跳到主要內容

臺灣博碩士論文加值系統

(44.200.175.255) 您好!臺灣時間:2022/08/11 14:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁哲
研究生(外文):Huang, Yu-Che
論文名稱:陰陽海重金屬污染對植物性浮游生物群聚與細胞內金屬硫蛋白之影響
論文名稱(外文):Effect of Heavy Metals on Community and Metallothionein in the cells of Phytoplanktion around Yin-Yang Waters
指導教授:陳俊德陳俊德引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:陰陽海重金屬植物性浮游生物金屬硫蛋白
外文關鍵詞:Yin-Yang WatersHeavy MetalsPhytoplanktionMetallothionein
相關次數:
  • 被引用被引用:1
  • 點閱點閱:655
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究為了探討金屬污染區之海域內生物組成之變動,次及生物禦制該金屬污染之機制,選定金屬濃度較高的台灣北部陰陽海為研究海域及生命週期較短且數量甚多的植物性浮游生物為研究對象。統計方面利用群集分析、F檢定重金屬對植物性浮游生物影響程度、對應分析、歧異度分析、豐度分析探討重金屬與植物性浮游生物的關係。使用金屬硫蛋白標準品來做鍵結重金屬銅的實驗,並探討金屬硫蛋白MT-I與MT-II的水體中重金屬去除率。另外則利用高效能液態層析儀測定不同海域之植物性浮游生物細胞內的金屬硫蛋白。
由於植物性浮游生物對環境污染只有逆來順受,群集分析結果顯示陰陽海植物性浮游生物的確受到重金屬的影響;F檢定金屬對植物性浮游生物影響程度結果顯示金屬對植物性浮游生物影響程度大小依序為銅>鉛>鉻>鋅>鎘,與金屬硫蛋白鍵結重金屬種類的能力一致,依序為一價銅>二價銅>二價鉛>二價鋅;對應分析顯示藻種細胞數隨著陰陽海測站銅濃度增加而分為增加型、不變型、減少型、無關型、特殊型五種類型;歧異度分析顯示在高重金屬銅濃度環境較不穩定的測站,有較少藻種能生存,行成生物相孤寂化,細胞數明顯減少,歧異度也較小,甚至某些藻種以達致死基準,導致該藻種無法生存。
金屬硫蛋白標準品鍵結金屬銅的實驗結果確定金屬硫蛋白有鍵結重金屬的能力,且金屬硫蛋白MT-II對重金屬銅的去除率較MT-I高。不同海域植物性浮游生物體內金屬硫蛋白測定實驗結果顯示陰陽海植物性浮游生物細胞內有金屬硫蛋白存在,陰陽海植物性浮游生物為了適應高濃度重金屬的環境,以分泌金屬硫蛋白作為去毒機制。
由上述陰陽海植物性浮游生物有生產金屬硫蛋白作為禦制金屬毒性的能力,而且海洋中植物性浮游生物生命週期很短且數量多,因此,若有計畫性地藉由植物性浮游生物萃取某一數量之金屬硫蛋白,應頗具可行性;但有關植物性浮游生物受金屬影響而誘生的金屬硫蛋白種類與影響誘生之因素還需更進一步的研究。

Abstract
In order to study the effect of heavy metal pollution on the community and the defense mechanism in the cell of phytoplankton, experiment was carried out around Yin-Yang Waters, northeastern Taiwan. Some statistical methods, such as cluster analysis, rank correlation analysis, correspondence analysis, diversity analysis and evenness analysis, were applied to explain the relationship between heavy metal and phytoplankton. Results of this study were as follow.
1. Depending cluster analysis, it indicated that the phytoplankton was influenced indeed by heavy metal.
2. Depending on rank correlation analysis, it showed that influence degrees of heavy metals on phytoplankton were Cu>Pb>Cr>Zn>Cd.
3. Phytoplankton species existing in the investigated waters could be divided into five growth kinds by correspondence analysis.
4. Diversity index became lower with increasing concentration of heavy metal. In a word, there were less phytoplankton species and cells in such serious metal polluted waters. Even some phytoplankton species reached the lethal threshold level.
