跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/15 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王君銘
研究生(外文):Jing-Ming Wang
論文名稱:γ型冷阱連線技術之建立暨砷物種分析應用
論文名稱(外文):The γ-Shaped Cold Trap Hyphenated System and Its Application in the Arsenic speciation Analysis
指導教授:熊同銘
指導教授(外文):Tung-Ming Hsiung
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:77
中文關鍵詞:γ型冷阱砷物種實驗設計
外文關鍵詞:γ-shaped cold traparsenic speciationexperimental design
相關次數:
  • 被引用被引用:4
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究建立了一套γ型冷阱層析連線設備,此設備是利用自行開發之γ型冷阱管濃縮氫化後的氣態衍生物,並應用氣相層析原理,將樣品中的砷物種分離並分析之。此連線設備係由三個部分組合而成,分別為氫化物生成器、γ型冷阱管和原子吸收光譜儀。
在儀器的參數設定部份,由於層析圖譜中MMA及DMA兩個波峰較易重疊,所以設計了層析升溫條件和載流氣體流量兩個因子的全因子實驗(full factorial experiment),以確定MMA和DMA兩個波峰達到基線分離(base line resolved)的目標。為了降低層析圖的雜訊,設計了一個鞘流氣體流量最佳化的單因子實驗(one factorial experiment),以確定鞘流氣體的最適流量。最後採用田口式實驗設計的部分因子實驗(fractional factorial experiment),具以得到MMA和DMA最適的氫化物生成條件,接下來我們使用pH值選擇性氫化的方法,分別確認i-As(AsⅢ+AsⅤ)和AsⅢ的分析方法,AsⅤ的濃度則由i-As和AsⅢ的差異值獲得。
利用以上分析方法,並求出砷物種的偵測極限,分別為AsⅢ、AsⅤ、MMA、DMA:1.1、1.3、0.6及0.8 ng,將此方法應用於海水及淡水的分析上,添加回收率為92~112%,三重複分析值的標準偏差為2~12%間。
最後本研究所建立應用於海研一號 642B航次(2002年4月30 日至5月9日),結果發現AsⅤ是砷的主要物種,砷物種的濃度大致依序為AsⅤ > AsⅢ > DMA > MMA。依各砷物種的分布趨勢研判,浮游植物的聚群應是影響砷物種轉化的重要因子。此外,沿岸區的水體可能受到陸源輸出的影響而有較高的總溶解砷。

An innovative compartment uniquely based on the combination of cryogenic trapping and unambiguous gas chromatographic separation performed within a γ-shaped cold trap (GCT) has been developed here.
In this hydride generation-γ-shaped cold trap-atomic absorption spectrometry (HG-GCT-AAS) system, the carrier gas (He) and heating voltage are optimized with a complete factorial experiment and in accordance with base-line resolution (RS > 1.5) between monomethylated arsenic (MMA) and dimethylated arsenic (DMA); on the other hand, the sheath gas argon (Ar) flow rate is optimized with a single factorial experiment to obtain the highest signal-to-noise (S/N) ratio. For MMA and DMA analysis, compromised levels of the parameters for hydride generation were determined here by an L16(4)5 orthogonal array experimental design based on the larger-is-better S/N ratio.
The hydride evolution after the addition of citrate buffer was employed to measure the arsenite (AsⅢ) selectively. With the atomic absorption spectrometer (AAS) serving as the detector, the detection limits were 1.1, 1.3, 0.6 and 0.8 ng for AsⅢ, AsⅤ (arsenate), MMA, and DMA, respectively. The results of the application of the method in freshwater and seawater showed spike recovery ranges from 92~116%, and the relative standard deviation of triplicates ranges from 2~12%, depending on the arsenic species.
Investigations of distribution of arsenic species in Taiwan Strait and Kuroshio water have been investigated by cruise OR-1 642B (April 30~May 9, 2002). The major species was AsⅤ and in general the concentrations order were AsⅤ > AsⅢ > DMA > MMA. The contour distribution implicated the transformation of those species were correlated to the phytoplankton community, and only the anthropogenic arsenic source of arsenic were considered only in the coastal area.

