跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張世宏
研究生(外文):SHIH-HUNG CHANG
論文名稱:二硒化鉬層狀化合物半導體之光電特性研究
論文名稱(外文):A Study of the Optical and Electrical Properties of MoSe2 Layered Crystals
指導教授:程光蛟
指導教授(外文):KWONG-KAU TIONG
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:66
中文關鍵詞:二硒化鉬層狀化合物半導體壓電調制
外文關鍵詞:layer structurepiezoreflectanceHall effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文主要以Br2作為傳導劑,利用化學氣相傳導法來成長過渡金屬
Mo1-xNbxSe2層狀單晶結構,並對此單晶結構、電學及光學性質加以研究及探討。在X-ray繞射分析,確定Mo1-xNbxSe2單晶均為六方體結構。電阻率量測之結果,電阻率隨溫度升高而減小,而樣品的遷移率及載子濃度等特性可藉霍爾量測實驗求得。壓電調制反射光譜量測,研究摻雜不同濃度比例的材料之激子躍遷特性,對量測結果以勞倫茲線形吻合獲知所有樣品在各溫度下激子躍遷能量,並利用Varshni和Bose-Einstein關係式吻合隨溫度變化的激子躍遷訊號,分析Mo1-xNbxSe2的激子躍遷與能帶分裂隨溫度變化的情形。最後以聲子耦合模型吻合其各別的展寬參數,討論其材料特性與長晶品質。而光吸收量測結果,顯示MoSe2單晶為間接能隙半導體,且能隙會隨著摻雜Nb的比例增大,而往低能隙的方向移動。

Abstract
Layer single crystals of Mo1-xNbxSe2 have been grown by chemical vapor transport method using Br2 as a transport agent. Detailed characterizations of the material are carried out by using X-ray diffraction, piezoreflectance, absorption, resistivity and Hall effect measurements. X-ray analysis confirms that Mo1-xNbxSe2 are found to crystallize in the hexagonal layered structure. The carrier concentration and carrier type can be obtained directly from the Hall measurement. Optical properties of Mo1-xNbxSe2 were studied via piezoreflectance ( PzR ) measurement at different temperature . The temperature dependence of the exciton transition energy and broadening parameters we analyzed in teams of Varshni and Bose-Einstein expression. The optical absorption measurements reveal that niobium-doped MoSe2 is indirect energy gap semiconductor. The energy gap shows a red shift by increasing the doping concentrations.

目錄
第一章 緒論…………………………………………………1
第二章 晶成長及結構分析…………………………………5
2.1 化合物合成………………………………………………5
2.2 單晶成長方法……………………………………………9
2.3 晶體結構分析……………………………………………9
2.3.1 X-光繞射儀與粉末繞射原理……………………………10
2.4 實驗結果……………………………………………………11
第三章 特性量測及分析 ……………………………………13
3.1 電特性量測系統……………………………………………13
3.1.1 系統儀器簡介……………………………………………14
3.2 樣品的準備與處理…………………………………………15
3.3 理論依據……………………………………………………16
3.3.1 電阻率量測………………………………………………16
3.3.2 霍爾量測…………………………………………………17
3.4 實驗結果……………………………………………………18
第四章 學量測分析 …………………………………………23
4.1 調制光譜與介電函數之關係………………………………23
4.2 光譜系統概述………………………………………………26
4.3 壓電調制裝置………………………………………………29
4.4 結果與討論…………………………………………………30
4.4.1 PzR的激子躍遷訊號及半高寬度參數之吻合……………30
4.4.2 隨溫度變化之Eex、ΓA及ΓB……………………………36
第五章 收光譜量測 ……………………………………………48
5.1 基本吸收……………………………………………………48
5.1.1 直接躍遷…………………………………………………49
5.1.2 間接躍遷…………………………………………………50
5.1.3 穿透譜線…………………………………………………53
5.2 光吸收量測系統……………………………………………55
5.3 實驗結果……………………………………………………56
第六章 結論……………………………………………………61
參考文獻 …………………………………………………………63

