跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 07:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張文桐
研究生(外文):Wen-Tung Chang
論文名稱:平面與空間連桿機構力量傳遞性能之研究
論文名稱(外文):On the Force Transmission Performance of Planar and Spatial Linkage Mechanisms
指導教授:林鎮洲
指導教授(外文):Chen-Chou Lin
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:151
中文關鍵詞:力量傳遞性能功率流路徑有效力量比賈氏矩陣奇異性連桿機構並聯機構
外文關鍵詞:force transmission performancepower flow patheffective force ratioJacobiansingularitylinkage mechanismparallel mechanism
相關次數:
  • 被引用被引用:3
  • 點閱點閱:583
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們針對平面及空間連桿機構提出一種新的力量傳遞性指標(FTI)並建立其分析程序。此指標可以做為從輸入桿到輸出桿間之力量傳遞性能的定量分析工具。此分析方法是基於靜力學分析及功率流路徑的概念所建構而成。我們發現一個機構的力量傳遞性能不僅與其構形有關,而且也會受輸出桿的選擇和負載的型態所影響。針對平面及空間多自由度連桿機構,我們則修改FTI的定義而提出了平均力量傳遞性指標(MFTI)。我們以所提出的力量傳遞性指標對平面及空間連桿機構進行分析,其結果與使用賈氏矩陣法(Jacobian)及接頭力指標法之分析結果進行比較。比較的結果顯示,我們所提出的力量傳遞性指標可以成功地解釋其他方法所無法解釋的許多現象。本論文之結論為:文中所提出之指標可以做為較其他方法更好的力量傳遞性能量測工具,並應用於連桿機構之最佳化設計。

In the thesis, a new force transmission index (FTI) was proposed and the analysis procedure was established for the planar and spatial linkage mechanisms. The index can be used as a quantitative measure of the force transmission performance from the input link to an output link. The method is based on the static force analysis and the concept of power flow path. We have found that, the force transmission performance of a mechanism depends not only on the configurations of the mechanism, but also on the selection of the output link and the types of the loading. For the category of planar and spatial multi-degree-of-freedom linkage mechanisms, we have modified the definition of FTI to propose the Mean Force Transmission Index (MFTI). We have compared the analysis results of the planar and spatial linkage mechanisms based on the force transmission indices with the results by the Jacobian matrix method and the Joint Force Index method. The comparison results show that the proposed force transmission indices can explain many cases successfully when other methods fail. It is conclude that the proposed indices can be used as a better measure of the force transmission performance and in optimal design for linkage mechanisms.

Abstract in Chinese I
Abstract in English II
Contents III
Contents of figures VI
Contents of tables XI
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Literature Review 2
1.3 Motivation 5
Chapter 2 Fundamentals of Force Transmission Performance 6
2.1 Introduction 6
2.2 General Definition of Force Transmission Index 7
2.2.1 Power Flow Path 8
2.2.2 Effective Force Ratio 12
2.2.3 Mechanical Advantage 15
2.2.4 The Force Transmission Index 16
2.3 Force Transmission Index for Multi-Degree-of-Freedom
Mechanisms 19
2.3.1 Force Transmission Index for Mechanisms with
Simply Independent Power Flow Paths 21
2.3.2 Input Velocity Ratio 23
2.3.3 Mean Force Transmission Index 28
2.4 Other Definitions of Force Transmission Indices 31
2.4.1 Joint Force Index (JFI) 31
2.4.2 Transmission Index (TI) 33
2.5 Jacobian Analysis of Closed-Loop Mechanisms 35
2.5.1 Jacobian Matrices 36
2.5.2 Singularity Conditions 37
Chapter 3 Force Transmission Performance Analysis of
Planar Linkage Mechanisms 40
3.1 Introduction 40
3.2 Planar Single-Degree-of-Freedom, Single-Loop