5. Metallothioneins exist in cells of phytoplankton in the studied waters. Phytoplankton was induced to grow Metallothioneins for removing metal poison to survive in metal polluted environment.
6. Metallothioneins possess the ability to bind metal atoms. The rate of removing metal Cu using Metallothioneins-II was better than using Metallothioneins-I.
Marine phytoplankton is abundant but has a short life. Further, it should be feasible to plan to extract Metallothioneins from phytoplankton for applying to human health.

目錄
目錄·····················································Ⅰ
中文摘要·················································Ⅲ
Abstract··················································Ⅴ
第一章 前言··············································1
第一節 研究動機······································1
第二節 研究回顧······································3
一、陰陽海概述····································3
二、海洋環境重金屬概述····························5
三、植物性浮游生物生長與環境的關係之概述··········7
四、金屬硫蛋白概述································9
五、綜合回顧·····································12
第二章 材料與方法·······································14
第一節 採樣地點與時間·······························14
第二節 採樣方法·····································16
第三節 分析步驟·····································17
第四節 資料分析·····································22
第三章 結果與討論·······································25
第一節 陰陽海重金屬與植物性浮游生物的組成···········25
第二節 陰陽海植物性浮游生物組成與重金屬濃度的關係···33
一、群集分析·····································33
二、F檢定之重金屬對植物性浮游生物影響程度之順位分
析···········································39
三、對應分析·····································44
四、其他分析(歧異度分析、豐度分析與相似分析)···49
第三節 重金屬銅與金屬硫蛋白的關係···················53
第四節 陰陽海及其附近海域植物性浮游生物細胞內金屬硫蛋白與重金屬的關係·····························63
第四章 結論·············································71
參考文獻·················································73
附圖·····················································81
附表·····················································87
謝辭·····················································90

參考文獻
元田茂(1966). 日本海洋浮游植物圖鑑。蒼洋社,1-65頁。
袁澉(1977). 浮游生物學。南山堂出版社,301頁。
佐竹久男(1980). 水質污濁調查指針。恆星社厚生閣,335-.342頁。
姜樁芳(1983). 中國百科全書-環境科學。中國大百科全書出版社,119、120、287、380、427頁。
譚天錫、白振宇、江建嵩(1986). 高雄永安附近海域之生態調查研究。海洋彙刊生物專刊,31:1-34。
傅木錦、陳永祺、陳嘉芬、曾榮政、陳亮憲(1988). 台塑烯烴場暨相關工業觀音工業區場址-附近海域生態及海水水質調查分析報告,15頁。
蘇仲卿、洪楚璋、江永棉、譚天錫、張崑雄、邵廣昭、黃鵬鵬、李國添、陳淑勤、黃哲崇、范光龍、陳宏遠、李玉玲(1989). 台灣北部核能電廠(包括坊寮)附近海域之生態研究第十五年,77/7 - 78/6。中研院環科會專刊,69:1-258。
韓柏檉(1989). 海洋環境中銅之形態、分佈、生物累積與錯合能力之研究。國立台灣大學海洋研究所博士論文,222頁。
楊肇岳、葉榮泰(1990). 陰陽海成因之研究。中華民國環境保護學會會誌,13:1-7。
白書禎、陳彩珠、梁松子(1990) . 台灣東北角濂洞灣附近沿海水重金
屬之分佈及形態。中華民國環境保護學會會誌,13:18-37。
張正賢、傅木錦、王沙玲、曾榮政、陳嘉芬、陳亮憲(1991). 陰陽海及其附近海域生態暨生物特性之調查研究。藝軒圖書出版社,81頁。
謝介士、蔡雪真、葉瑾瑜、蘇茂森(1991). 骨藻分泌物對銅之錯合能力測定。Bulletin of Taiwan Fisheries Research Institute, 50:277-282.