目錄
謝誌 i
中文摘要 ii
英文摘要 iii
目錄 iv
表目錄 vi
圖目錄 vii
中英文及縮寫對照表 viii
第一章、前言 1
1.1砷物種的分析方法 3
1.2氫化物生成器 6
1.3液態氮冷阱裝置 7
1.4冷阱管及其填充物質 9
1.5研究目標及研究內容 9
第二章、實驗設備及材料方法 13
2.1 HG-GCT-AAS連線系統細部構造 13
2.1.1連續式氫化物生成器構造 13
2.1.2 HG-GCT之間的除水裝置 14
2.1.3γ型冷阱系統的構造 14
2.1.4γ型冷阱的升溫方式 16
2.1.5鞘流氣體(sheath gas)裝置 17
2.1.6原子吸收光譜儀 18
2.1.7訊號處理系統 18
2.2試藥材料、採樣及製備 18
2.2.1試藥及材料 18
2.2.2有機砷標準溶液的配製 19
2.3採樣及樣品保存 20
2.4實驗步驟及操作程序 20
第三章、氫化物生成及冷阱系統最適化條件探討 22
3.1冷阱最適升溫方式和載流氣體流量 22
3.2鞘流氣體最適流量 23
3.3 MMA和DMA的最適氫化效率 24
第四章、三價砷及五價砷物種分析之建立 27
4.1總無機砷的分析 28
4.2 AsⅢ選擇性氫化方法之建立 29
第五章、砷物種分析方法的確認 30
5.1檢量線及偵測極限 30
5.2分析方法應用及確認 31
第六章、台灣海峽及黑潮水的砷物種分布 33
6.1採樣及分析 33
6.2台灣海峽水砷物種分布 34
6.3台灣東岸黑潮水之砷物種分布 35
第七章、結論 37
參考文獻 39
表目錄
Table 1.1 Arsenic concentrations in the nature water 45
Table 1.2 Lethal Dose 50 (LD50) of Arsenic compounds 46
Table 1.3 Typical hyphenated technique for arsenic speciation study 47
Table 1.4 Compounds available for HG-CT method 48
Table 1.5 Review of CT methods for arsenic speciation analysis 49
Table 1.6 Dissociation constants and useful information for some arsenic compounds 50
Table 3.1 L16(45) orthogonal array experiment for hydride generation optimization 51
Table 3.2 Factors and levels for hydride generation optimization 52
Table 3.3 Raw data and S/N ratios 52
Table 3.4 Pooled ANOVA for the signal-to-noise analysis by three set of hydride generation experiments 53
Table 4.1 Review publications for distinguishing of AsⅢ and AsⅤ 54
Table 5.1 Quality control data 55
Table 5.2 Spike recovery of the method 56
Table 6.1 Concentrations of arsenic speciation 57
圖目錄
Figure 1.1 Metabolic schemes of arsenicals 62
Figure 2.1 Hydride generation-γshaped cold trap-atomic absorption spectrometry (HG-GCT-AAS) system 63
Figure 2.2 Schematic diagram of the GCT compartment 64
Figure 2.3 Chromatographic peaks of different packing 65
Figure 2.4 Schematic diagram of the sheath gas tube compartment 65
Figure 3.1 Optimization for carrier gas flow rate and GCT heating voltage 66
Figure 3.2 Optimization for sheath gas flow rate 67
Figure 3.3 The flow chat of Taguchi experimental design 68
Figure 3.4 Effects of control factors in signal-to-noise ratio 69
Figure 4.1 pH dependency of the arsine yield obtained from the reaction of a number of arsenic oxyanions with NaBH4 70
Figure 4.2 Chromatograms for selective hydride generation of AsⅢ 71
Figure 5.1 Schematic diagram for arsenic speciation analysis 72
Figure 6.1 Ocean Researcher 1-642B cruise track 73
Figure 6.2 Resulted chromatograms of sample from station 26 74
Figure 6.3 Distribution of total dissolved arsenic in 2-m depth water 75
Figure 6.4 Transec A profiles of arsenic speciation 76
Figure 6.5 Depth profiles of arsenic in Kuroshio regime 77

參考文獻
Aggett, J. and Aspell, A.C., The determination of arsenic(III) and total arsenic by atomic absorption spectroscopy, Analyst, (1976), 101, 341-347.
