跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/15 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政宏
研究生(外文):CHENG-HUNG LIN
論文名稱:軸繞電子層於多葉片導波管內所激發之模態分析
論文名稱(外文):Excitation of multivane waveguide modes by a thin axis encircling E-layer
指導教授:程光蛟
指導教授(外文):KWONG-KAU TIONG
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:導波管電子層
外文關鍵詞:waveguideE-layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用相對論電子束來產生高功率微波的技術,對於在高功率微波雷達、迴旋共振加速電漿融合反應器以及基本物理的粒子加速研究等等之應用上有很大的發揮。
在眾多的微波元件中,電子迴旋管已成為近代微波源較佳的選擇,其中磁旋管為最廣泛應用的元件之一。而一般的電子迴旋管操作在基本模態下,要獲得較高頻率微波時,需要有相當高的外加磁場。後來有學者在磁旋管的操作上做了改變,提出所謂的Peniotron,它能以較低的外加磁場來激發出高功率高效率的高階諧波。
在愈高階的諧波模態下,因為電磁場愈集中在導波管壁以及有更高程度的模態競爭,所以在較高階模態的操作效率將大大的降低。為了克服這個問題,可以使用高能迴旋電子束來增大電子的有限 Larmour 半徑,以使之與較高模態場的交互作用更有效率。其中有效且可行的方法是使用一種為 cusp-field結構的磁場,所產生的軸繞旋轉電子束之系統。此外,我們利用能提昇高階模態成份的多葉片圓柱形導波管結構來改善迴旋電子與高階諧波模態的交互作用。
於本論文中,我們討論N個槽的多葉片圓柱形導波管結構,分別操作在Gyrotron與Peniotron中,TE、TM兩者模態之計算。藉由數值方法分析在 模態時,葉片數N = 8、10、12、16、24與在 模態時,葉片數N = 16、20、24、32、48之操作,找出其最佳參數值。

The technology to produce high-power microwave by using the theory of the relativistic electrons spans a wide range of application to high-power microwave radar system, cyclotron resonance heating of plasma for fusion reactor, acceleration for basic research, etc.
In many microwave devices, electron cyclotron tube has become the choice for microwave source over the years. And the Gyrotron is applied widely .When they are operated at the fundamental mode, a rather highly applied magnetic field is required at high frequency. Later scholars make some changes about operating the Gyrotron and named it Peniotron. It can produce higher harmonics with high power and high efficiency while enabling the lowering of the required magnetic field.
At higher harmonic, because of the increasing concentration of the mode fields near the wave-guide wall and larger degree of mode competition, the operation efficiency at higher order modes lowers significantly. To overcome this problem, we may use high energy cyclotron electron beam to expand the electron Larmour radius so that the interaction with the higher mode fields can be optimized. A more effective means can be implemented by using an axis encircling electron beam generated by injecting electron beam in a cusp-magnetic field. Then we use multivane cylindrical waveguide structure which can promote higher harmonic to improve the interaction between cyclotron electron beam and higher harmonics.
In this work, we have discussed an N-slotted multivane cylindrical wave-guide structure working in Gyrotron and Peniotron , and compute the modes of TE and TM. We have numerically computed the optimized parameters for number of vanes N = 8、10、12、16、24 at mode and for number of vanes N = 16、20、24、32、48 at mode operations.

目 錄
第一章 緒論…….……...……………………………1
1-1 簡介…...……………………………………………….…...1
1-2 文獻回顧…...…………………………….………………...1
1-3 研究動機與目的…...………………………………………5
1-4 論文結構…..………………………………………….……6
第二章 理論分析……………………………………..7
2-1 群聚效應……...……………………………………………7
2-2 相對論電子束與負質量不穩定…...………….….………..8
第三章 公式推導……...………………...…………..12
3-1 基本方程式………………………………………………12
3-1.1 TE mode…...………………………………………...14
3-1.2 TM mode…………………………………………….21
3-2 散射關係式與能量密度比……………………………..26
3-2.1 散射關係式…………………………………………26
3-2.2 能量密度比………………………………………....29
第四章 數值分析與討論…………………………..33
4-1 前言……………………………………………………….33
4-2 2 模態與 模態…………………..……………………..34
4-3 結構分析……………………………………………….…35
4-3.1 Gyrotron……………………………………..………35
4-3.2 Penioitron..……………………………..……….….39
第五章 結論.………………………………………79
參考文獻…..……………………………………….….80