參考文獻
[1] Beal A. R., Knights J. C. and Liang W. Y. (1972) J. Phys. C : Solid State Phys. 5, 3540.
[2] J. M. Martin, C. Donnet and T. L. Mogen, “Superlubricity of Molybdenum Disulfide”, Phys. Rev. B, Vol. 48, No. 14, pp.10583-10586 (1993).
[3] K. K. Tiong, P. C. Liao, C. H. Ho, Y. S. Huang, “Growth and Characterization of Rhenium-doped MoS2 Single Crystals”, J. Crystal Growth, Vol.205, pp. 543-547 (1999).
[4] H. Tributsch, “Layer-type Transition Metal Dichalcogenides a New Class of Electrodes for Electrochemical Solar Cells”, Hauptversammiung der Deutschen Bunsen-Gesellschaft, Vol.4, pp. 361-368 (1978).
[5] F. J. Disalvo, R. Schwall, T. H. Geball, F. R. Gamble and J. H, Osiecki, Phys. Rev. Lett., 27, 310 (1971).
[6] S. Cincotti and J. R. Rabe, “Seft-assembled Alkane Mono-layer on MoSe2 and MoS2”, Appl. Phys. Lett, Vol. 62, pp. 3531-3533 (1993).
[7] R. B. Somoano and A. Rembaum, “Superconductivity in Intercalated Molybdenum Disufide”, Phys. Rev. Lett., Vol. 27, pp. 402-404 (1971).
[8] R. Coehoorn, C. Haas and R. A. dc Groot, “Electronic Structure of MoSe2, MoS2, and Wse2. II. The Nature of the Optical Band Gaps”, Phys. Rev. B, Vol. 35, N0. 12, pp. 6203-6206 (1987).
[9] A.M. Goldberg, A. R. Beal, F. A. Levy and E. A. Davis, “The Low-Energy Edge in 2H-MoS2 and 2H-MoSe2”, Philos. Mag., Vol.32, pp. 367-378 (1975).
[10] Weiser G, Surf. Sci. 37, 175 (1973).
[11] Tomohiko Mori, Koichiro Saiki and Atsushi Koma, “Atom Intensity Variation in the Scanning Tunneling Microscope Image Mixed Crystals of Transition Metal Dichalcogenides”, Jpn. J. Appl. Phys. Vol. 31, pp. L 1370-L 1372 (1992).
[12] J. B. Legma, G. Vacquier, H. Traore and A. Casalot, “Improvement in Photocurrent with n-type Niobium and Rhenium-doped Molybdenum and Tungsten Diselenide Single Crystals”, Materials Science and Engineering, B8, pp.167-174 (1991).
[13] F. Levy, Ph. Schmid and H. Berger, “Electrical Properties of Layered MoSe2 Single Crystals Doped with Nb and Re”, Philosophical Magazine, Vol. 34, No. 6, pp. 1129-1139 (1976).
[14] S. H. E1-Mahalawy B. L., Evans, “Temperature Dependence of the Electrical Conductivity and Hall Coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2”, phys. Stat. Sol. (b) 79, pp. 713-722 (1977).
[15] D. Yang and R. F. Frindt, “Powder X-ray Diffraction of Two-dimensional Materials,” J. Appl. Phys. 79, pp.2376-2385 (1996).
[16] M. K. Agarwal, P. D. Patel and S. K. Gupta, “ Effect of Doping MoSe2 Single Crystals with Rhenium”, Jurnal of Crystal Growth 129 , pp. 559-562 (1993)
[17] M. K. Agarwal, P. D. Patel and O. Vijayan, “Electrical Studies on (Mo/W)Se2 Single Crystals:II. Temperature Dependence of Hall Effect )”. Phys. Stat. Sol (a) 78, pp.469-473 (1983).
[18] Cardona, M., Modulation Spectroscopy, Academic, New York, (1969).
[19] J. I. Pankove, “Optical Processes in Semiconductors. Dover, New York”, pp. 34-47 (1975).
[20] A. R Beal, J. C. Knights and W. Y. Liang, “Transmission Spectra of Some Transition Metal Dichalcogenides:II. Group VIA:Trigonal Prismatic Coordination”, J.Phys. C:Solid State Phys., Vol. 5, pp. 3540-3551 (1972).
[21] C. H. Ho, P. C. Liao, and Y. S. Huang, “Temperature Dependence of Broadening Parameters of the Band-Edge Excitons of ReS2 and ReSe2,” Phys. Rev. B, Vol.55, pp.15608-15613 (1997).
[22] C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao and K. K. Tiong, “Temperature Dependence of energy and the Band-Edge Excitons of Mo1-xWxS2 Single Crystals”, J. Phys.:Condens. Matter 10, pp. 9317-9328 (1998).
[23] K. K. Tiong and T. S. Shou, “Anisotropic Electrolyte Electroreflectance Study of Rhenium-doped MoS2”, J. Phys. Matter 12 , pp.5043-5052 (2000).
[24] K. k. Kam, C. L. Chang and D. W. Lynch,Fundamental, “Absorption Edges and Indirect Band Gaps in W1-xMoXSe2 (0≦x≦1)”, J. Phys. C: Solid State Phys., Vol. 17, pp. 4031-4040 (1984).
[25] B. L. Evans and P. A. Young, “Optical Absorption and Dispersion in Molybdenum Disulphide”, Proc. R. Sco. A , Vol. 284, pp. 402-422 (1965).
[26] A. M. Goldberg, A. R. Beal, F. A. Levy and E. A. Davis, “The Low-energy Absorption Edge in 2H-MoS2 and 2H-MoSe2”, Physics and Chemistry of Solid, Cavendish Laboratory ,Cambridge, England, pp 367-378 (1975).
[27] Y. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors”, Physica, Vol. 34, pp.149-154 (1967).
[28] P. Lautenschlager, M. Garriga and M.Cardona, “Temperature Dependence of the Interband Critical-Point Parameter of InP”, Phys. Rev. B, Vol. 36, pp. 4813-4820 (1987).
[29] H. Mathieu, J. Allegre, and B. GIL, “Piezomodulation Spectroscopy: A Powerful Investigation Tool of Heterostructures,” Phys. Rev. B, Vol. 43, pp. 2218-2227 (1991).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top