方建能(1992) . 金瓜石金銅礦床外圍地區之地球化學探勘。國立台灣大學地質學系碩士論文,94頁。
岳巍、趙蔚苓、宋福、岳海琴(1992). 海洋環境中的重金屬。人民交通出版社,317頁。
行政院環境保護署環境檢驗所(1994). 水質檢驗方法彙編。環保署環檢所。
余炳盛(1994) . 金瓜石含金角礫岩礦筒之研究。國立台灣大學地質學研究所博士論文,322頁。
呂世宗、張正賢、傅木錦(1994). 礦場開發對自然環境影響之調查-金瓜石為例。台灣省環境保護處研究報告,160頁。
莊甲子、曾迪華(1994). 陰陽海支流況與污染擴散的研究。Journal of Harbour Technology, 9:137-150.
余炳盛、方建能、陳耀麟、王詠絢(1998). 從陰陽海問題談地質背景與工業污染之區分。礦冶42/2,41-50頁。
陳順宇、鄭碧娥(1999). STATISTICA手冊(Ⅰ)基本統計。華泰書局,524頁。
林哲良(2000). 重金屬元素在淡水河口海域的地化分佈特性。國立台灣大學海洋研究所博士論文,19-27頁。
陳順宇(2000). 多變量分析。華泰書局,552頁。
莊榮輝(2000). 植物對重金屬逆境之反應。網址:http: // 140. 112. 78. 220/~juang/JRH/課程展示。
韓柏聖、江惠霞、鄭皓文、簡伶朱、施伶穎(2001). 牡蠣與蚵岩螺體內金屬硫蛋白與金屬之相關研究。台灣海洋學刊,39:11-18。
龔國慶(2001). 海洋(岸)污染的研判與採證技術訓練。國立台灣海洋大學海洋科學系和國科會國家海洋科學研究中心出版,129頁。
Anderson, D. M. and F. M. M. Morel (1978). Copper sensitivity of Gonyaulax tamarensis. Limnol. Oceanogr., 23: 283-295.
Anderson, D. M. and R. P. Zeutschel (1970). Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the Northeast Pacific Ocean. Limnol. Oceanogr., 15: 402-407.
Beattie, J. H. and D. Paxcoe (1979). Acadmium binding protein in rainbow
trout. Toxicol., 4: 241-246.
Bonwick, G. A., P. Vas, P. R. Fielden, and J. D. M. Gordon (1990).Metallothionein-like proteins in the livers of qualoid and carcharhinid sharks . Mar. Pollut. Bull., 21: 567-570.
Brand, L. E., W. G. Sunda, and R. R. L. Guillard (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. J.
Exp. Mar. Biol. Ecol., 96(3): 225-250.
Bremner, I., R. K. Mehra, And Metallothionein (1987). Some aspects of its structure and function with special regard to involvement in copper and zinc-metabolism. Chem. Sci., 21:117-121.
Brown, D. A. and T. R. Parson (1978). Relationships between cytoplasmic distribution of mercury and toxic effects to zooplankton and chum salmon exposured to mercury in a controlled ecosystem. Fish, J. Res. Bd. Can., 35: 880-884.
Burger, J., K. Cooper, and M. Gochfeld(1992). Exposure assessment for heavy metal ingestion from a sport fish in Puerto Rico: estination risk for local fishermen. Toxicol Environ Health, 36: 355-365.
Bustamante, P., S. Grigioni, B. Boucher-Rodoni, F. Caurant, and P. Miramand (2000). Bioaccumulation of 12 Trace Elements in the Tissues of the Nautilus Nautilus macromphalus from New Caledonia. Marine Pollution Bulletin, 40(8): 688-696.
Chester, R., A.G. Griffiths, and J.M. Hirst (1979). The influence of soil-sized atmospheric particulates on the elemental chemistry of the deep sea sediments of the North Easten Atlantic. Mar. Geol., 32:141.
Chiang K. P. and A. Taniguchi (2000). Distribution and modification of diatom assemblages in and around a warm core ring in the western North Pacific Frontal Zone east of Hokkaido. Journal of Plankton Research, 22(11): 2061-2074.
