跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝文絢
研究生(外文):Wen-Hsuan Hsieh
論文名稱:應用均質熔合於快速影像分割
論文名稱(外文):Fast Image Segmentation via Homogeneity Fusion
指導教授:王榮華
指導教授(外文):Jung-Hua Wang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:43
中文關鍵詞:影像分割特徵擷取均質熔合分水嶺分析區域熔合
外文關鍵詞:Image SegmenattionFeature ExtractionHomogeneity FusionWatershed AnalysisRegion Merging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文提出一種快速影像分割的方法,稱之為WA-HF,其結合了分水嶺分析(WA)與一個在特徵空間上均質熔合演算法(HF) 。首先,分水嶺演算法產生一組流域(區域),接著,均質熔合演算法根據鄰接的區域同步調整一個事先定義區域特徵。在特徵上相似的區域被推測屬於同一個物件而傾向於彼此熔合。特徵熔合的一個重要特性是:這樣的一種互融過程是以平行的形式同時發生在不同區域的子集。實際上,這種在特徵空間上集體式的調整創造了在鄰近區域的均質熔合。在均質熔合之後,再用分水嶺演算法重新定義區域的邊界,被熔合的區域將會被分水嶺演算法分割為同一個區域。這個反覆性的操作(即,WA-HF稱之為一次iteration)在連續兩個iteration的區域數量相同時停止。由於其平行處理的特性,均質熔合提供了一個很高的可行性以實現平行硬體。比較習知分割技術的結果顯示了WA-HF能達到更有效率的計算與更精確的分割結果。

We present an approach for fast image segmentation, called WA-HF, which incorporates Watershed Analysis (WA) and a novel algorithm Homogeneity Fusion (HF) in feature space. WA generates a set of catchment basins (i.e., regions), followed by HF that simultaneously tunes a pre-specified feature of each region by referring to its adjacent regions. Similar (in feature) regions presumably belonging to an object tends to blend into each other. A vital attribute of HF is that such blending occurs in parallel fashion within various subsets of regions. In effect, this collective tuning in feature space creates a homogeneity fusion among adjacent regions. After HF, WA is invoked again to redefine the boundaries of regions. Blended regions are likely to be segmented into a region by WA in the next iteration. The iterative operation terminates when the numbers of regions in two successive iterations are identical. HF provides great potentiality for a parallel hardware implementation. Comparisons results show that WA-HF is computationally efficient and able to achieve accurate segmentation.

CHAPTER 1 INTRODUCTION 1
1-1. REVIEW OF IMAGE SEGMENTATION 1
1-2. COMPARISON OF CONVENTIONAL AND PROPOSED MERGING ALGORITHM 5
1-3. OUTLINE OF THE THESIS 9
CHAPTER 2 WATERSHED ANALYSIS 10
2-1. BASICS OF WATERSHED ANALYSIS 10
2-2. VIRIOUS IMPLEMENTATIONS OF WATERSHED ANALYSIS 12
CHAPTER 3 THE PROPOSED SEGMENTATION METHODS 19
3-1 CONVENTIONAL MERGING ALGORITHM 19
3-2. HOMOGENEITY FUSION 19
3-3. REMOVING FALSE CONTOUR 25
3-4. COLOR IMAGE SEGMENTATION BY WA-HF 29
CHAPTER 4 CHARACTERIZING HF 34
4-1 GRADIENT THRESHOLDING 34
4-2 REPEATED HF 34
4-3. DYNAMIC  PARAMETER 37
4-4. SIMULATION OF PARALLEL HF 38
CHAPTER 5 CONCLUSIONS AND DISCUSSIONS 39
REFERENCE 41

