.Abbott A, Abel PD, Arnold DW. and Milne A. Cost-benefit analysis of the use of TBT: the case for a treatment approach. Sci Total Environ 258(1-2): 5-19, 2000.
.Abravaya K, Phillips B, and Morimoto I. Heat shock-induced interactions of heat shock transcription factor and human hsp 70 promoter examined by in vivo footprinting. Mol Cell Biol 11: 586-592, 1991.
.Acharya, S., Wilson, T., Gradia, S., Kane, M. F., Guerrette, S., Marsischky, GT., Kolodner, R. and Fishel, R. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. U.S.A. 93:13629-13634, 1996.
.Alzieu C. Environmental impact of TBT: the French experience. Sci Total Environ 258(1-2): 99-102, 2000.
.Axiak V. Vella AJ. Agius D. Bonnici P. Cassar G. Casson R. Chircop P. Micallef D. Mintoff B. Sammut M. Evaluation of environmental levels and biological impact of TBT in Malta (central Mediterranean). Science of the Total Environment. 258(1-2):89-97, 2000 Aug 21.
.Beissinger M and Buchner J. How chaperones fold proteins. J Biol Chem 379: 245-259, 1998.
.Bueno M, Astruc A, Lambert J, Astruc M, and Behra P. Effect of solid surface composition on the migration of tributyltin in groundwater. Environ Sci Technol 35(7): 1411-1419, 2001.
.Cardellicchio N. Giandomenico S. Decataldo A. Di Leo A. Speciation of butyltin compounds in marine sediments with headspace solid phase microextraction and gas chromatography mass spectrometry. Fresenius Journal of Analytical Chemistry. 369(6):510-5, 2001 Mar.
.Chien LC, Hung TC, Choang KY, Yeh CY, Meng OJ, Shieh MJ, Ha BC. Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285(1-3):177-85, 2002.
.Chomczynski P and Sacchi N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156-159, 1987.
.Craig EA, Gambill BD, and Nelson RJ. Heat shock proteins: Molecular chaperones of protein biogenesis. Microbiol Rev 57: 402-414,1993.
.Craig EA. The heat shock response. CRC Crit Rev Biochem 18: 239-280, 1985.
.Eriksson M, Jokinen E, Sistonen L, and Leppa S. Heat shock factor 2 is activated during mouse heart development. Int J Dev Biol 44(5):471-477, 2000.
.Evans SM. Nicholson GJ. The use of imposex to assess tributyltin contamination in coastal waters and open seas. Sci Total Environ 258(1-2): 73-80, 2000.
.Fiorenza MT, Farkas T, Dissing M, Kolding D, and Zimarino V. Complex expression of murine heat shock transcription factors. Nucleic Acids Res 23(3): 467-474, 1995.
.Gonzalez-Toledo E, Compano R, Granados M, and Prat MD. Determination of butyltin and phenyltin species by reversed-phase liquid chromatography and fluorimetric detection. J Chromatogr A 878(1): 69-76, 2000.
.Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, and Sarge KD. Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276(21): 18513-18518, 2001.
.Goodson ML, Park-Sarge OK, and Sarge KD. Tissue-dependend expression of heat shock factor 2 isoforms with distinct transcription activities. Mol Cell Biol 15: 5288-5293, 1995.
.Jackson, S. P. The recognition of DNA damage. Cur. Opin. Gen. Dev. 6:19-25, 1996.
.Jacobson AH. Willingham GL. Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci Total Envir 258(1-2): 103-110, 2000.
.Jiang GB, Zhou QF, Liu JY, and Wu DJ. Occurrence of butyltin compounds in the waters of selected lakes, rivers and coastal environments from China. Environ Pollut 115(1): 81-87, 2001.
.Jiricny, J. Replication error: challenging the genome. EMBO J. 17:6427-6436, 1998.