Aggett, J. and Kadwani, R., Anion-Exchange Method for Speciation of Arsenic and its Application to some Environmental Analysis, Analyst, (1983), 108, 1495-1499.
Anderson, L.C.D. and Bruland, K.W., Biogeochemistry of Arsenic in Natural Water: The Importance of Methylated Species, Environ. Sci. Technol., (1991), 25, 420-427.
Anderson, R.K. Thompson, M., and Culbard, E., Selective Reduction of Aarsenic Species by Continuous Hydride Generation, Analyst, (1986),111, 1143-1152.
Anderson, R.K., Thompson, M. and Culbard, E., Selctive Reduction of Arsenic by Continuous Hydride Generation. Part I. Reaction Media, Analyst, (1986), 111, 1143-1152.
Andreae, M.O. and Andreae, T.W., Dissolved Arsenic Species in the Schelde Estuary and Watershed, Belgium, (1989), 29, 421-433.
Andreae, M.O. and Klumpp, D., Biosynthesis and Release of Organoarsenic Compounds by Marine Algae, Environ. Sci. Technol., (1979), 13(6), 738-741.
Andreae, M.O., Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element, Limnol. Oceanogr., (1979), 24, 440-452.
Andreae, M.O., Determination of Arsenic in Natural Waters, Analytical Chemistry, (1977), 49, 820-823.
Arbab-Zavar, M. H. and Howard, A. G., Automated procedure for the determination of soluble arsenic using hydride generation atomic-absorption spectroscopy, Analyst, (1980), 105, 744-750.
Arenas, V., Stoeppler, M. and Bergerhoff, G., Arsenic determination in the ultratrace range by atomic absorption spectrometry after preconcentration of the hydride, Fresenius Z. Anal. Chem., (1988), 332, 447-452.
Braman, R.S. and Foreback, C.C., Methylated forms of Arsenic in the Environment, Science, (1973), 182, 1247-1249,.
Braman, R.S. and Johnson, D.L., Foreback C.C., Ammons J.M. and Bricker J.L., Separation and determination of nanograms amounts of inorganic arsenic and methlyarsenic compounds, Analytical Chemistry, (1977), 49, 4, 621-625.
Buat-Menard, P., Peterson, P.J., Peterson, P.J., Havas, M., Steinnes, E. and Turner D., “Group Report: Arsenic”, In: Lead, Mercury, Cadmium, and Arsenic in the Environment, T.C. Hutchinson and K.M. Meema, editors, Wiley, pp. 43-48, (1987)
Cabon J.Y. and Cabon N., Speciation of major arsenic species in seawater by flow injection hydride generation atomic absorption spectrometry, Fresenius Z. Anal. Chem., (2000), 368, 484—489.
Costa-Fernandez, J.C., Lunzer, F., Periero-Garcia, R. and Sanz-Mendel, A., Direct Coupling of HPLC to Microwave -Induced Plasma AAS via Volatile- Species Generation and its Application to Mercury and Arsenic Speciation, Journal of Analytical Atomic Spectrometry, (1995), 10, 1019-1025.
Cutter, G.A., Cutter, L.S., Featherstone, A.M. and Lohrenz, S.E., Antimony and arsenic biogeochemistry in the western Atlantic Ocean. Deep-Sea Research, Part II: Topical Studies in Oceanography, (2001), 48(13), 2895-2915.
Dietz, C., Madrid, Y., Camara, C. and Quevauviller, P., Simultaneous determination of As, Hg, Se and Sb by hydride generation-microwave induced plasma atomic emission spectrometry after preconcentration in a cryogenic trap. Journal of Analytical Atomic Spectrometry, (1999), 14, 1349-1355.
