跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃宗賢
論文名稱:矽藻(Thallassiosiraweissflogii)錳型、鐵型及斑馬魚錳型超氧岐化酶的選殖與特性分析
論文名稱(外文):Cloning, Expression and Characterization of the Diatoms Manganese、Iron Superoxide Dismutase and Zebrafish Manganese Superoxide Dismutase
指導教授:林棋財
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:145
中文關鍵詞:錳型超氧岐化酶
外文關鍵詞:Manganese Superoxide Dismutase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
摘要
藉由聚合酶連鎖反應 ( PCR ) 技術自新鮮矽藻 (Thallassiosira weissflogii) 選殖出一錳型超氧歧化酶( Mn-SOD ) cDNA,cDNA全長為1100 bp,內含轉譯區654 bp,可以轉譯出218個胺基酸,經由分析比較矽藻(Thallassiosira weissflogii)與其他不同物種Mn-SOD之OPR(open reading frame)序列發現,其有很高的相似性 ( 49~65﹪)。除此之外,在文獻中所述與Mn離子結合有關的4個胺基酸 (His 26 , His 81 , Asp 167 , His 171 ) 與活性區8個胺基酸中提供鍵結形成dimer型式之2個胺基酸 (Glu170,Tyr174),均為高度conserve region。將其選殖入pET-20b (+) 表現載體,以Escherichia coli BL21(DE3)pLysS 作為表現宿主,於500 mL菌液經由1 mM IPTG在30 ℃下誘發,可表現出具有活性的Mn-SOD。經親和性管柱純化後,獲得120 mg蛋白質。矽藻Mn-SOD蛋白質特性方面,發現在60℃加熱10 min ,仍保有 88% 活性,加熱降解速率常數 (Kd)為 3.21×10-2 min-1 ,活性減少一半的時間為14.7 min 。在偏酸性環境pH 5以下,蛋白質活性有明顯急促下降趨勢,當處理imidazole 0.8 M至1.6 M時發現蛋白質有漸解離的趨勢,在處理SDS濃度為4%時蛋白質活性約只下降了23%,而蛋白質以酵素trypsin處理3h後尚穩定,但以chymotrypsin處理3 h後活性下降較大,活性約下降了33% 。
同樣藉由聚合酶連鎖反應 ( PCR ) 技術自新鮮矽藻 (Thallassiosira weissflogii) 選殖出一鐵型超氧歧化酶( Fe-SOD ) cDNA,cDNA全長為1120 bps,內含轉譯區606 bp,可以轉譯出202個胺基酸,經由分析比較矽藻(Thallassiosira weissflogii)與其他不同物種Fe-SOD之OPR(open reading frame)序列發現,其有很高的相似性 ( 49~68﹪)。除此之外,在文獻中所述與Fe離子結合有關的4個胺基酸 (His 26 , His 81 , Asp 167 , His 171 ) 與活性區8個胺基酸中提供鍵結形成dimer型式之2個胺基酸 (Glu170,Tyr174),均為高度conserve region。將其選殖入pET-20b (+) 表現載體,以Escherichia coli:BL21(DE3)pLysS 作為表現宿主,於500 mL菌液經由1 mM IPTG及5 mM之Fe2+ 離子在32 ℃下誘發,可表現出具有活性的Fe-SOD。經親和性管柱純化後,獲得480 mg蛋白質。矽藻Fe-SOD蛋白質特性方面,發現在55℃加熱 10 min ,仍保有 88% 活性,加熱降解速率常數 (Kd)為 3.03×10-2 min-1 ,活性減少一半的時間為23 min 。當處理imidazole 濃度達至1.6 M時則造成蛋白質完全解離之情形,在處理SDS濃度為4%時蛋白質活性約只下降了27%,而蛋白質以酵素trypsin處理3h後尚穩定,但以chymotrypsin處理3 h後活性下降較大,約下降了47% 。
Abstract
A full-length cDNA with 1100 bp encoding a putative Manganese-superoxide dismutase ( Mn-SOD ) from diatoms ( Thallassiosira weissflogii ) was cloned. Nucleotide sequence analysis indicated that it comprises a complete open reading frame coding for 218 amino acid residues. The deduced amino acid sequence showed high similarity (49 ~ 65%) with that of Mn-SOD from other species. Computer analysis of the residues required for coordinating the single trivalent manganese iron and the 11 residues putatively involved in the active center were well conserved among all reported Mn-SOD sequence. To further characterize the diatoms Mn-SOD, the coding region was subcloned into an expression vector, pET-20b (+), and transformed into Escherichia coli BL21(DE3)pLysS. The expression of the Mn-SOD was confirmed by enzyme activity stained on a Native gel and purified by Ni2+- nitrilotriacetic acid Sepharose superflow. The diatoms Mn-SOD enzyme retained about 88% activity after heating 60℃for 10 min. The half-life was 14.7 min and the inactivation rate constant (Kd) was 3.21×10-2 min-1 at 65℃. The enzyme was inhibited under acidic pH (below 5.0) and 1.6M imidazole. About 23% protein of the enzyme was dissociated under 4% SDS and the enzyme was much more resistant to trypsin attack than chymotrypsin.