.Kannan K, Grove RA, Senthilkumar K, Henny CJ, and Giesy JP. Butyltin compounds in river otters (Lutra canadensis) from the northwestern United States. Arch Environ Contam Toxicol 36(4): 462-8, 1999.
.Kiang JG and Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80: 183-201, 1998.
.Kroeger PE, Sarge KD, and Morimoto RI. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol 13(6): 3370-3383, 1993.
.Lardans V, Ram D, Lantner F, Ziv E, Israel S. Differences in DNA-sequence recognition between the DNA-binding domain fragment and the full-length molecule of the heat-shock transcription factor of schistosome.Biochimica et Biophysica Acta 1519:230-234, 2001.
.Liu PC and Thiele DJ. Modulation of human heat shock factor trimerization by the linker domain. J Biol Chem 274(24): 17219-17225, 1999.
.Liu XD, Liu PC, Santoro N, and Thiele DJ. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J 16(21): 6466-6477, 1997.
.Loones MT, Rallu M, Mezger V, and Morange M. HSP gene expression and HSF2 in mouse development. Cell Mol Life Sci 53(2): 179-190, 1997.
.Manuel M, Sage J, Mattei MG, Morange M, and Mezger V. Genomic structure and chromosomal localization of the mouse Hsf 2 gene and promoter sequences. Gene 232(1): 115-124, 1999.
.Marsischky, G. T., Filosi, M. Kane, M. F. and Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Gene Dev. 10:407-420, 1996.
.Mathew A and Morimoto RI. Role of the heat-shock response in the life and death of proteins. Ann N Y Acad Sci 851: 99-111, 1998.
.Mathew A, Mathur SK, Jolly C, Fox SG, Kim S, and Morimoto RI. Stress-specific activation and repression of heat shock factors 1 and 2. Mol Cell Biol 21(21): 7163-7171, 2001.
.Mathew A, Shi Y, Jolly C, and Morimoto RI. Analysis of the mammalian heat-shock response. Inducible gene expression and heat-shock factor activity. Methods Mol Biol 99: 217-255, 2000.
.Meador JP. Predicting the fate and effects of tributyltin in marine systems. Rev Enviro Contam Toxicol 166: 1-48, 2000.
.Min JN, Han MY, Lee SS, Kim KJ, and Park YM. Regulation of rat heat shock factor 2 expression during the early organogenic phase of embryogenesis. Biochim Biophys Acta 1494(3): 256-262, 2000.
.Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25:229-253, 1991.
.Morange M, Favet N, Loones MT, Manuel M, Mezger V, Michel E, Rallu M. and Sage J. Heat-shock genes and development. Annals of the New York Acad Sci 851: 117-122, 1998.
.Morimoto RI, Kline MP, Bimston DN, and Cotto JJ. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32: 17-29, 1997.
.Morimoto RI. Heat shock: the role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cells 3: 297-301, 1991.
.Morrison AJ, Rush SJ, and Brown IR. Heat shock transcription factors and the hsp70 induction response in brain and kidney of the hyperthermic rat during postnatal development. J Neurochem 75(1): 363-372, 2000.
.Mosser DD, Theodorakis NG, and Morimoto RI. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8: 4736-4744, 1988.
.Murphy SP, Gorzowski JJ, Sarge KD, and Phillips B. Characterization of constitutive HSF2 DNA-binding activity in mouse embryonal carcinoma cells. Mol Cell Biol 14(8): 5309-5317, 1994.
.Negri AP and Heyward AJ. Inhibition of coral fertilization and larval metamorphosis by tributyltin and copper. Mar Environ Res 51(1): 17-27, 2001.
.Pasheva EA, Pasheva IG and Favre A. Preferential binding of high mobility Group 1 protein to UV-damaged DNA. J Biol Chem273(38): 24730-24736, 1998.
.Perisic O, Xiao H, and Lis JT. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59: 797-806, 1989.