Linkage Mechanisms 41
3.2.1 Displacement Analysis 42
3.2.2 Velocity Analysis 44
3.2.3 Static Force Analysis 47
3.2.4 Force Transmission Performance Analysis 51
3.2.5 Summary 64
3.3 Planar Single-Degree-of-Freedom, Multi-Loop
Linkage Mechanisms 67
3.3.1 Force Transmission Performance Analysis 68
3.3.2 Summary 81
3.4 Planar Two-Degree-of-Freedom, Five-Bar
Linkage Mechanism 83
3.4.1 Displacement Analysis 84
3.4.2 Velocity Analysis 85
3.4.3 Force Transmission Performance Analysis 87
3.5 Planar Three-Degree-of-Freedom, Eight-Bar
Linkage Mechanism 91
3.5.1 Displacement Analysis 92
3.5.2 Velocity Analysis 95
3.5.3 Force Transmission Performance Analysis 98
Chapter 4 Force Transmission Performance Analysis of
Spatial Linkage Mechanisms 104
4.1 Introduction 104
4.2 Spatial RSSR Four-Bar Linkage Mechanism 105
4.2.1 Displacement Analysis 106
4.2.2 Velocity Analysis 110
4.2.3 Static Force Analysis 111
4.2.4 Force Transmission Performance Analysis 113
4.2.5 Summary 121
4.3 Spatial Six-Degree-of-Freedom, 6-RSS Parallel
Mechanism 123
4.3.1 Displacement Analysis 124
4.3.2 Velocity Analysis 127
4.3.3 Force Transmission Performance Analysis 131
Chapter 5 Conclusions 134
5.1 Summary of Definitions of Transmission Indices 134
5.2 Conclusions 135
5.3 Future Work 137
Appendix A 138
Appendix B 143
References 145

[1] Alt, H., 1932, “Der Übertragungswinkel und Seine Bedeutung für das Konstruieren Periodischer Getriebe,” Werkstattstechnik, Vol. 26, No. 4, pp. 61-64.
[2] Bock, A., 1958, VDI Berichte, Vol. 29, pp. 158-159.
[3] Balli, S. S. and Chand, S., 2002, “Transmission Angle in Mechanisms (Triangle in Mech),” Mechanism and Machine Theory, Vol. 37, No. 2, pp. 175-195.
[4] Tao, D. C., 1964, Applied Linkage Synthesis, Addison-Wesley Publi-shing Company Inc., Reading, Massachusetts.
[5] Erdman, A. G. and Sandor, G. N., 1997, Mechanism Design: Analysis and Synthesis: Volume I, Third Edition, Prentice-Hall Inc., New Jersey.
[6] Wu, L. I., 1990, “Modified Transmission Angles of Planar Linkage Me-chanisms,” Mechanism Synthesis and Analysis, Proceedings of the 1990 ASME 21st Biennial Mechanism Conference, DE-Vol. 25, pp. 131-140.
[7] Watanabe, K., Simizu, N., and Mitome, K., 1993, “Evaluation of Motion-Transmission Characteristics of Planar Six-Link Mechanisms with a Prismatic Pair,” JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, Vol. 36, No. 1, pp. 148-154.
[8] Bagci, C., 1971, “Static Force and Torque Analysis Using 3 3 Screw Matrix, and Transmission Criteria for Space Mechanisms,” ASME Journal of Engineering for Industry, Series B, Vol. 93, No. 1, pp. 90-101.
[9] Sutherland, G. and Roth, B., 1973, “A Transmission Index for Spatial Mechanisms,” ASME Journal of Engineering for Industry, Series B, Vol. 95, No. 2, pp. 589-597.
[10] Litvin, F. L., 1980, “Criteria of Force Transmission for Linkages and Their Application for Synthesis,” ASME Journal of Mechanical Design, Vol. 102, No. 1, pp. 38-44.
[11] Watanabe, K., Takeda, T., Mitome, K., and Yanatori, M., 1991, “Eva-luation of Motion-Transmission Characteristics of RSSR Spatial Four-Link Mechanisms,” JSME International Journal, Series 3: Vibration, Control Engineering, Engineering for Industry, Vol. 34, No. 4, pp. 561-567.