As above, A full-length cDNA with 1120 bp encoding a putative Iron-superoxide dismutase ( Fe-SOD ) from diatoms ( Thallassiosira weissflogii )was cloned. Nucleotide sequence analysis indicated that it comprises a complete open reading frame coding for 202 amino acid residues. The deduced amino acid sequence showed high similarity (49 ~ 68%) with that of Fe-SOD from other species. Computer analysis of the residues required for coordinating the single trivalent iron ion and the 11 residues putatively involved in the active center were well conserved among all reported Fe-SOD sequence. To further characterize the diatoms Fe-SOD, the coding region was subcloned into an expression vector, pET-20b (+), and transformed into Escherichia coli BL21(DE3)pLysS. The expression of the Fe-SOD was confirmed by enzyme activity stained on a Native gel and purified by Ni2+- nitrilotriacetic acid Sepharose superflow. The diatoms Fe-SOD enzyme retained about 83% activity after heating 50℃for 10 min. The half-life was 23 min and the inactivation rate constant (Kd) was 3.03×10-2 min-1 at 55℃. The enzyme was inhibited under acidic pH (below 3.0) and 1.6M imidazole. About 27% protein of the enzyme was dissociated under 4% SDS and the enzyme was much more resistant to trypsin attack than chymotrypsin.
目 錄
第一部份 矽藻錳型及鐵型超氧岐化酶的選殖與特性分析
中文摘要……………………………………………………………………………I
英文摘要……………………………………………………………………..……III
壹、 緒論
一. 矽藻簡介…………………………………….………………………..… …….1
二. 自由基 ( free radical )…………………………………………………...…….4
(一) 自由基的生成…………………………………...…………………………4
1. 生物體中之活性氧與自由基………………………..…..……...……………4
2. 環境中之活性氧與自由基……………………………………………...……5
(二) 自由基的種類………………………………..………….…………………5
1. 超氧陰離子………………………………..…………………..…………...…5
2. 過氧化氫……………………………………..……………………..………...5
3. 氫氧自由基…………………………………………………………………...6
4. 一氧化氮 …………………………………...………....………..……………6
(三) 常見的自由基傷害……..………………………….…..…………..………6
1. 對脂質之傷害……..………………………..……………..….………………7
2. 對蛋白質之傷害……..………………………..……………...….………...…7
3. 對DNA之傷害……..………………………..……………..……..…………7
(四)自由基病理 ( free radical pathology ) ……..………………………..……...7
1.自由基與慢性發炎疾病( Chronic Inflammatory disease)的關係…………….8
2.自由基與神經系統退化性病變 (neurodegeneration disease)的關係………..8
(五)自由基之防禦系統 ( defense system ) ………………..……….…………..9
(六)超氧歧化酶 ( superoxide dismutase, SOD )………...…………….….…...10
I 銅鋅型超氧歧化酶 ( Cu/Zn-SOD )……………………………………..…10
II 錳型超氧歧化酶 ( Mn-SOD )………………..……………………………..11
III 鐵型超氧歧化酶 ( Fe-SOD )………………….…………….….…………14
