跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李森陽
研究生(外文):Mori Lee
論文名稱:鈮酸鋰晶體粉末非線性光學研究
論文名稱(外文):The study of nonlinear optics of Lithium Niobate powder at corona poling and H2O
指導教授:吳渝
指導教授(外文):A.Y. Wu
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:67
中文關鍵詞:非線性光學粉末鈮酸鋰二氧化矽玻璃二次諧波產生
外文關鍵詞:nonlinear opticspowderLithium NiobateSiO2 galssSHG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
LiNbO3為非中心對稱離子晶體,具有優異的非線性光學效應,在強雷射光場的作用下,產生各種非線性光學效應。倘若在晶體中加加一些參數,如加純水或改變其電壓,則高階非線性光學 會出現,這對整體的非線性光學效應有增強或減弱的效果。
在這篇論文中,我們研究鈮酸鋰晶體在粉末形態下的非線效應,並以波長為1064μm的Nd:YAG雷射為光源,測量其溫度和倍頻光強度的關係。
實驗結果是用Maker Fringes的技術。這個方法可以在不同的電壓下得到我們所需的Maker Fringes,借此來計算非線性光學係數deff。結果證明 是因為電壓增加而增加,所以在樣品加電壓或加水是可以引導出和增強二次諧波產生。

Lithium Niobate (LiNbO3) is a non-centralsymmetric ionic crystal, which possesses excellent nonlinear optical properties and may be used for generating many nonlinear optical effects when irradiated by high power laser. If we apply an external parameters, such as pure water or change its temperature upon the material under the irradiation of laser, ,the higher order nonlinear optical coefficient will appear, which may enhanced or reduced the total nonlinear optical intensity.
In this thesis, we study the nonlinear effect of LiNbO3 in powder form. We chose a Nd:YAG laser with wavelength 1.064μm as the fundamental light source and measure to obtain the relationship between the temperature and the intensity of the second harmonic generation.
The experimental results were analyzed by using the Maker fringe technique. The method can be used for calculating the nonlinear optical susceptibility deff under different temperatures. Our results showed that could be enhanced by increasing voltage. So by increasing voltage or adding H2O the SHG intensity on the sample can be induced and enhanced.

Acknowledge.…………………………………Ⅰ
Abstract…………………………………………Ⅱ
Table of Content………………………………Ⅲ
List of Figures………………………………Ⅳ
Chapter 1 Introduction
1-1. The structure of LiNbO3……………………………………………2
1-2. Single crystal growth………………………………………………4
1-3. Electric and optical characteristics of LiNbO3………………………5
1-4.ThePurposeandMethodof Study……………………………………6
Chapter 2 Theoretical Analysis
2-1.Linear and Nonlinear Optics…………………………………………8
2-1-1.Original of Nonlinear Optical Phenomenon…………………8
2-1-2.Nonlinear Optical Susceptibility χ………………………10
2-2. Principle of Frequency Doubling…………………………………11
2-3.The Field Induced Second Harmonic Generation…………………15
2-3-1.The Effect of SHG Intensity under dc Electric Field………17
2-3-2.The Effect of SHG Intensity under Corona Poling…18 2-4.Electro-Optic Effect…………………………………………...……21
2-5.Maker Fringes and Calculating for dij Values………………………24
Chapter 3 Experimental Procedure
3-1. Sample preparation ………………………………………………30
3-2. Instrument.………………………………………………………31
3-3. Experimental Setup.……………………………………………32
3-4. Experimental Measuerment.……………………………………33
Chapter 4 Results and Discussion
4-1.NLO by Corona Poling on LiNbO3 powder Form………………38
4-2. NLO Effect by Adding water on LiNbO3 Power Form…………42
Chapter 5 Conclusions
References………………………………………………………47