.Peteranderl, R. and Nelson, H. C. M. Trimerization of the heat shock transcription factor by a triple-stranded α-helical coiled-coil. Biochemistry 31: 12272-12276, 1992.
.Santoro, N., Johansson, N., and Thiele, D. J. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol Cell Biol 18: 6340-6352, 1998.
.Sarge KD and Cullen KE. Regulation of hsp expression during rodent spermatogenesis. Cell Mol Life Sci 53(2): 191-197, 1997.
.Sarge KD, Murphy, S.P. and Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity,and nuclear location and can occur in the absence of stress. Mol. Cell. Biol. 13:1392-1407, 1993.
.Sarge KD, Park-Sarge OK, Kirby JD, Mayo KE, Morimoto RI. Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol Reprod 50(6): 1334-1343, 1994.
.Scharf KD, Rose S, Zott W, Schoff F, and Nover L. Three tomato genes code for heat stress transcription factor with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J 9:4495-4501, 1990.
.Schuetz TJ, Gallo GJ, Sheldon L, Tempst P, and Kingston RE. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci U S A 88(16): 6911-6915, 1991.
.Sheldon LA and Kingston RE. Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2. Genes Devel 7(8): 1549-1558, 1993.
.Shim WJ, Oh JR, Kahng SH,. Shim JH, and Lee SH. Accumulation of tributyl- and triphenyltin compounds in Pacific oyster, Crassostrea gigas, from the Chinhae Bay System, Korea. Arch Enviro Contam Toxicol 35(1): 41-47, 1998.
.Sistonen L, Sarge KD, Phillips B, Abravaya K, and Morimoto RI. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12(9): 4104-4111, 1992.
.Sorger PK. Heat shock factor and the heat shock response. Cell 65: 363-366, 1991.
.Tujula N, Radford J, Nair SV, Raftos DA. Effects of tributyltin and other metals on the phenoloxidase activating system of the tunicate, Styela plicata. Aquat Toxicol 55(3-4):191-201, 2001.
.Victor M and Benecke BJ. Expression levels of heat shock factors are not functionally coupled to the rate of expression of heat shock genes. Mol Biol Rep 25(3): 135-141, 1998.
.Westwood JT and Wu C. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 13: 3481-3486, 1993.
.Yeh FL and Hsu T. Detection of a spontaneous High Expression of Heat Shock Protein 70 in Developing Zebrafish (Danio rerio). Biosci Biotechnol Biochem, 64:(3), 592-595, 2000.
.Yeh FL and Hsu T. Different regulation of spontaneous and heat-induced HSP70 epression in developing Zebrafish (Danio rerio). J. Exp. Zool. 2002. (in press)
.Yoshima T, Yura T, and Yanagi H. Function of the C-terminal transactivation domain of human heat shock factor 2 is modulated by the adjacent negative regulatory segment. Nucleic Acids Res 26(11): 2580-2585, 1998.
.Yoshima T, Yura T, and Yanagi H. Novel testis-specific protein that interacts with heat shock factor 2. Gene 214(1-2): 139-146, 1998.
.Yoshima T, Yura T, and Yanagi H. The trimerization domain of human heat shock factor 2 is able to interact with nucleoporin p62. Biochem Biophys Res Commun 240(1): 228-233, 1997.
.Zhou QF, Jiang GB, and Liu JY. Small-scale survey on the contamination status of butyltin compounds in seafoods collected from seven Chinese cities. J Agric Food Chem 49(9): 4287-4291, 2001.
.Zhu Z, and Mivechi NF. Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock. J Cell Biochem 73(1): 56-69, 1999.
.閻惠玲. 斑馬魚核酸配對錯誤修補辨識蛋白MSH6之分子選殖及表現. 國立台灣海洋大學, 碩士論文.2001..王詩雅. 斑馬魚核酸配對錯誤修補辨識蛋白MSH2之分子選殖及表現. 國立台灣海洋大學, 碩士論文.2002.