Dietz, C., Madrid, Y., Camara, C. and Quevauviller, P., The Capillary Cold Trap as a Suitable Instrument for Mercury Speciation by Volatilization, Cryogenic Trapping, and Gas Chromatography Coupled with Atomic Absorption Spectrometry. Analytical Chemistry, (2000), 72(17), 4178-4184.
Dêdina, J. and Weltz, B., Quart tube atomizers for hydride generation atomic absorption spectrometry mechanism for atomization of arsine invited lecture. Journal of Analytical Atomic Spectrometry, 1992, 7, 307-314.
Dixon, H.B.F., The biochemical action of arsenic acids especially as phosphate analogues, Adv. Inorg. Chem., (1997), 44, 191-227.
Driehaus, W. and Jekel, M., Determination of As(III) and total inorganic arsenic by on-line pretreatment in hydride generation atomic absorption spectrometry, Fresenius Z Aanl. Chem., (1992), 343, 352-356.
Ebdon, L., Hill, S., Walton, A.P. and Ward, R.W., Coupled Chromatography - Atomic Spectrometry for Arsenic Speciation-A Comparative Study, Analyst, (1988), 113, 1159-1165,.
Edmonds, J.S. and Francesconi, K.A., Transformations of arsenic in the marine environment. Experientia, (1987), 43(5), 553-557.
Ellwood, M.J. and Maher, W.A. An automated hydride generation-cryogenic trapping-ICP-MS system for measuring inorganic and methylated Ge, Sb and As species in marine and fresh waters, Journal of Analytical Atomic Spectrometry, (2002), 17,197-203.
Faye, M.S. and Diamond, M.L., The role of phytoplankton in the removal of arsenic by sedimentation from surface waters. Hydrobiologia. (1996), 324(2), 117-123.
Featherstone, A.M., Butler, E.C.V., O’Grady, B.V. and Michel, P. Determination of arsenic species in seawater by hydride generation atomic fluorescence spectroscopy. Journal of Analytical Atomic Spectrometry. (1998), 13, 1355-1360.
Francesconi, K.A. and Edmonds, J.S. Arsenic and marine organisms. Adv. Inorg. Chem., (1997), 44, 147-189.
Goulden, P.D. and Brooksbank, P., Automated atomic absorption determination of arsenic, antimony, and selenium in natural water, Analytical Chemistry, (1974), 46(11), 1431-1436.
Grüter, U.M., Kresimon, J. and Hirner A.H., A new HG/LT-GC/ICP-MS multi-element speciation rechnique for real samples in different matrices. Fresenius Z Anal. Chem., (2000), 368, 67-72.
Hakala, E. and Pyy, L., Selective Determination of Toxicologically Important Arsenic Species in Urine by HPLC-Hydride Generation AAS, Journal of Analytical Atomic Spectrometry, (1992), 7, 191-196.
Haring, B.J.A., Delft, W. and Bom, C.M., Determination of arsenic and antimony in water and soil by hydride generation and atomic absorption spectroscopy, Fresenius Z. Anal. Chem., (1982), 310, 217-223.
Hershey, J.W. and Keliher, P.N., Some HG inter-element interference studies utilizing AA and ICP ES, Spectrochim. Acta, (1986), 41B, 713-723.
Howard AG., (Boro)Hydride Techniques in Trace Element Speciation, Journal of Analytical Atomic Spectrometry, (1997), 12, 267-272.
Howard, A.G. and Arbab-Zavar, M.H., Determination of Inorganic Arsenic(III) and Arsenic(V), Methylarsenic, and Dimethylarsenic Species by Selective Hydride Evolution AAS, Analyst, (1981), 106, 213-220.
Howard, A.G., Arbab-Zavar, M.H. and Apte, S., The behaviour of dissolved arsenic in the estuary of the river beaulieu, Estuarine Coastal and Shelf Science, (1984), 19, 493-504.
Howard, A.G., Arbab-Zavar, M.H. and Apte, S., Seasonal variability of biological arsenic methylation in the estuary of the River Beaulieu [Great Britain]. Mar. Chem., (1982), 11, 493-498.