三. 實驗緣起………………..……………………………..……………...………14
圖表…………………………………..………………..……………….………….16
貳、 實驗材料與方法………..…………………..…………………………………36
一. 實驗材料...……….…………………………………...………………………36
二. 實驗方法….……………………………………………………….………….40
圖表………………………………..………………………………………..…..…61
參、 結果與討論……………………………………………………………………65
一. 矽藻Mn-SOD及Fe-SOD之基因選殖……..…………………………….…65 (一) 矽藻Mn-SOD及Fe-SOD高保守區域基因的選殖:……………………65
(二) 矽藻Mn-SOD之3’-RACE 和 5’-RACE………………….……………65
矽藻Mn-SOD之ORF (open reading frame) 分析.………….…….….…66
(三) 矽藻Fe-SOD之3’-RACE 和 5’-RACE………………….………..……67
矽藻Fe-SOD之ORF (open reading frame) 分析.…………………….…67
二. 矽藻Mn-SOD及Fe-SOD之蛋白質表現與純化………………….…………68
(一) pET-20b(+)表現型載體與矽藻Mn-SOD及Fe-SOD基因之重組DNA構築
………….………………..…………………………………………………...…68
(二) 矽藻Mn-SOD及Fe-SOD基因全長之重組DNA之誘發表現與純化……..69
三. 矽藻Mn-SOD及Fe-SOD蛋白質之特性分析………………………………..71
(一).矽藻Mn-SOD蛋白質之特性分析………...………………………………..71
1.熱穩定性( thermal stability )……………….………………...…………71
2.pH穩定性( pH stability ) ..……………………………...……………....71
4. Imidazole之影響( Imidazole effect ) ………………………………..…72
3.SDS之影響( SDS effect ) …………………………….……….……..…72
5.水解酶的影響( proteolytic susceptibility ).………………………..……72
(一).矽藻Fe-SOD蛋白質之特性分析………...……………………………….73
1.熱穩定性 ( thermal stability )……………….……………….…………73
2.pH穩定性( pH stability ) ..……………………….…….……………….73
4. Imidazole之影響( Imidazole effect ) ……………….……………....…74
3.SDS之影響( SDS effect ) …………….……………………………..…74
5.水解酶的影響( proteolytic susceptibility ).……………..………………74
圖表………………………………..……………………………………………....…76
肆、結論 …………………………..………….…………………………………...124
目 錄
第二部份 斑馬魚錳型超氧岐化酶基因的選殖
壹、序論……..………………………………..…………………………...……….127
一. 自由基……………………………………………………………………….127
二. 實驗緣起……………..……………………………………………………...127
貳、材料與方法………..………………………..………………………………….128
一. 材料...……….………………………………………...……………………..128
二. 實驗方法….…………………………………………………………….…...131
參、結果與討論……………………………………………………………………132
一. 斑馬魚Mn-SOD cDNA選殖…………………………………………..…...132
(一) 中間片段cDNA………………………………………….…….………..132
(二) 3’-RACE…..……………………………….……………….…...……..…132
(三) 5’-RACE…………………………..……………………….……………..133
圖表………………………………..……………………………………………..…134
肆、結論 …………………………..…………..……………………………………139
參考文獻 …………………………………………………………………………..140
伍、參考文獻
Ames, B.; Shigenaga, K. and Hagen, T. M. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993, 90: 7915-7922.
Ambrosone, C. B.; Freudenheim, J. L.; Thompson, P. A.; Bowman, E.; Vena, J. E.; Marshall, J. R.; Graham, S.; Laughlin, R.; Nemoto, T. and Shields, P. G. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Research. 1999, 59(3): 602-606.