Engel, D. W. and M. Brouwer (1987). Metal regulation and molting in the blue crab Callinectes sapidus: Metallothionein function in metal metabolism. Biol. Ull., 173: 239-251.
Fisher, N. S. (1986). On the reactivity of metals for marine phytoplankton. Limnol. Oceanogr., 31: 443-449.
Fowler, S. W. (1982). Biological transfer and transport processes. In: Kullenberg G., Pollutant transfer and transport in the sea. CRC.Pross, Inc. Boca Raton Florida., 1-65.
George, S. G., B. J. S. Pirie, A. R. Cheyne, T. L. Commbs, and P. T. Grant (1978). Detoxification of metals by marine bivalves: Anultrastructural study of the compartmentation of copper and zinc inthe oyster, Ostrea edulis. Mar. Biol., 45: 147-156.
Giblin, A. E., G. W. Luther, and I. Valiela (1986). Trace metal solubility in aslt marsh sediments contaminated with sewage sludge. Estuarine Coastal Shelf Sci., 23: 477.
Goldberg, E. D., V. T. Bowen, J. W. Farrington, G. Harvey, J. H. Martine, P. L. Parker, R. W. Risebrough, M. A. William-Robertson, E. Schnider, and E. Gemble (1978). The mussel watch. Env. Cons., 5(2): 101-125.
Honda, K., J. E. Marcovecchio, S. Kan, R. Tatsukawa, and H. Ogi (1990). Metal concentrations in pelagic seabirds from the north Pacific ocean. Archives of Environmental Contamination and Toxicology, 19: 704-711.
Hudson R. J. M. (1998). Which aqueous species control the rates of trace metal uptake by aquaticbiota? Observations and predictions of non-equilibrium effects. Sci. Total Environ., 219, 95-115.
Hutchins D. A. and K. W. Bruland (1998). Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature, 393: 561-564.
Jenne, E. A. (1968). Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides, in Trace Inorganics in Water (ed. By R. F. Gould). American Chemical Society, Washington, D. C., 337pp.
Jenne, E. A. (1977). Trace element sorption by sediments and soils-sitesand processes, in Sympoium on Molybdenum in the Environment (ed. By W. Chappel, K. Peterson, and M. Dekker). 425pp.
Kagi, J. H. R. and Y. Kojima (1987). Experientai Suppl., 52: 25-61.
Karin, M. (1985). Metallothionein, Protein in search of function. Cell, 41: 9-10.
Kimmer, W. J., A. D. Mckinnon, M. J. Atkinson, and J. A. Kessell (1985). Spstial distributions of Plankton in Shark Bay Western Australia. Aust. J. Mar. Freshwater Res., 36(3): 421-432.
Lomas, M. W. and P. M. Gilbert (1999). Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatom. Limnol. Occanogr., 44: 556-572.
Marafante, E. (1976). Binding of mercury and zinc to cadmium-binding protein in liver and kidney of fold-fish. Experentai Suppl., 32: 149-150.
Mcknight, D. M. and F. M. M. Morel (1978). Release of weak and strong copper-complexing agents by algae. Limnol. Oceanogr., 24:823-837.
Miyairi, S., S. Shibata, and A. Naganuma (1998). Determination of Metallothionein by High-performance Liquid Chromatography with Fluorescence Detection Using an isocratic Solvent System. Analytical biochemistry., 258: 168-175.
Muggli D. L., M. Lecourt, and P. J. Harrison (1996). Effects of iron and nitrogen source on thesinking rate. physiology and metal composition of an oceanic diatom from the subarctic Pacific. Mar. Ecol. Prog. Ser., 132: 215-227.
Noel-Lambot F., J. M. Bouquegneau, F. Frankenne, and A. Disteche (1980). Cadmium, zinc and copper accumulation in limpets (Patella vulgata) from the Bristol Channel with special reference to metallothioneins. Mar. Ecol. Prog. Ser., 2: 81-89.
Nordberg, M., I. Nuottaniemi, M. G. Cherian, G. F. Nordberg, T. Kjellstrom, and J. S. Garvey (1986). Characterization studies on the cadmium-binding protein from two species of New Zealand Oysters. Env. Health Perspective., 65: 57-62.