參考文獻
[1] P. Sprangle and W. M. Manheimer, “ Coherent Nonlinear Theory of a Cyclotron
Instability ”, Phys. Fluids, vol. 18, No. 2, pp. 224-230, Feb. 1975.
[2] P. Sprangle and A. T. Drobot, “ The Linear and Self-Consistent Nonlinear
Theory of the Electron Cyclotron Maser Instability ”, IEEE Tram. MTT, vol.
1777-25, No. 6, pp. 528-544, June 1977.
[3] K. R. Chu and J. L. Hirschfield, “ Comparative Study of the Axial and
Azimuthal Bunchmg Mechanisms in Electromagnetic Cyclotron Instabilities ”,
Phys. Fluids. vol. 21, No. 3, pp. 461-466, March 1978.
[4] V. A. Flyagin, A. V. Gaponov, M. I. Petelin and V. K. Yulpatov, “ The
Gyrotron ”, IEEE Transactions on Microwave Theory and Techniques, vol. 25, No. 6, June 1977.
[5] K. Yamanouchi, S. Ono and Y. Shibata, “ Cyclotron Fast Wave Tube. The
Double Ridges Traveling Wave Peniotron ”, Proc. 5th Int. Conf. on Microwave
Tubes, pp. 96-102, 1964.
[6] Y.Y.Lau, “ Theory of a Low Magnetic Field Gyrotron —Gyromagnetron ”, Int. J.
Infrared and Millimeter Waves, vol. 3, no. 5, pp. 619-642, 1982.
[7] G. Dohler and W. Friz, “ Physics and Classification of Fast-Wave Devices ”, Int.
J. Electronics, vol. 55, No. 4, pp.505-521, 1983.
[8] R. Q. Twiss, “ Radiation Transfer and the Possibility of Negative Absorption in
Radio Astronomy ”, Aust. J. Phys., vol. 11, pp.564-579, 1958.
[9] K. R. Chu, “ Theory of Electron Cyclotron Maser Interaction in Cavity at the
Harmonic Frequencies ”, Phys. Fluids, vol. 21, pp.2354-2364, 1978.
[10] Kwong-Kau Tiong, “ Theory and Experiment of a Cusptron Microwave
Oscillator ”, Disseration, January 1990.
[11] J. Schneider, “ Stimulated Emission of Radiation by Relativistic Electrons in a
Magnetic Field ”, Phys, Rev. Lett, Vol. 2, pp. 504-505, 1959.
[12] A.V. Gaponov, “ Interaction Between Electron Flux and Electromagnetic Waves
in Waveguides ”, lzv. VUZ., Radioflzika, vol. 2, pp. 450-462.1959.
[13] R.H.Pantell, “ Backward Wave Oscillation in an Unloaded Waveguide ”, Proc.
IRE, vol. 47, p. 1146, 1959.
[14] J. L. Hirshfield and V. L. Granatstein, “ The Electron Cyclotron Maser-
Anhistrorical Survey ”, IEEE Trans. MTT, vol. MTT-25, pp. 522-527, june
1977.
[15] W. Narnkung, J. Y. Cheo, H. S. Uhm, and V. Ayres, “ Operation of Cusptron
Oscillator for Sixth Harmonic Frequency Generation with Six-vane Circuit ”,
Proceeding Particle Accelerator Conf., March 1987.
[16] W. W. Destler, R. L. Weiler, and C. D. Striffler, “ High-Power Microwave
Generation from a Rotating E-Layer in a Magnetron-Type Waveguide ”, Appl. Phys. Lett., vol. 38, no. 7, pp. 570-572, April 1981.
[17] S. P. Kuo, S. C. Kuo, B. R. Cheo, and M. C. Lee, “ Analysis of the Harmonic
Gyrotron Traveling Wave Amplifier ”, Int. J. Infrared and Millimeter Waves,
vol. 7, no. 4, pp. 635-651, 1986.
[18] G. Dohler, “ AC Space Charge Effects in Gyrotrons ”, Int. J. Electronics, vol.
56, No. 4, pp.481-506.
[19] G. Dohler, D. Gallagher and R. Moats, “ The Peniotron:A Fast Wave Device for
Efficient High Power Mm-Wave Generation ”, I.E.D.M. Tech. Dig., pp.400-
403, 1978.
[20] S. Ono, K. Tsutaki and T. Kageyama, “ Proposal of a High Efficiency Tube for
High Power Millimeter or Submillimetre Wave Generation:The gyro-
peniotron ”, Int. J. Electronics, Vol. 56, No.4, pp.507-519, 1984.
[21] Q. F. Li and J. L. Hirshfield, “ Gyrotron Traveling Wave Amplifier with Out-
Ridged Waveguide ”, Int. J. Infared and Millimeter Waves, vol. 7, no. 1, pp.
71-97, 1986.
[22] V. L. Bratman, 0. Dumbrajs, P. Nikkola, and A. V. Savilov, “ Space Charge
Effects as a Source of Electron Energy Spread and Efficiency Degradation in
Gyrotrons ”, IEEE Trans. Plasma Science, vol. 28, no. 3, pp. 633-637, June
2000.
[23] 羅維德, “ 迴旋電子在多葉片介質導波管模態中的共振交互作用 ”, 國立
台灣海洋大學電機工程學系碩士學位論文,1998.
[24] Y. Y. Lau and M. J. Baird, “ Cyclotron Mmaser Instability as a Resonant Limit
of Space Charge Wave ”, Int. J. Electronics, vol. 51, no. 4, pp. 331-340, 1981.
[25] 蔡旻宏, “ 多葉片圓柱型導波管結構操作在Peniotron模態下之特性行為
分析 ”, 國立台灣海洋大學電機工程學系碩士學位論文,2001.
[26] Akira ishimaru, “ Electromagnetic Wave Propagation, Radiation, and Scattering
”, Englewood Cliffs, New Jersey: Prentice Hall, 1991.
[27] W. Namkung, “ Observation of Microwave Generation from a Cusptron Device
”, Phys. Fluids, vol. 27, No. 20, pp.329-330, 1984.
[28] V. Selvarajan and K. Rajendran, “ Single-Particle Trajectories in a Cusped
Magnetic Field ”, IEEE Transactions on Plasma Science, vol. 19, No. 3,June
1991.
[29] K. K. Tiong, S. P. Kuo and S. C. Kuo, “Optimization of the Design of Cusptron
Microwave Oscillators”, Int. J. Electronics, Vol. 65, No.3, pp.397-408, 1988.
[30] J. Kim and S. P. Kuo, “Peniotron Mode Radiation of a 16 Slotted Cusptron
Oscillator”, IEEE International Conference on, pp.111, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top