Ashkenazi, A.,Dixit, V. M. Death Receptors: Signaling and Modulation. Science. 1998, 281: 1305-1308.
Bannister, J. V.; Bannister, W. H. and Rotilio, G. Aspect of the structure, funtion and applications of superoxide dismutase. Crit. Rev. Biochem. 1987, 22: 111-112.
Beauchamp, C. and Fridovich, I. Improved assays and an assay applicable to acrylamide gel. Anal. Biochem. 1971, 44: 276-287.
Borrello, S.; Passantino, M.; Palazzotti, B.; Mordente, A.; Daniele, A.; Filippini, V.; Galeotti, T. and Masullo, C. Oxidative stress and overexpression of manganese superoxide dismutase in patients with Alzheimer''s disease. Neuroscience Let. 1998, 250(3): 173-176.
Bridges, S. M. Distribution of iron containing superoxide dismutase in vesular plants. Plant Physiol. 1981, 68: 275-278.
Cadenas, E. Mechanisms of oxygen activation and reactive oxygen species detoxification. Oxidative Stress and Antioxidant Defenses in Biol. 1995, 1-61.
Cavalieri, E. L. and Rogan, E. G. Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica. 1995, 25: 677-688.
Cheng, K.; Cahill, H. and Kasai, S. 8-Hydroxyguanine, an abundant from of oxidative DNA damage, causes GT and AC substitution. J. Biol. Chem. 1992, 267: 166-172.
Church, D.; Pryor, F. A. and Pryor, W. A. Free radical chemistry of cigarette smoke and its toxicological implications. Environ. Health Perspect. 1985, 64: 111-126.
Curnutte, J. T. and Babior, B. M. Chronic granulomatous disease. Adv. Hum.Genet. 1987, 16: 229-297.
Elizabeth, C. and Daniel, E. NO news is good news. Science. 1992, 258(18):1862-1865.
Frankel, E. N. Recent advances in lipid oxidation. J. Sci. Food Agric. 1991, 54: 495-511.
Fridovich, I. Superoxide dismutases. Adv. Enzymol. 1986, 58: 61-97.
Fridovich, I. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry. 1995, 64: 97-112.
Green, M. J. and Hill, H. A. Chemistry of dioxygen. Methods Enzymol. 1984, 105: 3-22.
Gonzalez , Z. M,. Ensz L. M, Mukhina, G. Lebovitz, R. M., Zwacka R. M,. Engelhardt, J. F,. Oberley, L. W,. Dawson, V. L,. Dawson, T. M. Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. Journal of Neuroscience. 1998, 18(6):2040-55.
Gutteridge, J. M. and Halliwell, B. Free radicals and antioxidants in the year 2000. A historical look to the future. 2000, 899: 136-147.
Hagen, U. Biochemical aspects of radiation biology. Experientia. 1989, 45(1): 7-12.
Halliwell, B.; Murcia, M. A.; Chirico, S. and Aruoma, O. I. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 1995, 35: 7-20.
Halliwell, B. The Lancet. 1994, 344: 721-724.
Hallwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis. 1993, 23: 118-126.
Harris, I. K.; Auffret; A. D.; Northrop, F. D. and Walker, J. E.. Structural comparisons of superoxide dismutases. Eur. J. Biochem. 1980, 106: 279-303.
Hassan, H. M. and Schrum, L. W. Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli. FEMS Microbiol. Reviews. 1994, 14(4): 315-323.
Hazlewood, C. and Davies, M. J. Damage to DNA and RNA by tumour promoter-derived alkoxyl radicals: an EPR spin trapping study. Biochem. Soc. Trans 1995, 23: 259-260.
Huber, R. and Warner. Superoxide dismutase, aging and degenerative disease. Free radical Biol. Med. 1994, 17: 249-258.
James, P. and Kehrer, D. Free radicals as mediators of tissue injury and disease. Critical Reviews in Toxicology. 1993, 23(1): 21-48.
Jonathan, S.; David, J. and Singel, J. L. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992, 258(18): 1898-1902.