[12] Tsai, M. J. and Lee, H. W., 1994, “Generalized Evaluation for the Transmission Performance of Mechanisms,” Mechanism and Machine Theory, Vol. 29, No. 4, pp. 607-618.
[13] Denavit, J., Hartenberg, R. S., Razi, R., and Uicker, J. J. Jr., 1965, “Velocity, Acceleration, and Static-Force Analysis of Spatial Linkages,” ASME Journal of Applied Mechanics, Vol. 32, No. 4, pp. 903-910.
[14] Wu, F. and Lankarani, H. M., 1992, “A New Parameter for Trans-mission Quality and Output Sensitivity Analysis of Mechanisms,” Mechanism Synthesis and Analysis, Proceedings of the 1992 ASME Mechanisms Conference, DE-Vol. 46, pp. 103-109.
[15] Watanabe, K. and Funabashi, H., 1984, “Kinematic Analysis of Stephenson Six-Link Mechanisms (2nd Report, Index of Motion-Transmission Characteristics),” Bulletin of JSME, Vol. 27, No. 234, pp. 2871-2878.
[16] Chang, C. C., 1997, On The Transmission Performance of Planar Mechanisms, Master Thesis, Department of Mechanical and Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan, Republic of China. (In Chinese)
[17] Holte, J. E. and Chase, T. R., 1994, “A Force Transmission Index for Planar Linkage Mechanisms,” Mechanism Synthesis and Analysis, Proceedings of the 1994 ASME Mechanisms Conference, DE-Vol. 70, pp. 377-386.
[18] Takeda, Y. and Funabashi, H., 1995, “Motion Transmissibility of In-Parallel Actuated Manipulators,” JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, Vol. 38, No. 4, pp. 749-755.
[19] Sutherland, G. H., 1981, “Quality of Motion and Force Transmission,” Mechanism and Machine Theory, Vol. 16, No. 3, pp. 221-225.
[20] Takeda, Y., Funabashi, H., and Sasaki, Y., 1996, “Development of Spherical In-Parallel Actuated Mechanism with Three Degrees of Freedom with Large Working Space and High Motion Transmissibility (Evaluation of Motion Transmissibility and Analysis of Working Space),” JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, Vol. 39, No. 3, pp. 541-548.
[21] Takeda, Y. and Funabashi, H., 1997, “Development of Spatial In-Parallel Actuated Manipulators with Six Degrees of Freedom with High Motion Transmissibility,” JSME International Journal, Series C: Dyna-mics, Control, Robotics, Design and Manufacturing, Vol. 40, No. 2, pp. 299-308.
[22] Lu, S. L., 1994, The Conceptual Design of Planar Multi-Loop, Multi-Degree-of-Freedom Platform Mechanisms, Master Thesis, Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China. (In Chinese)
[23] Gosselin, C. and Angeles, J., 1990, “Singular Analysis of Closed-Loop Kinematic Chains,” IEEE Transactions on Robotics and Automation, Vol. 6, No. 3, pp. 291-290.
[24] Zlatanov, D., Fenton, R. G., and Benhabib, B., 1994, “Singular Analysis of Mechanisms and Robots Via a Motion-Space Model of the Instan-taneous Kinematics,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, pp. 980-991.
[25] Tsai, L. W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc., New York.
[26] Fallahi, B., Lai, H. Y., Naghibi, R., and Wang, Y., 1994, “A Study of The Workspace of Five-Bar Closed Loop Manipulator,” Mechanism and Machine Theory, Vol. 29, No. 5, pp. 759-765.
[27] Nenchev, D. N. and Uchiyama, M., 1998, “Para-Arm: A Five-Bar Parallel Manipulator with Singularity-Perturbed Design,” Mechanism and Machine Theory, Vol. 33, No. 5, pp. 453-462.
[28] Bajpai, A. and Roth, B., 1986, “Workspace and Mobility of a Closed-Loop Manipulator,” International Journal of Robotics Research, Vol. 5, No. 2, pp. 131-142.