Nostelbacher, K. and M. Kirchgessner (2000). Separation and quantitation of metallothionein isoforms from liver of untreated rats by ion-exchange high-performance liquid chromatography and atomic absorption spectrometry. Journal of Chromatography B.,744: 273-282.
Olafson R. W. and J. A. Thompson (1974). Isolation of heavy metal binding proteins from marine vertebrates. Mar. Biol., 28: 83-86.
Packard T. (1979). Half-saturation constants for nitrate reductase and nitrate translocation in marinephytoplankton. Deep Sea Res., 26A: 321-326.
Peterson, R. (1982). Influence of copper and zinc on the growth of a freshwater alga, scenedesmus uadricauda: the significance of chemical speciation. Env. Sci. Technol., 16: 443-447.
Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environment. A review. Environ. Pollut., 13: 281-317.
Rauser, W. E. (1995). Phytochelatins and related peptides. Plant Physiol., 109: 1141-1149.
Ridgway, I. M. and N. B. Price (1987). Geochemical associations and post-depositional mobility of heavy metals in coastal sediments: Loch Etive, Scotland , Mar. Chem., 21: 229.
Ridlington, J. W., D. C. Chapman, D. E. Goeger, and P. D. Whanger (1981). Metallothionein and Cu-Chelatin: Characterization of metal-binding proteins from tissues of four marine animals. Comp. Biochem. Physiol., 70B: 93-104.
Robinson N.J., A.M. Tommey, C. Kuske, and P.J. Jackson (1993). Plant Metallothioneins. Biochem J. 295: 1-10.
Roch, M., J. A. McCarter, A. T. Matheson, M. J. R. Clark, and R W. Olafson (1982). Hepatic metallothionein in rainbow trout as an indicator of metal pollution in the Campbell river system, Can. J. Fish. Aquat. Xci., 39: 1596.
Roesijadi, G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol., 22: 23-49.
Saifullah. S. M. (1978). Inhibitory effects of copper on marine dinoflaggelates. Mar. Biol., 44: 299-308.
Sakai, H., K. Saeki, H. Ichihashi, H. Suganuma, S. Tanabe, and R. Tatsukawa (2000). Species-specific Distribution of Heavy Metals in Tissues and Organs of Loggerhead Turtle and Green Turtle from Japanese Coastal Waters. Marine Pollution Bulletin, 40(8): 701-709.
Schenck, R. C. (1984). Copper deficiency and toxicity in Gonyaulax Tamarensis. Mar. Biol. Letters, 5: 13-19.
Shih, C. T. and T. S. Chiu (1998). Copepod diversity in the water masses of the southern East China Sea north of Taiwan. Journal of Marine Systems, 15: 533-542.
Slemr and Langer. (1992). Increase in 21 obal atmosphere concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature, 355: 434-436.
Smith V. H., G. D. Tilman, and J. C. Nekola (1999). Eutrophication: impacts of excess nutrient inputs of freshwater, marine, and terrestrial ecosystems. Environ. Poliul., 100: 179-196.
Sunda, W. G. and R. R. Guillard (1976). The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res., 34: 511-529.
Sunda W. G. and S. A. Huntsman (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci Total Environ., 219: 165-181.
Thompson D. R., R. W. Furness, and P. M. Walsh (1992). Historical changes in mercury concentrations in the marine ecosystem of the north and northeast Atlantic Ocean as indicated by seabird feathers. J. Appl. Ecol., 29: 79-84.
Udom, A. O. and F. O. Brady (1980). Reactivation in vitro of zinc-requiring apo-enzymes by rat zinc thionein. Biochem, J. 187: 329-335.
Vitousek P. M., H. A. Mooney, J. Lubchenko, and J. M. Melillo(1997). Human domination of Earth’ ecosystems. Science, 277: 494-499.
Wang, W. X. and C. H. D. Robert (2001). Metal Uptake in a Coastal Diatom influenced by major nutrients (N, P. and Si). Wat. Res., 35(1): 315-321.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top