Kiningham, K. K., Oberley, T.D.; Lin, S.; Mattingly, C.A. and Clair, D.K. Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly (ADP-ribose) polymerase-mediated cell death. FASEB J. 1999, 13: 1601-1610.
Lebovitz, R. M., Zhang, H., Vogel, H., Cartwright, J. Jr., Dionne, L., Lu, N., Huang, S., Matzuk, M. M. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 1996,93(18):9782-7
Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics. 1995,11(4):376-81
Li ,P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X. Cytochrome c and ATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997, 91: 479-89.
Lim, J. H.; Yu, Y. G.; Han, Y. S.; Cho, S. J.; Ahn, B. Y.; Kim, S. H. and Cho, Y. The crystal structure of an Fe-superoxide dismutase from the hyperthermophile Aquifex pyrophilius at 1.9Å resolution: structure basis for thermstability. J. Mol. Biol. 1997, 270: 259-274.
Lin, M. T.;Kuo, T. J. and Lin, C. T. Molecular cloning of a cDNA encoding copper/zinc superoxide dismutase from papaya fruit and overexpression in E.coli. J.Agric.Food Chem. 1998, 46: 344-348.
Lin, C. T.; Kuo, T. J.; Shaw, J. F. and Kao, M. C. Characterization of the dimer-monomer equilibrium of the papaya copper/zinc superoxide dismutase and it’s equilibrium shift by a single amino acid mutation. J. Arg. Food.Chem. 1999, 47: 2944-2949.
Liochev, S. I. and Fridovich, I. How does superoxide dismutase protect against tumor necrosis factor: a hypothesis informed by effect of superoxide on "free" iron. Free Radical Biology & Medicine. 1997, 23(4): 668-671
Lusis, A. J. Atherosclerosis Nature. 2000, 407(6801):233-41.
Kuo, S., Chesrown, S. E., Mellott, J. K., Rogers, R. J., Hsu, J. L., Nick, H. S. In vivo architecture of the manganese superoxide dismutase promoter. Journal of Biological Chemistry. 1999, 274(6):3345-54.
MacMillan-Crow, L. A., Crow, J. P., Kerby, J. D., Beckman, J. S., Thompson, J. A., Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93(21):11853-8,
MacMillan-Crow, L. A., Crow, J. P., Thompson, J. A., Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry. 1998, 37(6):1613-22
Maly, F. E. The β-lymphocyte: a newly recognized source of reactive oxygen species with immunoregulatory potential. Free Rad. Res. Commun. 1990, 8: 143-148.
Mann, T. and Keilin, D. Haemocuprein and hepatocuprein, copper-proein compounds of blood and liver in mammals. Proc. R. Soc. London Ser B. 1939, 128: 303-304.
Manna, S. K., Zhang, H. J., Yan, T., Oberley, L. W., Aggarwal, B. B., Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. Journal of Biological Chemistry.1998, 273(21):13245-54
Mantymaa, P.; Siitonen, T.; Guttorm, T.; Saily, M.; Kinnula, V.; Savolainen, E. R. and Koistinen, P. Induction of mitochondrial manganese superoxide dismutase confers resistance to apoptosis in acute myeloblastic leukaemia cells exposed to etoposide. British Journal of Haematology. 2000, 108(3): 574-581.
McCord, J. M. and Fridovich, I. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244: 6049-6052.
Meier, B.; Radeke, H.; Selle, S.; Raspe, H. H.; Sies, H.; Resch, K. and Habermehl, G. G. Human fibroblasts release reactive oxygen species in response to treatment with synovial fluids from patients suffering from arthritis. Free Radical Res. Commun. 1990, 8: 149-160.
Niebauer, J., Volk, H.D., Kemp M., Dominguez, M., Schumann, R.R., Rauchhaus M., Poole-Wilson, P.A., Coats, A.J. and Anker, S.D. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999, 353: 1838-1842
Oberley, L. W. and Oberley, T. D. Role of antioxidant enzymes in cell immortalization and transformation. Molecular & Cellular Biochemistry. 1988, 84(2): 147-153.