[29] Ryuh, B. S., Pennock, G. R., and Stanisic, M. M., 1986, “The Inverse Velocity and Acceleration Solutions of Programmable Five-Bar Robot Positioners,” Proceedings of the Applied Robotics and Automation Conference, St. Louis, Missouri, November 10-12, IV, pp. 2.1-2.9.
[30] Ting. K. L. and Tsai, G. H., 1985, “Mobility and Synthesis of Five-Bar Programmable Linkages,” 9th Applied Mechanisms Conference, Kansas City, Missouri, Vol. I, Session I, pp. III.1-III.8.
[31] Park, F. C. and Kim, J. W., 1999, “Singularity Analysis of Closed Kinematic Chains,” ASME Journal of Mechanical Design, Vol. 121, No. 1, pp. 32-38.
[32] Kumar, V., 1992, “Characterization of Workspaces of Parallel Manipu-lators,” ASME Journal of Mechanical Design, Vol. 114, No. 3, pp. 368-375.
[33] Gao, F., Zhao, Y. S., and Zhang, Z. H., 1996, “Physical Model of the Solution Space of 3-DOF Parallel Planar Manipulators,” Mechanism and Machine Theory, Vol. 31, No. 2, pp. 161-171.
[34] Gosselin, C. and Angeles, J., 1988, “The Optimum Design of a Planar Three-Degree-of-Freedom Parallel Manipulator,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, No. 1, pp. 35-41.
[35] Pennock, G, R. and Kassner, D. J., 1992, “Kinematic Analysis of a Planar Eight-Bar Linkage: Application to a Platform-Type Robot,” ASME Journal of Mechanical Design, Vol. 114, No. 1, pp. 87-95.
[36] Pennock, G, R. and Kassner, D. J., 1993, “The Workspace of a General Geometry Planar Three-Degree-of-Freedom Platform-Type Manipula-tor,” ASME Journal of Mechanical Design, Vol. 115, No. 2, pp. 269-276.
[37] Söylemez, E. and Freudenstein, F., 1982, “Transmission Optimization of Spatial 4-Link Mechanisms,” Mechanism and Machine Theory, Vol. 17, No. 4, pp. 263-283.
[38] Gupta, K. C. and Kazerounian, S. M. K., 1983, “Synthesis of Fully Rotatable R-S-S-R Linkages,” Mechanism and Machine Theory, Vol. 18, No. 3, pp. 199-205.
[39] Lakshminarayana, K. and Balaji Rao, L. V., 1984, “Graphical Synthesis of the RSSR Crank-Rocker Mechanism,” Mechanism and Machine Theory, Vol. 19, No. 3, pp. 331-336.
[40] Rastegar, J. and Tu, Q., 1992, “Approximated Grashof-Type Movability Conditions for RSSR Mechanisms with Force Transmission Limita-tions,” ASME Journal of Mechanical Design, Vol. 114, No. 1, pp. 74-81.
[41] Liu, Z. and Angeles, J., 1992, “The Properties of Constant-Branch Four-Bar Linkages and Their Applications,” ASME Journal of Mechanical Design, Vol. 114, No. 4, pp. 574-579.
[42] Zhang, W., 1993, “The Limit Value of Pressure Angle and Positions of Maximal Pressure Angle of the Spatial RSSR Linkage,” Mechanism and Machine Theory, Vol. 28, No. 4, pp. 593-599.
[43] Zhang, W. and Zhang, D., 1993, “Conditions of Crank Existence for a Particular Case of the RSSR Linkage,” Mechanism and Machine Theory, Vol. 28, No. 6, pp. 845-850.
[44] Şaka, Z., 1996, “The RSSR Mechanisms with Partially Constant Trans-mission Angle,” Mechanism and Machine Theory, Vol. 31, No. 6, pp. 763-769.
[45] Hunt, K. H., 1983, “Structural Kinematics of In-Parallel-Actuated Ro-bot-Arms,” ASME Journal of Mechanisms, Transmissions, and Auto-mation in Design, Vol. 105, No. 4, pp. 705-712.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top