跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏宏達
論文名稱:非線性H∞控制於船舶操控系統之應用
論文名稱(外文):Nonlinear H∞ Ship Steering System Control And Applications.
指導教授:沈志忠沈志忠引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:H∞控制理論船舶自航器強健性
外文關鍵詞:H∞ ControlHJEShip Steering AutopilotRobustnessCourse-changing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將採用非線性H∞控制理論,建構出船舶的控制架構。由於最具關鍵地位Hamilton-Jacobi equation(HJE)近似解的求得,則可對非線性模式設計具強健性且穩定的H∞狀態回授控制器。本文以一艘貨櫃輪來測試此控制架構的適用性。經由電腦數值模擬後,船舶的非線性H∞控制系統具有強大的穩定能力,船舶自航器在進行大弧度轉彎的任務時,都能具有極佳的穩定性及控制性能。此外,還跟線性H∞控制器及PI控制器做比較,結果非線性控制器的性能均較其來的優越。可見系統因線性化解耦合後,所得到的線性控制器,因忽略系統的非線性項,所以控制效果比原本設計含有非線性項的控制器差。

It is well known that the ship steering dynamics have highly complicated nonlinear behavior, so it is hard to design an autopilot controller. This paper adopted the nonlinear H∞ control theory to formulated a nonlinear H∞ controller. In order to establish a nonlinear H∞ controller, we must find the solution to the Hamilton-Jacobi equation (HJE) first. An approximate solution of the HJE by using a successive algorithm is used to construct a nonlinear H∞ controller. Computer simulations indicate that the proposed nonlinear H∞ autopilot controller achieves satisfactory course —changing maneuvers and show a better robust performance.

第一章 緒論
1.1 前言 1
1.2 文獻回顧 2
1.3 文章結構 3
第二章 船舶運動方程式
2.1 船舶運動方程式 5
2.2 船體輸入輸出轉移函數 10
第三章 H∞控制理論
3.1 範數(norm)的定義 12
3.2 Lyapunov穩定與Lyapunov函數 14
3.3 Hamilton-Jacobai 方程式 18
3.4 非線性H∞控制 21
3.5 線性H∞控制 25
第四章 船舶系統之H∞狀態回授控制器設計
4.1 船舶之線性H∞狀態回授控制器設計 27
4.2 船舶之非線性H∞狀態回授控制器設計之近似解 29
4.3 PI控制設計 32
第五章 模擬結果討論與分析
5.1 線性與非線性H∞控制的比較 34
5.2 PI控制器與非線性H∞控制器比較 42
第六章 結論與建議
6.1結論 44
6.2建議 45
參考文獻 46
附錄A 近似解的演算推導 49
附錄B 非線性H∞控制器近似解 52

[1]. Jean-Jacques E. Slotine and Weiping Li, Applied Nonlinear Control, pretice Hall, 1991.
[2]. John C. Doyle, Bruce A. Francies, and Allen R. Tannenbaum, Feedback Control Theroy, New York, 1992.
[3]. J. Hauser, S. Sastry, and P.Kokotovic, “Nonlinear control via approximate input-Output linearization: the ball and beam example,”
IEEE Tran. Automat. Contr. vol. 37. No.3, Mar. 1992.
[4] J.C. Doyle, K. Giover, PP. Khargonekar, and B.A. Francis, “State space solutions to standard H2 and H∞ control problemms,”IEEE Trans. Automat Contr., vol. 34, pp. 831-846, 1989.
[5]. On the Coupled Motion of Steering and Rolling of a High-speed Container Ship , Naval Architect of Ocean Engineering, 20:73-83. From J.S.N.A.
[6]. J.A. Ball, J.W.Helton and M.L. Walker, “Control for nonlinear systems with output Feedback,”IEEE trans.Automat.Contr. vol. 38, pp. 546-559, 1993.
[7]. Mort, N. and Linkens, D.A., “A Self-tuning Controllers Steering Automatic Control”, Proceedings, Symposium on ship Steering Automatic Control, Genova, Italy, 1980.
[8]. Zuidweg, J.K., “Optimal and Sub-optimal Feedback in Automatic Track-Keeping system”, Proceedings, Sixth Symposium on Ship Control Systems, Ottawa, Canada, 1981.
[9]. Grimble,M. J., Zhang, Y. and Katebi, M. R., “H∞-Based Ship Autopilot Design”, Proceedings, 10th Symposium on Ship Control Systems, Ottawa,Canada, 1993.
[10]. Sutton, R. and Towill, D.R., “An Introduction to the Use of Fuzzy Sets in the Implementation of Control Algorithms”, J. of the Institution of Electronic and Radio Engineers, Vol. 55, No. 10, pp. 357-367, 1985.
[11]. Roland, S. B. “The Use of Artificial Neural Networks for the intelligent Optimal Control of Surface Ships”, IEEE Journal of Oceanic Engineering, Vol. 20, No. 1. pp. 65-72, 1995.
[12]. Ching-Yaw Tzeng, “An Internal Model Control Approach to the Design of Yaw-Rate-Control Ship-Steering Autopilot”, IEEE Journal of Oceanic Engineering, Vol. 24, No. 4. pp507-513, 1999.
[13]. Shr-Shinug Hu, Bor-chin Chang, “Design of a Nonlinear
H∞ Controller Applied to a Ship Control System” IEEE Conference on Control Applications, pp.699-703, 1998.
[14]. Shr-Shiung Hu, Pao-Hwa Yang, and Jeng-Yih Juang, “On a Computational Algorithm to the HJE in Nonlinear Control”, Journal of Marine Science and technology, Vol. 9, No. 2. pp.91-99, 2001.
[15]. Lukes, D. L., “Optimal Regulation of Nonlinear Dynamical
Systems,”SIAM J. Optm. Control, Vol. 7, pp. 75-100, 1969.
[16]. Hu, S. S.,Yang, P. H., and Chang, B. C., “A Successive Algorithm for Solving the Hamilton-Jacobi Equations,” Proceedings of the 1999. American Control Conference, pp. 2842-2846, 1999.
[17]. Fossen, T.I., Guidance and Control of Ocean Vehicles, John Wiley and Sons, New York, 1994.
[18]. Shr-Shinug Hu, Bor-chin Chang, “Design of a Nonlinear
H∞ Controller for the Inverted Pendulum System” IEEE Conference on Control Applications, pp.699-703, 1998.
[19]. Norman S. Nise, Control systems engineering, John Wiley, New York, 2000.
[20]. 曾慶耀,“數學模式與船舶運動方程式”,國立台灣海洋大學海運學報第三期,pp.1-18, 1995.
[21]. 楊憲東,葉芳柏,線性與非線性H∞控制理論,全華圖書,1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top