Pan, S. M. and Y. Y. Yan. The isozymes of superoxide dismutase in rice. Bot. Bull. Acad. Sin. 1991, 32: 253-258.
Pryor, W. A., Lightsey, J. W. and Church, D. F. Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: addition and hydrogen abstraction mechanisms. J. Am. Chem. Soc. 1982, 104: 6685-6671.
Rafael, R.; Marianela, R.; Laura, C. and Rossana, T. Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophy. 1994, 308: 89-95.
Raha, S.; McEachern, G. E.; Myint, A. T. and Robinson, B. H. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radical Biology & Medicine. 2000, 29(2): 170-80.
Reid, T. M. and Loeb, L. A. Effect of DNA repair enzymes on mutagenesis by oxygen free radicals. Mutat. Res 1993, 289: 181-186.
Rogers, R. J., Monnier, J. M., Nick, H. S. Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling,whereas interleukin-1beta utilizes an alternative pathway. J. Biol. Chem. 2001, 276(23):20419-27
Rothman, R. J.; Serroni A. and Farber, J. L. Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin,that is involved in oxidative cell injury. Mol Pharmacol 1992, 42: 703-710.
Sandy, M. S.; Moldeus, P.; Ross, D. and Smith, M. T.. Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotxicity. Studies with a compromised isolated hepatocyte model system. Biochem. Pharmacol. 1986, 35: 3095-3101.
Schenk, D. Alzheimer''s disease: A partner for presenilin Nature. 2000, 407(6800):34-5.
Schinina, M.E., Carlini, P., Polticelli, F., Zappacosta, F., Bossa, F. and Calabrese L. Amino acid sequence of chicken Cu,Zn-containing superoxide dismutase and identification of glutathionyl adducts at exposed cysteine residues. Euro. J. Biochem. 1996, 237(2): 433-439.
Simic, M. G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat. Res. 1988,. 202: 377-386.
Simonian, N. A. and Coyle, J. T.. Oxidative stress in neurodegenerative disease. Annu. Rev. Pharmacol. Toxicol. 1996, 36: 83-106.
Singh, A. K.; Dobashi, K.; Gupta, M. P.; Asayama, K.; Singh, I. and Orak, J. K. Manganese superoxide dismutase in rat liver peroxisomes: biochemical and immunochemical evidence. Molecular & Cellular Biochemistry. 1999, 197(1-2): 7-12.
Stadtman, E. R. and Oliver, C. N. Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem. 1991, 266: 2005-2008.
Stadtman, E. R. Protein oxidation and aging. Science. 1992,257: 1220-1224
Stalling, W. C.; Bull C.; Fee, J. A.; Lah, M. S. and Ludwig, M. L. Iron and manganese superoxide dismutase : catalytic inferences from the structures. Molecular Biologyof free radical scavenging Systems. 1992,35: 193-201.
Steinman, H. M.; Naik, U. R.; Aberenthy, J. L. and Hill, R. A. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J. Biol. Chem. 1974, 249: 7326-7338.
Tainer, J. A.; Getzoff, E. D.; Beem, K. M. and Richardson, D. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983, 306: 284-286.
Tatiana, V.; Petrova, K.; Akama, T.; Linda, J. and Van, E. Selective modulation of BV-2 microglial activation by prostaglandin E2 . J. Biol. Chem. 1999, 274: 28823-28827.
Wayne, F.; Beyer, J. and Fridovich, I. In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli. J. Biol. Chem. 1991, 266 (1): 303-315.
William, C. S.; Katherine, A. P.; Roland, K. S. and Martha, L. L. Manganese and iron superoxide dismutase are structural homology. J. Biol. Chem. 1984, 259 (17): 10695-10702.
Yan, T.; Larry, W. O. and Weixiong, Z. Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transfomed human lung fibroblasts. Cancer. Res. 1996, 56: 2864-2871.
Yuan, J.; Yankner, B. A. Apoptosis in the nervous system Nature. 2000,407(6805):802-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top