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, Reading, Mass, 1993.
[2] K. Mardia and T. Hainsworth, “A spatial thresholding method for image egmentation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, pp. 919-927, Nov. 1988.
[3] W. Oh and W. B. Lindquist, “Image thresholding by indicator kriging,” IEEE Trans. Pattern Anal. Machine Intell., vol. 21, pp. 590-602, Jul. 1999.
[4] R. M. Haralick, “Digital step edges from zero crossing of second directional derivatives,” IEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 58-68, 1984.
[5] J. F. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 8, pp. 679-698, 1986.
[6] J. Basak, B. Chanda, and D. D. Majumder, “On edge and line linking with connectionist models,” IEEE Trans. System, Man, and Cybernetics, vol. 24, pp. 413-428, Mar. 1994.
[7] S. A. Hojjatoleslami and J. Kittler, “Region growing: a new approach,” IEEE Trans. Image Processing, vol. 7, pp.1079-1084, Jul. 1998.
[8] T. Pavlidis and Y. Liow, “Integrating region growing and edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 225-233, Mar. 1990.
[9] L. D. Griffin, A. C. F. Colchester, and G. P. Robinson, “Scale and segmentation of grey-level images using maximum gradient paths,” Image Vis. Comput., vol. 10, pp. 389-402, 1992.
[10] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Machine. Intell., vol. 13, pp. 583-598, June 1991.
[11] J. M. Gauch and S. M. Pizer, “Multiresolution analysis of ridges and valleys in gray-scale images,” IEEE Trans. Pattern Anal. Machine. Intell., vol. 15, pp. 635-646, June 1993.
[12] Y. W. Yu, “Image segmentation Based on improved watershed technique,” Master Thesis, National Taiwan Ocean University, Jun. 2000.
[13] K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, “Hybrid image segmentation using watersheds and fast region merging,” IEEE Trans. Image Processing, vol. 7, no. 12, pp. 1684-1699, Dec. 1998.
[14] S. A. Hojjatoleslami, and J. Kittler, ‘Region Growing: A New Approach’, IEEE Trans. Image Processing, vol. 7, no. 7, pp. 1079-1084, Jul. 1998.
[15] P. Salembier, F. Marques, , ‘Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services’, IEEE Trans. Circuits and Systems for Video Technology, vol. 9, no. 8, pp.1147-1169, Dec. 1999.
[16] T. Pavlidis, , Structural Pattern Recognition, New York: Springer, 1980.
[17] S. Beucher, and C. Lantuejoul, ‘Use of watersheds in contour detection’, Proc. Int. Conf. Image Processing, Real-Time Edge and Motion Detection/Estimation. pp. 17-21, Sep. 1979.
[18] D. Hagyard, M. Razaz, and P. Atkin, , ‘Analysis of watershed algorithms for greyscale images’, IEEE Proc. Int. Conf. Image Processing, pp. 41-44, 1996.
[19] V. Torry, T.Poggio, ‘On edge detection’, IEEE Trans. Pattern Anal. Mechine. Intell., vol. PAMI-8, pp 147-163, Mar, 1986.
[20] R. Deriche, ‘Using Canny’s criteria to derive a recursively implemented optimal edge detector’, Int. J. Comput. Vis., pp 167-187, 1987.
[21] A. Tremeau, and P. Colontoni, ‘Regions Adjacency Graph Applied to Color Image Segmentation’, IEEE Trans. Image Processing, vol. 9, no. 4, pp 735-744, Apr. 2000.
[22] K. Haris, and M. Strintzis, ‘Segmentation of 3D MR image sequences’, in Proc. Intnl.WorkShop on Stereoscopic and Three Dimensional Imaging, Santorini, Greece, pp 270-274, Sep. 1995.
[23] G. Earl, J. Richar, J. Steve, Pattern Recognition and Image Analysis, 1996.
[24] M. Matheron, Random Seys and Integral Geometry, New York: Wiley, 1975.
[25] J. Serra, Image Analysis and Mathematical Morphology, London: Academic, 1982.
[26] S. R Sternberg, ‘Grayscale morphology’, Comput. Vision, Graphics, Image Processing, pp. 333-355, 1986.
[27] T. J. Paul, ‘Gradient Watersheds in Morphological Scale-Space’, IEEE Trans. Image Processing, vol. 5, no. 6, pp. 913-921, Jun. 2001.
[28] J. M. Gauth, ‘Image segmentation and analysis via multiscale gradient watershed hierarchies’, IEEE Trans. Image Processing, vol. 8, no. 1, pp. 69-79, Jan. 1999.
[29] B. Jayanta, C. Bhabatosh, and D.M. Dwijesh, ‘On Edge and Line Linking with Connectionist Models’, IEEE Trans. SMC, vol. 24, no. 3, pp. 413-428, Mar. 1994.
[30] O. C. Leon, and Y. Lin, ‘Cellular Neural Networks: Theory’, IEEE Trans. Circuits and Systems, vol. 35, no. 10, pp. 1257-1272, Oct. 1988.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top