Howard, A.G., Comber, S.D.W., Kifle, D., Antai, E.E., and Purdie, D.A., Arsenic speciation and seasonal changes in nutrient availability and micro-plankton abundance in Southampton water, Est. Coastal Shelf Sci., (1995), 40, 435—450.
Howard, A.G. and Salou, C., Arsenic speciation by cryogenic trap hydride generation atomic absorption spectroscopy: performance enhancement by prederivitization, Journal of Analytical Atomic Spectrometry, (1998), 13, 683-686.
Hwang, C.J. and Jiang, S.J., Determination of Arsenic Compounds in Water Samples by Liquid Chromatography-ICPMS with an in situ Nebuliser — Hydride Generator, Anal. Chim. Acta., (1994), 289, 205-213.
Ikeda, K., Determination of arsenic at the picogram level by atomic absorption spectrometry with miniaturized suction-flow hydride generation, Anal Chim Acta, (1985), 167, 289-297.
Knauer, K. Behra, R. and Hemond, H., Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient. Aquatic Toxicology, (1999), 46(3-4), 221-230.
Le, X.C., Lu, X., Ma, M., Cullen, W.R., Aposhian, H.V. and Zheng, B., Speciation of key arsenic metabolic intermediates in human urine. Analytical Chemistry., (2000), 72, 5172-5177.
Leckrone, K.J. and Hayes, J.M., Efficiency and temperature dependence of water removal by membrane dryers. Analytical Chemistry, (1997), 69, 911-918.
Lee, C.K., Low, K.S. and Hew, N.S., Accumulation of arsenic by aquatic plants, Sci. Total Environ., (1991), 103, 215-227.
Maher, W.A., Determination of total arsenic by use of a zinc-column arsine generator, Talanta, (1982), 29, 532-534.
Martin, A.J. and Pedersen, T.F., Seasonal and internal mobility of arsenic in a lake impacted by metal mining, Environ. Sci. Technol., (2002), 36(7), 1516-1523.
Mester, Z. and Fodor, P., High-performance liquid chromatography-hydride generation-atomic fluorescence spectroscopic determination of arsenic speculation in water, J. Chromatogr. A (1996), 756, 292-299.
Michel, P., Averty, B., Noel, J. and Sanjuan, J., Evaluation of dissolved and particulate arsenic flux in the Dover Strait (Fluxmanche program). Oceanol. Acta, (1993), 16(5-6), 585-91.
Michel, P., Boutier B., Herbland, A., Averty, B., Artigas, L.F., Auger, D. and Chartier, E., Behavior of arsenic on the continental shelf off the Gironde Estuary: role of phytoplankton in vertical fluxes during spring bloom conditions. Oceanol. Acta, (1998), 21(2), 325-333.
Millward, G.E. Ebdon, L. and Walton, A.P. Seasonality in estuarine sources of methylated arsenic. Appl. Organomet. Chem., (1993), 7(7), 499-511.
Millward, G.E., Kitts, H.J., Comber, S.D.W., Ebdon, L. and Howard, A.G., Methylated arsenic in the Southern North Sea. Department Environmental Sciences, Estuarine, Coastal Shelf Sci., (1996), 43(1), 1-18.
Millward, G.E., Kitts, H.J., Ebdon, L. Allen, J.I. and Morris, A.W., Arsenic in the Thames Plume, Mar. Environ. Res. (1997), 44(1), 51-67.
Narsito, and Agterdenbos, J., A study of arsenic(III) and arsenic(V) reduction and of arsine decomposition in hydride-generation atomic absorption spectrometry, Anal Chim Acta, (1987), 197, 315-321.
Nelson, K., “Introduction: Industrial Sources”, In Arsenic: Industrial, Biomedical, Environmental Perspectives, W.H. Lederer and R.J. Fentsterheim, editors, VNR Co., New York, p.1, (1983)
Nielsen, S. and Hansen, E.H., Determination of As(III) and As(V) by flow injection-hydride generation-atomic absorption spectrometry via on-line reduction of As(V) by KI, Anal Chim Acta, (1997), 343, 5-17.
