated pyroelectric sensors”, Sensors and Actuators A, 25-27 p.407-411, 1991.
[37] J. C. Gunter, S. K. Streiffer and A. I. Kingon, ”Low temperature preparation of sol-gel PZT thin film for pyroelectric and other integrated devices”, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, East Brunswick, NJ, USA, p.18-21, 1996.
[38] A. V. Shil’nikov, A. V. Sopit, A. I. Burkganovand A. G. Luchaninov, “The dielectric response of electrostrictive (1-x) PMN-xPZT ceramics”, Journal of the European Ceramic Society, 19 p.1295-1297, 1999.
[39] Y. Park, S. M. Jeong, S. Ⅱ Moon, K. W. Jeong, S. Hkim, J. T. Song and J. Yi, “Pt and RuO2 bottom electrode effects on Pb(Zr,Ti)O3 memory capacitors”, Jpn. J. Appl. Phys., Vol. 38, p.6801-6806, 1999.
[40] J. D. Kim, S. Kawagoe, K.Sasaki and T. Hata, “Target for a Pb(Zr,Ti)O3 thin film deposited at a low temperature using a quasi-metallic mode of reactive sputtering”, Jpn. J. Appl. Phys., Vol. 38, p.6882-6886, 1999.
[41] K. Takeuchi, K. Shibata, T. Tanaka, K. Kuroki, S. Nakano and Y. Kuwano, “Modulation-type pyroelectric infrared detector and its application”, Sensors and Actuators A, 40 p.103-109, 1994.
[42] B. Zigon and B. B. Lavrencic, “Pyroelectric thin-film detector performance”, Sensors and Actuators A, 36 p.167-171, 1993.
[43] F. Bauer, J. J. Simonne and L. Audaire, “Ferroelectric copolymer and IR sensor technology applied to obstacle detection”, Proceedings of 1992 IEEE International Symposium on Applications of Ferroelectrics, Greenville, SC, USA, p.27-30, 1992.
[44] D. L. Polla, “Ferroelectric microsensors and microactuators”, Proceedings of 1992 IEEE International Symposium on Applications of Ferroelectrics, Greenville, SC, USA, p.127-133, 1992.
[45] Kulwicki, B.M.; Amin, A.; Beratan, H.R.; Hanson, C.M, “Pyroelectric imaging”, Proceedings of 1992 IEEE International Symposium on Applications of Ferroelectrics, New York, NY, USA, p. 1-10, 30 Aug.-2 Sept. 1992.
[46] Pham, L.; Tjhen, W.; Tamagawa, T.; Polla, D.L, “Vertical integration of pyroelectric detector array and integrated signal processing circuitry”, VLSI Circuits, New York, NY, USA, p. 36-37, June 1992.
[47] Balcerak, R.; Jenkins, D.P, “Uncooled Infrared Focal Plane Arrays”, Engineering in Medicine and Biology Society, p. 2077-2078, 31 Oct.-3 Nov. 1996,.
[48] Pham, L.; Tjhen, W.; Ye, C.; Polla, D.L, “Surface-micromachined pyroelectric infrared imaging array with vertically integrated signal processing circuitry”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE, p. 552-555, July 1994.
[49] Jyh-Jier Ho, Y. K. Fang, K. H. Wu, W. T. Hsieh, C. W. Chu, C. R. Huang, M. S. Ju, and C. P. chang, “A High Sensitivity Lead-Titanate ( ) Pyroelectric Thin-Film Infrared Sensor with Temperature Isolation Improvement Structure”, IEEE electron device letters, vol. 19, NO. 6, June 1998
[50] Okuyama, M, “Microsensors and microactuators using ferroelectric thin films”, Micromechatronics and Human Science, p. 29-34, 1998
[51] Jyh-Jier Ho, Y. K. Fang, W. J. Lee, F. Y. Chen, W. T. Hsieh, S. F. Hsieh, S. F. Ting, M. S. Ju, S. B. Huang, Kun-Hsien Wu, and C. Y. Chen, “The Dynamic Response Analysis of a Pyroelectric Thin-Film Infrared Sensor with Thermal Isolation Improvement Structure”, IEEE transactions on electron devices, vol. 46, NO. 12, December 1999.
[52] Henk Martijn, Urban Halldin, Per Helander and Jan Y. Andersson, “A 640x480 Pixels Readout circuit for IR imaging”, Analog Integrated Circuits and Signal Processing, 22, p. 71-79, June 1999.
[53] Ahmed Amin, “Two dimensional thermal imaging arrays-a low visibility navigation aid”, OCEANS 2000 MTS/IEEE Conference and Exhibition , p. 1549 -1553 vol.3, 2000.
[54] A. G. Chynoweth, “Dynamic method for measuring the pyroelectric ettect with special reference to barium titanate”, J. Appl. Phys. Vol.27, pp78-84, 1955

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top