[1] J. R. Carruthers, G. E. Peterson and M. Grasso, Journal of Applied Physics, 42, 1846 (1971).
[2] K. Nassau, H.J. Levinstein and G.M. Loiacono, J. Phys. Chem. Solids, 27, 983 (1966).
[3] S. C. Abrahams, W. C. hamilton and J. L. Bernstein, Jounal of Phys. Chem. Solids, 27, 997 (1966); S. C. Abrahams, W. C. Hamilton and J. M. Reddy, J. Phys. Chem. Solids, 27, 1013 (1966); S. C. Abrahams, H. J. Levinstein and J. M. Reddy, J. Phys. Chem. Solids, 27, 1019 (1966).
[4] S. Miyazawa and H. Iwasaki, J. Cryst. Growth, 10, 1846 (1971).
[5] R.A. Myers, “Large Second-Order Nonlinearity in Amorphous SiO2 Using Temperature/Electric-Field Poling.” Dissertation, The University of New Mexico, 1995.
[6] Amnon Yariv and Pochi Yeh, “Optical wave in crystal”, Chapter 7 & 12, A Wiley-Interscience Publication, 1983.
[7] Schiling G., Evnes. W. E., Schwentner. N., “Third harmonic international conference on indium phosphide related materials”, pp.602-605 (1996).
[8] 肖定全, “晶體物理學”, 四川大學出版社, 1989.
[9] J. Wilson and J.F.B Hawkes, “Optoelectronics”, p.104 (1989).
[10] K. Kato, “Second-harmonic and sum-frequency generation in ”, IEEE Journal of Qunatum Electronics, 30, 881 (1994).
[11] R. Normandin, and G. I. Stegeman, “Nondegenerate four-wave mixing in integrated optic”, Optics Letters, 4, 58 (1979).
[12] Xing-long Wu, Ming-sheng Zhang, and Feng Yan, “Raman spectroscopic studies of proton-exchanged crystals”, Journal of Applied Physics, 78,1953 (1995).
[13] Ammnon Yariv and Pochi Yeh, “Optical Waves in Crystals”, p516 (1984).
[14] L.L. Kulyuk, D. A. Shutov, and E. E. Strumban, “Second-harmonic generation by interface: influence of the oxide layer”, 8 ,1766 (1991).
[15] 彭江得, “光電子技術基礎”, 儒林圖書公司,第二章 (1993).
[16] N.Bloembergen, “Nonlinear Optics”, Benjamin, New York, (1965).
[17] D. A. Kleinman. “Nonlinear dielectric polarization in optical media”, Physical Review, 126,1977 (1962).
[18] R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, 16, 1732 (1991).
[19] CH. Bosshard, G. Knopfle, P. Pretre, and P. Gunter, “Second-order polarizabilities of nitropyridine derivativtives determined with electric-field-induced second-harmonic generation and a solvatochromic method: A comparative study”, Journal of Applied Physics, 71 ,1594 (1992) .
[20] David Statman and James A. Georges, “Charge dynamics and poling in glass waveguides”, Journal of Applied Physics, 80, 654 (1996).
[21] M. Ozaki, K. Myojin, and S. Uto, “Field-induced second-harmonic generation in Cholesteric liquid crystal”, Japanese Journal of Applied Physics, 34, 628 (1995) .
[22] M. Utsumi, T. Gotou and K. Daino, “Electrically controlled second-harmonic-generation in feroelectric liquid crystal”, Journal of Applied Physics, 20, 2369 (1991).
[23] A. Mukherjee, S.R.J. Brueck and A.Y. Wu, “Electric field induced second harmonic generation in PLZT”, Optics Communications, 76, 220 (1990).
[24] H. Kishida, T. Hasegawa and Y. Iwasa, “Electric-field-induced second harmonic generation mediated by one-dimensional excitons in polysilanes”, Physical Review B, 50, 7786 (1994).
[25] Hilary L. Hampsch and John M. Torkelson, “Second harmonic in corona poled, doped polymer films as a function of corona processing”, Journal of Applied Physics, 67, 1037 (1990).
[26] J.P. Stagg, “Drift mobilities of and ions in films”, Applied Physics Letters, 31, 532 (1977).
[27] E.H. Snow and M.E. Dumesnil, “Space-charge polarization in glass films” , Journal of Applied Physics, 37, 2123 (1966).
[28] A. Okada, K. Ishii, K. Mito and K. Sasaki, “Second-order optical nonlinearity in corona-poled glass films”, Journal of Applied Physics , 74, 531 (1993).
[29] P.G. Kazansky and P. St. J. Russel, “Thermally poled glass : frozen-in electric field or oriented dipoles?”, Optics Communications, 110, 611 (1994).
[30] H. Takebe, P.G. Kazansky and P. St. J. Russell, “Effect of poling conditions on second-harmonic generation in fused silica”, Optics Letters, 21, 468 (1996).
[31] A. Le Calvez, E. Freysz and A. Ducasse, “Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica”, Optics Letters, 22, 1547 (1997).
[32] R.A. Myers, “Large second-order nonlinearity in amorphous using temperature/electric-field poling”, The University of New Mexico (1995).
[33] R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, 16, 1732 (1991).
[34] Hiroyuki Nasu, Hideki Okamoto, Kiyoshi Kurachi and Kanichi Kamiya, “Second-harmonic generation from electrically poled glasses: effects of OH concentration, defects and poling conditions”, Journal of Optical Society America B, 12, 644 (1995).
[35] H. Takebe, P.G. Kazansky and P. St. J. Russell, “Effect of poling conditions on second-harmonic generation in fused silica”, Optics Letters, 21, 468 (1996).
[36] 莊達人, “VLSI製造技術”, 高立圖書有限公司, p.268 (1998).
[37] C.G. Bethea, “Electric field induced second harmonic generation in glass”, Applied Optics, 14, 2435 (1975).
[38] Y. R. Shen, “The principles of nonlinear optic”, John Wiley & Sons (1984).
[39] P. D. Maker, R.W. Terhune, M. Nisenoff and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic”, Physical Review Letters, 8, 21 (1962).
[40] Robert C. Miller, “Optical second harmonic generation in piezoelectric crystals”, Applied Physics Letters, 5, 17 (1964).
[41] J. Jerphagnon and S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals”, Journal of Applied Physics, 41, 1667 (1970).
[42] Ammnon Yariv and Pochi Yeh, “Optical Waves in Crystals”, p.513
(1983).
[43] Duan Feng, Nai-Ben Ming-Fen Hong, Yong-Shun Yang, Jin-song Zhu, Zhen Yang, and Ye-Ning Wang,”Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains”, Applied Physics Letters, 37, 1 (1980).
[44] 汪建民主編, ‘材料分析’ 第三章, 初版, 中國材料科學學會
[45] Ch. Booshard, K. Shutter, Ph. Pretre, J. Huulliger, M. Florsheimer, P. Kaatz, and P. Gunter , Organic Nonlinear Optical Materials , in the series Advantages in Nonlinear Opitcs, eds. F. Kajzar and A. F. Garito(Gorden and Bench Publishers SA, Switzerland, 1995) pp.105-137
[46] J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667-1681(1970)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