Pacey, G.E., Srraka, M.R. and Gord, J.R., Dual phase gas diffusion flow injection analysis/hydride generation atomic absorption spectrometry, Analytical Chemistry, (1986), 58, 502-504.
Pécheyran, C., Amouroux, D. and Donard, O.F.X., Field determination of volatile selenium species at ultra trace levels in environmental waters by on-line purging, cryofocusing and detection by atomic fluorescence spectroscopy, Journal of Analytical Atomic Spectrometry, (1998), 13, 615-621.
Petrick, J.S., Ayala-Fierro, F., Cullen, W.R., Carter, D.E. and Vasken A.H., Monomethylarsonous acid (MMAⅢ) is more toxic than arsenite in chang human hepatocytes. Toxicology and Applied Pharmacology, (2000), 163, 203-207.
Reamer, D.C. and Veillon, C. Preparation of biological materials for determination of selenium by hydride generation-atomic absorption spectrometry. Analytical Chemistry, (1981),53, 1192-1195.
Rubio, R., Padro, A., Alberti, J. and Rauret, G., Determination of arsenic speciation by liquid chromatography-HGICPAES with on-line UV photooxidation, Anal. Chim. Acta., (1993), 283, 160-166.
Sanders, J.G. and Windom, H.L., The uptake and reduction of arsenic species by marine algae, Est. Coastal Mar. Sci., (1980), 10, 555—567.
Sanz, J. and Gallarta, F., Simultaneous determination of inorganic arsenic(III) and arsenic(V) by arsine generation and gas-phase molecular absorption spectrometry, Anal. Chimi. Acta., (1991), 255, 113-120.
Shraim, A., “Introduction: Toxicity of Arsenic” In: Speciation of arsenic in environmental systems, a thesis submitted to the university of queensland, p.3, (1999)
Sohrin, Y., Hasegawa, H. and Matsui, M., Speciation of organoarsenical compounds in the hydrosphere, Biogeochemical processes and ocean flux in the western pacific, (1995), 129-138.
Sturman, B.T., Development of a continuous-flow hydride and mercury vapor generation accessory for atomic absorption spectrophotometer, Applied Spectroscopy, (1985), 39, 48-56.
Tanaka, S., Nakamura, M., Kishi, Y. and Hashimoto, Y., Distribution of organic arsenic (methylarsonic acid, dimethylarsinic acid) and inorganic arsenic (As(III), As(V)) in river water, Nippon Kagaku Kaishi, (1986), 727-732.
Thomas, P. and Sniatecki, K., Determination of trace amounts of arsenic species in natural waters by high-performance liquid chromatography-inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, (1995), 10, 615-618.
Tseng, C. M. and Diego, A. et al., Cryofocusing coupled to atomic absorption spectrometry for rapid and simple mercury speciation in environmental matrices, Journal of Analytical Atomic Spectrometry, (1998), 13, 755-764.
Van Cleuvenbergen, R.J.A., Van Mol, W.E. and Adams, F.C., Arsenic speciation in water by hydride cold trapping - quartz furnace AAS: An Evaluation, Journal of Analytical Atomic Spectrometry, (1988), 3, 169-176.
Wang, J., Tomlinson, M.J. and Caruso, J.A., Extraction of trace elements in coal fly ash and subsequent speciation by HPLC with ICPMS, Journal of Analytical Atomic Spectrometry, (1995), 10, 601-607.
Welz, B., Schubert-Jscobs, M. Sperling, M. Styris, D.L. and Redfield, D.A. Investigation of reactions and atomization of Arsine in heated quartz tube using atomic-absorption and mass-spectrometry, Spectrochim ACAT, (1990), 45(11), 1235-1256.
蕭証元,民89,田口氏實驗設計-海水中總砷分析最適化條件研究,國立海洋大學水產生物技術研究所碩士論文。
林敬二、林宗義 譯,民83,分析化學,第四版,美亞出版股份有限公司。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